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Abstract. For a bounded’** domain inR‘ we show that there exists a strong solution to

the multidimensional Skorokhod equation and that weak uniqueness holds for this equation.
These results imply that pathwise uniqueness and strong uniqueness hold for the Skorokhod
equation.

1. Introduction

Let D be a domain iR? andv the inward-pointing unit normal vector field on
dD, the boundary oD. Let B be ad-dimensional Brownian motion starting at the
origin. Consider the Skorokhod equation for a pair of proceg¥es.):

t

X, = Xo+ B, + ;/O v(Xs)dLs 1)
where X is a D-valued continuous procesEp is a point inD, and L is a con-
tinuous nondecreasing process which increases only When d D. WhenD is
a C? domain it was proved in Lions and Sznitman[13] and Hsu[9] that pathwise
uniqueness holds for the equation. In fact, giveryaa C5(R,., R?) (the space of
continuous functions frork; = [0, co) to R? starting from a point inD) there is
a unique solutiorig, /) to the deterministic Skorokhod equation

1 t
& =fi+ 5/ v(gs)dls .
0
(We oftenwritef; for £ (¢).) ThemapF : C5(R4, RY) — C (R, D)xCo(R+, R+)

given by F(f) = (g, [) is (progressively) measurable and is the unique strong so-
lution to the Skorokhod equation (1). This means th&bif X, L) are related by
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(1) andB is a Brownian motion (with initial value zero) independeniefthen we
musthave X, L) = F(B+ Xg). FurthermoreX has the law of reflecting Brownian
motion. As an application of &s formula the process can be recovered by the
formula

1 t
L; =lim - Is, (Xs)ds
t AiOAA S)L( S) N

whereS;, = {x € D : dist(x, 3D) < A}.

Dupuis and Ishii[5] showed that pathwise uniqueness for Brownian motion with
oblique reflection holds fof'* domains; however they required the angle of reflec-
tion to vary in almost a2 manner. For normal reflection this implies the domains
must be nearly’?.

For an arbitrary domain, we define reflecting Brownian motion/oio be
a D-valued diffusion process (strong continuous Markov process with continu-
ous sample paths) whose transition density function is the one determined by the
Dirichlet form

ECf, f) = 5/ IV £ (x)|%dx f e HY(D);
O\ J, . = 2 b N N

(see Fukushima[6]). ID has a rough boundary, such a process does not always
exist. But it was proved in Bass and Hsu[3],[4] thaDifis Lipschitz, then such an

X exists, X is a reflecting Brownian motion as defined above, and the Skorokhod
equation holds. The procegsn this case is just the continuous additive function-
al determined by the surface measuré 6f. This means that i is a reflecting
Brownian motion on a Lipschitz domaib, then there exists a Brownian motion
starting at a point irD such that (1) holds. More recently, Bass[1] proved that under
certain additional conditions ahweak uniqueness holds for the Skorokhod equa-
tion on a Lipschitz domain. This means that for such domaissig a Brownian
motion starting from the origin¥ is a pointinD, and(B, X, L) satisfies (1), then

X is a reflecting Brownian motion.

C? domains are smooth enough so that reflecting Brownian motion in such a
domain shares many properties with reflecting Brownian motion in a half space,
and this fact can be exploited in proving pathwise results. This is no longer the case
in less smooth domains such@s® domains. (This is analogous to the situation for
the Neumann problem in analysis, where there is an extensive literature attempting
to extend results known to hold i#? domains to less smooth ones.)

The main result of the present paper is Theorem 5.1, which states thatit a
domain the solution to the Skorokhod equation is pathwise unique. The method
we use is quite different from existing techniques for proving pathwise uniqueness
and consists primarily of a measurability argument. First, we prove that for
domains, there exists a strong solution. SecondCfo¥ domains we remove the
technical conditions imposed in Bass[1], that is, we prove that weak uniqueness
holds forC1-® domains. We put these two results together to imply, by a measure-
theoretic argument whose origins can be traced back to Knight[11], Perkins, and
Girsanov, that there exists a unique strong solution for the Skorokhod equation on
c1* domains and that the solution is pathwise unique.
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It is tempting to conjecture that there exists a unique pathwise solution for the
Skorokhod equation on Lipschitz domains, but we do not know how to prove this.

2. Deterministic Skorokhod equation

In this section we show that i is a bounded’! domain, then there is a solution to
the deterministic Skorokhod equation. Recall thatlgfunction is one whose first
partial derivatives are continuous anda® function is one whose first derivatives
are Hblder continuous of order. A domainD is aC* domain if for allz € 9D
there exists a coordinate systers., anr. > 0, and aC functiong. such that

DNB(z,r) ={x=((x1,...,x9)INCS; : xg > @, (x1,...,x9-1)} N B(z,r;) ,

i.e., locally D looks like the region above the graph ofcd function. Similar
definitions apply tac1-¢ or C2 domains.
Let S, be the shell of width. around the boundayD:

S, ={x e D:dist(x,aD) <1} .

For a bounded”! domain D, the inward-pointing unit normal vector field :
aD — S?~1 c R? is uniformly continuous. Let

6(A) = sup{jv(x) —v(y)| 1 x,y €D, |x — y| <A}
be the modulus of continuity of. Thend (1) | Oasx | 0.

Lemma 2.1. Let D be a bounded”! domain inR¢. Then there exists a positive
Ao depending only on the modulus of continuditgf the normal vector field such
that

(@) Forall (x,y) €e dD x D, |x — y| < Ao,

1
v(y) = @) - v = Zv) - vix)

(b) Letz € 3D andi < Ag. Let F be the right circular cylinder which is centered
at z with height6x, base radius3x, and axis parallel tov(z). Then the two
bases off lie entirely outside the shefly; .

Proof. (a) It is easy to check that
() = @) - ve)v&)| =20(x —yD,  v()-vx) =1 =0(x—y) .

Thus it is enough to choosg such thab (o) < 1/7.

(b) Choose a coordinate syste&ns, centered at such that the unit vector along
the xz-axis isv(z). Chooserg such that) (10hg) < 1/400. SinceF C B(z, 51),
it is clear that there is @ function defined onB(z, 10h0) N L (WhereL is the
hyperplane perpendicular tdz)) such thatD N B(z, 101) is the region above the
graph ofyp.

Suppose that € S, N F. Then there is a point € 3D such thatx — y| =
dist(x, D) andx = y + |x — y|v(y); hencex,| < |yq] + 2A. On the other hand,



186 R. F. Bass, E. P. Hsu

Iy < |y —x|+|x —z] <2L+51 = 71 andy € 9D, hence there is a point
y = (w, ¢(w)) for somew € B(z, 7A) N L. Therefore

[val = lo(w)| <71 sup |Vo(u)| .
[u| <7

Now v(u) = (Ve(u), 1)/v/1+ |Ve(u)|2. Comparing the components in the di-
rection of thex, axis, we have

1
Mt =/ o v L

But foru € B(z, 7A) we havelv(u) - v(z) — 1| < 1/400, and the above relation
gives|Ve(u)| < 1/14. It follows that|y;| < A/2 and hencéx,| < (5/2)A. Thus
we have shown that € Sy, N F implies|x;| < 3. Finally, if x is on either of the
two bases of, then|x,| = 3A; this means that cannot be inSy;.. O

Definition 2.2. Let D be a bounded™* domain inR? and v its inward-pointing
unit normal vector field o D. Let f € Cx (R4, R?) such thatfy € D. We say
that a pair of function(g, /) is a solution to the Skorokhod equation

1 t
8t = ft + Ef V(gx)dlx
0

if ¢ € C(Ry, D) and! is a continuous nondecreasing functionf®n (with initial
valuelp = 0) which increases only whep € aD.

Our strategy for proving the solvability of the Skorokhod equation for a bound-
ed C! domain is to approximat® from outside by a sequence of bounded
domains. The existence and uniqueness for the solutions to the Skorokhod equa-
tion for C2 domains are well known. Later we will need the fact that the map
f + (g.1) is continuous foiC? domains (see Lemma 3.2). This is the content of
the next theorem.

Theorem 2.3. Let D be a bounded”? domain. Then for any’ € C5(R4, RY)
there is a unique solutiotg, /) to the Skorokhod equation. Furthermore, the map
f— (g, 1) is continuous fronC4 (R, R?) to C(R, D) x Co(R4, Ry).

Proof. The existence and uniqueness are proved in Lions and Sznitman[13] and
Hsu[9]. The continuity off — g is proved in [13], Theorem 2.2 on p. 521, so we
only need to prove the continuity gf — 1.

Let f* — f uniformly on bounded intervals. Theggf — g does the same.
Let v : RY — R’ be a continuous function with compact support such that
¥ (x) = v(x) for x € 9D. We can show thaf/”} is uniformly bounded just as in
part (a) of the proof of Theorem 2.6 below. gtz it/N,i =0, ..., N. We have
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t
I = /O W(gy) - v(gy)dls

N
= Yvie: / V(gs)dls+z / (W(g0) — (g, ) - vigodl,
=1 t;

i—

N

Zw(gt, DE gti -8, — fu + fti—l}

i=1
N
/ {¥(gs) — ¥ (g} - v(godls
ti—1
=ﬁ+ﬁ

Similarly we have” = 1! 4 I/, Sinceg” — g, uniformly on [Q, T1, itis clear
that for anye, there existsV such that for alh > N,

sup |I"? <le, sup |I?| <lre .
0<t<T 0<t<T

Fix this N. Again by the uniform convergence gf — g; on [0, T], we see that
there existsig depending orlV ande such that for alk > n,

sup [I"t—1Y <e .
0<t<T

It follows that
sup |l —=1| < A+17 +Ir)e .
0<t<T

This shows that? — [, uniformly on [O, T]. ]

The next result shows that the modulus of continuity of the solution of the
Skorokhod equation is completely controlled by thatfoAnd the numbekg in
Lemma 2.1. For our later application, it is important that the proof of this result
depends orD only through the modulus of continuityof the normal vector field
on the boundary.

For a continuous function taking valuesh, let

wr(8;h) =sup{lhs —h;| :0<s,t <T,|t —s| <&} .
We denote the range of a pditover a time intervald, ¢] by A[s, t].

Proposition 2.4. Let D be a bounded? domain inR? and f € C3(Ry, RY). Let
(g, 1) be the solution of the Skorokhod equation fowith the driving pathy. For
eachfixed” > 0, there exists &y = 6o(0, f) > Osuchthatr (§; g) < w7 (S; f)
for all § < 8g,

Proof. SetA = w7 (8; f). We can chooség small such thas < §g implies
A < Xo/5 for therg in Lemma 2.1. Suppose thatr € [0, T] and|r — s| < 4.
One case can be dismissed quickly, namely when thegjath] lies entirely inD
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and does not interse8tD. In this casd does not increase on,[t]. We then have
gs — & = fs — fi- Hence

lgs — 8l S wr (85 f) <X .

So it is enough to consider the case when there is a pgirg [s, t] such that
8uo € 9D. Fix such aug.

We first show that the assumption thgf € 9D implies that the whole path
gls, t]lies within a narrow shell around the boundary; more precigély,f] € S2,.
If this were not the case, then there must be a tinge][s, ¢] such thatg,, € D\ S2;.
Assume without loss of generality that< ug. Letw € [u, ug] be the first time
such thatg,, € aD. Theng[u, w) lies entirely inD. This means that does not
increases on the time intervad,[w]. Hence

2% < |gu = guwl = fu = ful =1 f) = A .

This is a contradiction.

We now choose a coordinate system centered-atg,, € 3D such that the
unit vector along the¢-axise; = v(z). Let F be the right circular cylinder whose
axis is parallel tar(z) and which is centered at the origin with height&nd base
radius 3.. We will show thatg[s, 7] € F. SinceF C B(0, 91/2), this will imply
that|gy; — g/| < 91 and the proof of the equicontinuity ¢§"} will be completed.

Obviouslyg,, € F. Let

t=sup{lu <up:gu ¢F}, o=inf{lu>up:g,¢F} .

What we want amounts to showing< s ando > ¢. The two cases being similar
we prove the first statement.

Suppose on the contrary thak [s, ug]. By our assumption. < Ag, the bases
of F lie entirely outside the shelb, (see Lemma 2.1). We have shown that the shell
S92, contains the entire paif]s, ¢]. Hence the exit positiog, must be on the side
surface ofF'. This implies that the horizontal part (the component perpendicular to
v(z), the axis of the cylinder) of has to travel a distance at leastféom time
to up. This is not possible, because the displacement loétween these times is
the sum of that off, which is at most, and the integral.“* v(g,)dl,, which is
almost along the vertical direction(z). The rest of this proof is to make precise
this intuition.

For a vectory, we denote its vertical and horizontal componentsytfy =
(y -v(x)v(z) andy® =y — 'V, respectively. Since the exit positign is on the
side surface of, we havqgﬂ > 3. Hence

1] [
/ v(g) " dl,
T

> > g — g = I = =3 —r=20 .

The pathg[z, ug] lies entirely inF < B(0,91/2) C B(0, A¢). Hence by Lemma
2.1(a), foru € [z, ug),

1
(g | < 3V(8) -ea -
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It follows that

1 “o
/ (v(ga) - eq) dl

2 2

3 [uo H
E / |V(gu) |dlu
T

6A .

1] [0
/ v(ga) diy
T

v

This in turn implies that

\%4 \%4 \% \%4
|gt | Z |gu0 - gr | - |gu0|

1‘ "o le _ V. _ eV
> 2 v(gu) u | uo f‘[ | —A
T
>6L—A—A
=4\ .

This is a contradiction becauge € F implies|g)| < 34, the half-height of the
cylinder F. O

Let D be a bounded'! domain. We can choose a sequefibe} of bounded
€2 domains with the following properties:

() b< D, D, | D, anddD, — dD;
@iy v*(xp) — v(x) if x, € 0D,,x € D, andx,, — x; herev” is the inward-
pointing unit normal vector field ofD,,;
(i) the set of functions{v"} is equicontinuous; therefore there is an increasing
functioné : R, — R, with 6(0) = 0 such that

() —v" (] < 0(1x — yD)

foralln > 1 and allx, y € dD,,; and there is a positivig such that (a) and
(b) of Lemma 2.1 hold for everp,.

For star-like domain® this can be done as in [1], Prop. 3.4; for the general case
one can use a partition of unity.

Let f € Cx(Ry, R?) and(g”, I") the solution to the Skorokhod equation on
D,, with driving path:

1 t
g =it [ et @
0
Theorem 2.5. The sequencg”} is equicontinuous on each finite interval.

Proof. By our choice off D,;} and Proposition 2.4 there exisig = o(6, f) such
thatwr (8; g") < 9wr(3; f) forall § < §p. O
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Theorem 2.6. Let(g", I") be as above. Suppose that a subsequégite of {g"}
converges t@. Thenl"i converges uniformly on every finite interval to a contin-
uous, nondecreasing functiénvhich increases only whep € dD. Furthermore
the Skorokhod equation holds:

1 t
8t = ft + E/ V(gs)dls .
0

Proof. In this proof, we assume that a subsequence of inte{ggl}shas been fixed
such that{g"/} converges tg. When we say a sequence converges gses to
infinity we always mean it converges through the subsequéngk It is enough
to consider a fixed interval [@]. For simplicity we let

W =g —fi, hi=g—fi .

Also, in this proof,y : R? — R? is a continuous function supported in a nar-
row neighborhood ob D such thaty (x) = v(x) for x € aD. Itis clear that
g € C(Ry, D).

(a) We first show tha{l;} is uniformly bounded. Note first thdt increases
only wheng! € dD,. If n is sufficiently large and lies in the support of the
measure on [0I'] determined by", theny(g,) - v*(g}) > 1/2. Sincey (g;) is
continuous int, there exists a positive such thaiy (g;) -v" (g) > %if s,t €[0,T]
and|r —s| < y.FixanN > T/y and let; = IT/N. Then for sufficiently large,

N- 141

n = Z dl"

f4+1

N-1
32/ W (gy) - v (gl
1=0 71

N-1 41
=3 v / V" (gl

IA

~
I
o

=
AN

II
)

¥ (gy) - {h" (1) — " (1)}

I
O

— 6 ) ¥y - {h(tp1) —h()} .
=

o

It follows that{/%} is uniformly bounded.
(b) Next we show thafi"} converges to a nondecreasing, continuous function
which increases only wheg) € dD. By definition,

n 1 ! n n n
hy = 2, vi(g)dl, .
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Hence{h?, O<t< T} is a sequence of functions with uniformly bounded vari-
ations{l;} which at the same time converges uniformly on{{Q to 4. Because
t — ¥ (gy) is uniformly continuous on [0T'], the limit

1 t
2/0 v (gu) - dhy, — 2/0 V(gu)dh, =1 ®3)

exists for each fixed < T and defines a functiohon [0, T].
We claim that' converges té,. This is clear from

t t
2/0 V(gu) - dhy, =1 +/O (V@) —v" (@D} V" (gndly

because the second term on the right-hand side converges to zere-a and
{£2} is uniformly bounded.

It is clear from (3) thaf increases only whep, € supp/. From/" — [ we
know that! is independent of the choice ¢f. We can choosé to be supported
in an arbitrarily narrow neighborhood 6D. It follows that/ increases only when
g € dD.

The continuity off can be proved as follows. We note that

t t
f ¥ (gy) - dh" =w<gs)-{h?—h;’}+f (W () — ¥ (g0)) - d” .
Hence

< Wlloclhy — il + wr (s —tl; ¥ o )17

t
/ v (gu)dh,

Taking the limit as: — oo, we have
I = Iy < 2|Ylloclhs — hsl + or (s — t; Y o )l .

Thus! is continuous.
(c) Finally we show that the paifg, /) satisfies the Skorokhod equation. We
have

1t 1/t 1t
o = fi= [ vend =5 [weodn+ 5 [ - vl
0 0 0

The second term goes to zero becawsg;) — v(gs) uniformly on [0, 7] and
{14} is uniformly bounded. Hence

1 r! 1!
g — fi = Ef Va(g)dly = 5/ v(gy)dls .
0 0

The last equality holds becausencreases only whep, € 9D andy (x) = v(x)
forx € aD. O
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3. Existence of strong solutions

We will use the method of measurable selection to show the existence of a strong
solution to the Skorokhod equation 6t domains. Let us state some general facts
concerning this method.

Let Y be a separable metric space adr) the space of compact subsets of
Y. ThenK (Y) is a separable metric space with a distance function defined by

d(C1,C2) =inf{e >0:C1 € C5,C2 € C}

whereC*¢ denotes the-neighborhood oC. The proof of the following result can
be found in Stroock and Varadhan[14], Section 12.1.

Proposition 3.1. Suppose thaX andY are separable metric spaces a6d X —
K (Y) a measurable map. Then there is a measurable fhapX — Y such that
¥(x) € C(x) foreveryx € X.

The following result gives a simple way of producing a measurable map from
XtoK(Y).

Lemma 3.2. Suppose thap,, : X — Y is a sequence of continuous maps such
that for eachx € X, the set{¢,(x)} is precompact. LeC (x) be the set of the
accumulation points of the sequen@g (x)}. Thenthe mag : X — K(Y) given
by x — C(x) is measurable.

Proof. First of all, it is clear thatC (x) is compact for every. We will useK (A)
to denote the collection of compact subsetsAof Y. It is known thatK (F) is
closed for each closef C Y and the clas$K (F) : F closed inY} generates the
Borelo-field of K (Y). Hence it is enough to show that for each cloged Y, the
set
CUK(F)]={xeX:Ckx)CF}

is measurable iX.

Let Gy be the ¥N-neighborhood ofF. ThenGy is openandsy | F. Itis
easy to verify thak (Gy) | K(F) and

o oo o0
CHrM =N U[)reX o(x)eGn} .
N=1n=1lk=n
Note that for the above relation to hold we need the condition{thatc)} is pre-
compact for eaclr € X. The set{x € X : ¢,(x) € Gy} is open becaus€y is
open and, is continuous. Henc€ ~1[K (F)] is measurable. O

We now apply the above lemma to our situation.

Proposition 3.3. There exists a measurable map Cx (R, R?Y) — C(Ry, D)x
Co(R4, Ry) with the following property: For eacltf € Cx(Ry, R%), we have
F(f) = (g,1), wherel is a continuous nondecreasing function which increases
only wheng, € dD and

1 t
& = fi + 5/ v(gs)dly .
0
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Proof. Let(g", I") as defined in the previous section. By Theorem 2.3 thegnap

f = (g", ") isacontinuous map frofi; (R, RY)to C(Ry, D1) x Co(R4, R,).

By Theorems 2.5 and 2.6 the conditions of Lemma 3.2 are satisfied. The existence
of a F with the desired properties follows immediately from Lemma 3.2 and Prop-
osition 3.1. O

Itis now easy to obtain a strong solution for the stochastic Skorokhod equation:

1 t
0
We make a formal definition. For a probability measuren D, we useP* to
denote the law ofi-dimensional Brownian motion with initial distributigm.

Definition 3.4. We say that a Borel measurable map
F:C5R4,RY) — C(Ry, D) x CRy, Ry)

is a strong solution to the Skorokhod equation if it satisfies the following condition:
whenevem is a Brownian motion defined on a probability spa&g,an D-valued
random variable independent & and F(B + Xg) = (X, L), then the nonde-
creasing process$ increases only wheX; € 9 D and the Skorokhod equation (4)
holds. We say that the equation has a unique strong solution if for any other strong
solutionG we haveF (w) = G(w), P*-almost surely orC5(R,, R?) for every
probability measure. on D.

Theorem 3.5. Let D be a bounded’* domain inD. There exists a strong solution
to the Skorokhod equation .

Proof. Take F to be the one defined in Proposition 3.3. O

The uniqueness of the strong solution will be proved in Section 5.
4. Weak uniqueness

In this section we show how the arguments in Bass[1] can be modified to prove the
weak uniqueness for the Skorokhod equation on bouddetidomains.

We will occasionally use polar coordinates:= (r, ), wherer = |x| and
6 = x/|x| € 3aB(0, 1), the boundary ofB(0, 1). We write o (dx) for surface
measure o D. We used; f andd;; f to denotedf/dx; andd? f/dx; dx;, respec-
tively. A C1* domainD is star-like (relative to 0) if there exists@- function
y :9dB(0,1) — (0,00) suchthatD = {(r,0) : 0 <r < y()}.

Let us suppose for the moment that the dimengiaa greater than or equal
to 3. Let D be a star-likeCt* domain withk = B(0, p), wherep < inf /4. In
Bass and Hsu[3] a strong Markov procg€¥, X;), x € D, was constructed that
represents reflecting Brownian motionfnwith absorption ak . We recall a few
properties; see Bass and Hsu[3] for details. Let

To=T(A) =inf{r >0:X; € A}
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be the first hitting time of a set. Reflecting Brownian motion il with absorption
in K has a Green functiogi(x, y) that is symmetric inc andy forx,y € D — K,
harmonic iny in D — K — {x}, harmonic inx in D — K — {y}, vanishes as or y
tends to the boundary &, and there exists; such that

gx,y) <etlx —y> 4 . (5)

The constant; depends only op, |[Vy |, infy, and sup . In particular, for
eachp’ > 0, g(x, -) is bounded inD — K — B(x, p').
A consequence of (5) is that

[EXTK:/ gx,y)dy < c, xeD.
D—K

In Bass and Hsu[3] it is proved that there exists a continuous additive functional
L, corresponding to the measurédy):

E* L7y =/ g(x,y)o(dy), xeD ,
aD

andL; increases only wheH;, is in the support o&, namelyd D. It follows from
(5) thatE* L1, < c3, x € D, wherecz depends om, || Vy ||, inf y, and sup .

We now suppose that > 2 and thatD is an arbitary bounded®* domain. In
Bass and Hsu[4] and Fukushima, Oshima, and Takeda[7], Ex. 5.2.2, it was shown
that the(Q*, X;) constructed in Bass and Hsu[3] satisfies the Skorokhod equation:
there exists @-dimensional Brownian motio##; such that

t

1
X; =XO+W1+§/ v(X)dL; . (6)
0

We want to show that the solution to (6) is unique in law. In the following definition,
we useX to_denote the coordinate process@R., D), namely,X;(w) = w;, for
w € C(Ry, D).

Definition 4.1. Let D be a bounded™>* domain inR¢ with d > 2. Forxo € D,
let .# (xo) be the collection of probability measur®son C (R, D) such that

(@) P(Xo=x0) =1,
(b) there exists a continuous nondecreasing pro@gsshich increases only when
X, € 9D, and
(c) there exists a continuous procégsvhich undefP is ad-dimensional Brownian
motion adapted to the filtration of such that
1 t
X =Xo+W + 5/0 v(Xg)dLs .

An element of# (xp) is called a (weak) solution of the Skorokhod equation.
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By our discussion so far there exists at least one elemerit(@f), namelyQ*.
Saying tha#V; is a Brownian motion adapted to the filtration generated bgeans
that W, — W; has the same distribution as that of a normal random variable with
mean 0 and variange— s andW, — W; is independent of {X,; r < s} whenever
s <t.

The main result of this section is the following.

Theorem 4.2. If D is a boundedc1¢ domain inR?, d > 2, then there is exactly
one weak solution to the Skorokhod equation.

The condition (b) in Definition 4.1 is slightly weaker than the one given in
Bass[1], which essentially requires that the local tilmée an additive functional
corresponding to surface measure on the boundary.

We will need the following proposition. Lét be shift operators so that, o6, =
X;+¢. By Bass[2], Section |.2, we may always suppose sii@xist.

Proposition 4.3. LetP € .#(xp), andS a finite stopping time, and 1&g (w, do’)
be a regular conditional probability for the law &. o 05 underP[- | # s]. Then
P-almost surelyPs € .4 (Xs(w)).

Proof. This is the strong Markov property fét. See Bass[1], Proposition 2.31
We will need the following.

Proposition 4.4. Let us suppose that > 3and D is a C1% domain that is star-
like. Leth be aC® function with support inD — K. Letu be the solution to the
problem:Au = —2hin D — K,u = 00ndkK, anddu/dv = 0 onadD. Suppose
y € C2. Thenu is C1® in a neighborhood ob D with C1-% norm that depends
only on theC1% norm ofy, ||4]l«, and the distance from the supportiofo D
(and not on any further smoothnessy9f

Proof. This follows from Lieberman[12], Theorem V1.6.46 on p. 141. O

Proposition 4.5. Let D, h, and K be as above. Supposg € D. There exists a
sequence of 2 functionsu, on D such thatu, (xg) convergesAu, = —2hin D,
u, =0onkK, anddu,/dv converges to 0 uniformly ofD.

Proof. Let D, be a sequence @f? domains, all star-like with respect to the same
point, such that th®,, decrease t@ and the closure ob is contained inD,, for
eachn. Moreover, let us arrange matters such thaif= {(r,0) : 0 < r < y,(0)},
theny, converges tor in C1* norm. Letu,, be the solution to the problem

Au, = —-2h in D, —K,

U, = 0 on K,
0

“ — 0 on D,
vy

Herev, is the unit normal vector oaD,. By Theorem 4.4 there exists a subse-
quencen; such thatu,; andVu,; converge uniformly orD. By relabeling, we
may assume the full sequeneg converges Sincéu, /dv, = 0 ond D, and the

¥ converge toy in C1¢ norm, it follows thatu, /dv — 0 uniformly ondD. 0
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For the next proposition let us suppose tlate .#(xg), wherexg € aD.
We need to shoW?(Tp = 0) = 1, that is, starting at the boundary, we leave the
boundary immediately.

Proposition 4.6. SupposeD is a boundedC'* domain inR?, d > 2. Suppose
x0 € dD andP € .4 (xo). ThenP(Tp = 0) = 1.

Proof. Choose a coordinate system such that 0 and the hyperplang,; = 0}
is tangent taD atxg. Let 8 = 2/(2 4+ «) and let

B

V={yeD: |y ...,vai-D| <€”, ya <e€}.

ThusV is the intersection of a right circular cylinder add SetU = {y € 9V :
va = €} (the top base) anfl = 3V — 0D — U (the side surface). Fersufficiently
small,U € D.

Letrg = e@®)/(@+e) R —inf{r: L, > €#/2},

A1 = A1(e) = {supW? < €},

§s<tg

Az = Ag(e) = {sup|(W,}, ..., WI™H]| > €/ /2),

S<Ip
Az = As(e) = {sup|W{| > ¢/ /8} .
s<Ip
By the scaling property of Brownian motioR(A1(¢)), P(A2(¢)), andP(A3z(¢))
alltendto 0 ag — 0.

Write v = (vy, ..., vg). If § is sufficiently smally; > 1/2 andjvi|2 + - +
lvg—1l? < 1/(4d) in D N {|(y1, ..., va—1)| < 8}. Let us restrict attention te
such thak? < §. Ase — 0, thenrg — 0, so by the continuity of the paths &f,
we see thaP(A4(¢)) — 0 ase — 0, where

Az = Aa(e) = {sup| X, — xo| > 3} .

s=<io

Note that on the setj
)
x¢=w! +/ va(X)dL, > Wi .
0

So onA{ N A§ we have sup., X¢ > e.
Consider the seA{ N A5 N AN Aj. Observe that fof < d — 1,

) X 1

sup|X;| < sup|W;| + (—) Ly -
s<to s<to 4d

Soif R > rny, thenTy < Ts andTy < ry. HenceTp < tg. On the other hand, on

the setA] N A5 N A5 N Ay, if R < 1o, then

W Wi < /2
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R R
</ vi(Xp)dLy, ..., / Va'—l(Xr)dLr>
0 0

Also, |Wé| < f /8 and

and

=

R 1
/ vy(X,)dL, > ELR = Eﬁ/4 .
0

SOX?? > e /8 > ¢,and hencdy < R < 19, and agairfp < 9. Now lettinge —
0 shows liminf_oP(Tp < e@t®/Ct®) > 1 which impliesP(Tp = 0) = 1.
O

We obtain the following corollary.

Corollary 4.7. Suppose thatg € aD andP € .# (xp). For eachn there exists
a stopping times, such thalsugfsn |Xs —xol < 1/n,& < 1/n,andP(Xg, €
oD) < 1/n.

Proof. Fixn.Let¢y = inf{r : | X; —xo0| > 1/n} A1/n. By the continuity of paths of
X,, we haver; > 0, a.s. Choose: large so that ita(m) = inf{z : dist(X,, D) >
1/m}, thenP(¢2(m) > ¢1) < 1/n; this is possible by Proposition 4.6. Now let
&n = L1 A L2(m). |

We now turn to the proof of Theorem 4.2, the main result of this section. Sup-
pose first thaD is a star-likeC* domain,K is as above, angy € D — K. As in
the proof of Proposition 4.1 of Bass[1] and the discussion immediately preceding
that proposition, we may restrict attention to probability measBires # (xp) such
that[E[pLTK < oo andEpTgx < .

We apply 16's formula to the procesk, and the functions,, defined in Prop-
osition 4.5. We obtain

Tx Tk
Mn(XTK) —up(Xo) = / Vu, (Xy) - dWs +/ Vu, (Xs) - v(Xs)dLy
0 0

1 [Tx

Taking the expectation with respectifonve have

Tx

Tk 9y
—uy (x0) = Ep / “(X5)dLs — Ep / h(Xs)ds .
o Odv 0

Lettingn — oo and using the facts thai,, /ov — 0 uniformly and thatpLg <
00, We obtain

Tk
lim u,(x) = [E[p/ h(X)ds .
n—oo 0

Hence the value dfp fOTK h(Xy)ds does not depend dh.
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SinceQ™ is also in.Z (xp), then

Tx Tx
Ep / h(X,)ds = f h(X,)ds . @
0 0

This is the analog of Corollary 4.6 of Bass[1].

Using Corollary 4.7 and following the proof of Proposition 4.7 of Bass[1], we
see (7) holds wherg € 3 D as well. We now can follow the proof of Bass[1] (from
Proposition 4.8 to the end of Section 4) almost exactly. (Part of that proof involves
removing the restriction thad be star-like and that be larger than 2.) O

5. Pathwise uniqueness

Theorem 5.1. Let D be gbounded?l’“ domain andW a d-dimensional Brown-
ian motion. LetXg be a D-valued random variable independent Wf. Any two
solutions to the Skorokhod equation

1 t
X;=Xo+W; + 5/ v(X;)dLs
0

agree pathwise, a.s.

Proof. By Theorem 3.5 there is a strong solutigh H) = F(Xg + W), so

t

1
Yt:X0+Wt+§/ v(Yy)dH; .
0

Let X, be another solution to the SDE. We have
1! 1/
Wt:Yt_XO_E/O v(¥Yy) dHj, Wt:Xt_XO_E/(; v(Xs)dL . (8)

The processeB and X have the same law because of the uniqueness in law (The-
orem 4.2). By Bass and Hsu[3],does not spend time on the boundary, namely,

00 00
[E/ 1yp(Yy)ds = [EXO/ 1yp(Ys)ds =0 .
0 0

Let ¢, be a sequence of continuous functions with compact support maRfita
R? such that, (x) decreases boundedly and pointwise (0)1;p (x). SinceW, is
a Brownian motion and; spends zero time ifD, thenf(; 1yp(Y)dWy =0, a.s.
Hence

t t 1 t
/ ta(Yy)dY; = f £ (¥e) - dW, + © / ta(Yy) - v(Y)dH,
0 0 2 Jo

t

—>/ v(Yy) - v(Ys)d Hy
0

= Hl .
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It now follows easily from this and (8) that there exists a measurable Ghap
C(Ry, D) — Co(R4, RY) x Co(R4, Ry) such thatW, H) = G(Y). The same
proof shows thatW, L) = G(X). Therefore the law of the tripleY, H, W) is
equal to the law of the tripléX, L, W). Since(Y, H) = F(W), it follows that
(X, L) = F(W), a.s., and we then conclude that, L) = F(W) = (¥, H), a.s.
O

Corollary 5.2. Let D be a bounde_atl*“ domain. Then there is a unique strong
solutionF : C5(R4, R) = C(Ry, D) x Co(R, Ry) to the Skorokhod equation

t

1
X, = Xo+ W, + 5/ v(Xs)dLy .
0

FurthermorefF is progressively measurable, i.e., for ali 0,
F(Xo+ W) =Xy, L) € o {Xo+ Ws,s <t} .

Proof. The corollary follows essentially from the following general fact: weak ex-
istence for each initial distribution and pathwise uniqueness together imply the
existence and uniqueness of a strong solution whialiismaticallyprogressively
measurable; see Ikeda and Watanabe[10], Theorem 1.1 on p. 163 and its proof. The
two conditions are satisfied in our situation: the measure

Q* = /7@” w(dx)
D

is the (unique) weak solution by Theorem 4.2, and pathwise uniqueness is guaran-
teed by Theorem 5.1. O
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