ON THE PRINCIPLE OF NOT FEELING THE BOUNDARY
FOR DIFFUSION PROCESSES

ELTON P. HSU

ABSTRACT

We derive the principle of not feeling the boundary for the transition density function of a diffusion
process from its basic short-time logarithmic asymptotic relation. This allows us to extend this principle
for more general diffusion processes.

1. Introduction

Let M be a smooth manifold and p(z, x, y) the transition density function of a
diffusion process (a strong Markov process with continuous sample paths) on M with
respect to a smooth measure m on M. Let U be an open set in M. We use p,(t, x,y)
to denote the transition density function on U of the diffusion process killed at the
first exit time of U, that is

pu(t, x,y)ym(dy) = Plw,edy,t <1},

where P, denotes the law of the diffusion process in the path space Q(M') (the space
of continuous functions from [0, c0) to M) and 7, = 7,(w) = inf{t > 0: w,¢ U} is the
first exit time from U. The principle of not feeling the boundary says in general that
under certain geometric conditions, the short-time behaviour of p,(¢,x,y) on U is
comparable with that of the free transition density function p(z, x,y). Since the
diffusion has continuous sample paths, intuitively the diffusion particle starting from
a point in U does not feel the presence of the boundary of U for small time. This
principle can be useful in two ways. First, the study of p(¢, x, y) can be reduced to the
study of p,(t, x,y) for a suitable choice of U, usually a smooth domain covered by
a suitably chbsen coordinate chart. We can then regard U as a subset of R* (d is
the dimension of M). Second, the study of p,(¢,x,y) can be reduced to the study
of p(t, x,y) by suitably extending the diffusion generator on U to R?* so that we can
simplify the computations involved by working in the whole space.
Let us now give a precise mathematical statement for this principle.

DEFINITION 1.1. We say that the principle of not feeling the boundary holds for
the transition density function p(¢, x, y) at x, y in U if there exist two positive constants
ty, A such that for all ¢ < ¢,,

pu(tx,y) _ _,
| - g e 1.1
p(t,x,y) (11
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Note that the quantity on the left side is always nonnegative.

The principle of not feeling the boundary for the diagonal case x = y was first
pointed out in [S] in a weaker form for the euclidean Brownian motion. For the case
X # y, the principle does not always hold, because x may be closer to the boundary
dU than to y. In [9] S. R. S. Varadhan referred to [2] for early results in this direction
for the case of euclidean Brownian motion and considered the case of diffusion
processes on euclidean space generated by second order, uniformly elliptic operators
with Holder continuous coefficients. He proved that if all distance-minimizing
geodesics joining x and y lie completely within U, then

lim sup 2¢log|p(t, x, y) = py(L, X, )| € —day(x, )’ (1.2)

tjo
where
dy,(x,y) = inf{d(x,z)+d(z,y): ze 0U}.

From (1.2) and (1.3) below we see immediately that the principle of not feeling the
boundary holds if d,,(x,y) > d(x,y). In [9], (1.2) follows from a path space large
deviation upper bound for diffusions. The proof of the requisite large deviation upper
bound uses, among other things, the logarithmic asymptotic behaviour for the
transition density function

lim2tlog p(t, x, y) = —d(x, y)%, (1.3)
tio
where d(x, y) is the Riemannian distance function determined by the second order
differential operator generating the diffusion.

We aim in this paper to show that (1.2) holds for much more general diffusions
as long as (1.3) holds for some distance function d(+,) under which the manifold M
is complete. In other words, we shall prove that (1.3) implies (1.2). The necessity for
such a result is twofold. First, there are diffusion processes for which the required
large deviation upper bound is either unknown or technically very complicated but
(1.3) holds for a suitably chosen distance function. See Remark 1.4 below. Qur result
shows that for such diffusions we have an appropriate principle of not feeling the
boundary, adequate for studying short-time asymptotic behaviour of their transition
density functions. Second, even for diffusions whose large deviation upper bounds are
readily available, it is pedagogically more desirable to have a proof of the principle
of not feeling the boundary independent of large deviation upper bounds, as is the
case in [4].

Let us now be more precise. The general setting is as follows. Let M be a smooth
manifold and p(¢, x, y) the transition density function of a diffusion process on M with
respect to a smooth measure m on M. Let d(-,-) be a distance function on M which
generates the topology of M. We assume that M is complete under the distance
function in the sense that every d-bounded set is relatively compact. We introduce the
following condition.

(D) For every compact set K on M, (1.3) holds uniformly on (x,y)e Kx K.

Here is our main result.
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THEOREM 1.2. Let M be a smooth manifold and d(-,) a distance function
compatible with the topology of M under which M is complete. Let p(t,x,y) be the
transition density function of a diffusion process with respect to a smooth measure m on
M such that Condition (D) holds. Then (1.2) holds for every open set U and every pair
of points (x,y) in"U.

As in [9], the above theorem has the following immediate corollary.

COROLLARY 1.3.  Under the conditions of Theorem 1.2, the principle of not feeling
the boundary holds for x, y in U such that d(x,y) < d,,(x, ).

REMARK 1.4. As shown in [9], Condition (D) holds for diffusion processes
generated by second order uniformly elliptic operators on R* with Hélder coefficients.
It also holds for the Riemannian Brownian motion on a complete Riemannian
manifold, see [1, 3, 4]. The work in [6] implies that it holds for a hypoelliptic diffusion
on a smooth manifold M if M is complete with respect to the control distance defined
by the hypoelliptic operator which generates the diffusion.

Our study of (1.2) will not be complete without investigating conditions under
which the corresponding limit exists and is equal to the right-hand side. We establish
such a result in the most interesting case.

THEOREM 1.5. Let M be a complete Riemannian manifold and U a smooth open set
on M. Denote by p(t, x, y) the transition density function of the Riemannian Brownian
motion on M (that is, the heat kernel associated with the Laplace—Beltrami operator A
on M) and by p(t, x, y) the transition density function of the same process killed at the
first exit time of U (that is, the minimal heat kernel on U with the Dirichlet boundary
condition). Then for any x,y in U we have

lim 2¢ log |p(ta X, y) _pU(t’ X, y)l = -dau(xa )’)2 (1 4)

tl0

On a complete Riemannian manifold we say that an open set U is strictly convex
if for each pair of points x, y in U, every distance-minimizing geodesic joining x and
y lies completely inside U. The above theorem allows us to show that the principle of
not feeling the boundary characterizes strictly convex domains.

COROLLARY 1.6. Under the same hypotheses as in the preceding theorem, the
principle of not feeling the boundary holds for all pairs of points x,y in U if and only
if U is strictly convex.

Proof. Since M is assumed to be complete, Condition (D) holds by Remark 1.4.
Suppose that U is strictly convex. Fix a pair of points (x, y) in U. We have d,,(x,y) >
d(x,y) for any x,y in U. Inequality (1.1) follows immediately from (1.3) and (1.4)
for any positive A < 1 [d,,(x, y)* —d(x, y)?].

Conversely, suppose that (1.1) holds for all x,y in U and for some positive 4
depending on x,y. Then (1.1) and (1.3) imply that

llm Sup 2t loglp(t’ X,J’) _pU(t, X, ,V)| S _d(xa )’)2_/1

t10
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This together with (1.4) implies that d,,(x, y)* = d(x, y)*+ 4, that is, d,,(x, y) > d(x, y).
This last inequality shows that all distance-minimizing geodesics joining x and y must
stay completely inside U. Therefore U is strictly convex. The corollary is proved.

Remark 1.7. We have formulated our results about transition density functions
in purely analytical terms and our proofs are probabilistic because we assume that
these transition density functions come from diffusion processes, that is, strong
Markov processes with continuous sample paths. Analytical conditions which
guarantee that such a process exists for a given transition density function can be
found in [7, Chapter XIV].

The proofs of Theorems 1.2 and 1.5 are carried out in Sections 3 and 4. In Section
2 we prove a lemma which will be used in the proofs.

2. A useful lemma

LEMMA 2.1. (a) Suppose that t is a nonnegative random variable such that
limsup2tlog P{t < 1} < —¢} 2.1
tlo
Sor some positive constant c,. Then for any positive constant c,
lim sup 2¢ log E{e™2¢"0; 1 < 1} < — (¢, + ¢,)* (2.2)
tl0
(b) Suppose that t is a nonnegative random variable such that
liminf2tlog P{z <t} 2 — ¢} 2.3)
ti0

for some positive constant c,. Then for any positive constant c,

liminf2¢log E{e 21 < 1} = — (¢, + ¢,)% (2.4)
tio

Proof. (a) Integrating by parts, we have

t
E{e™s2t0 1 < 1y = f €29 gp(r < 5}

0

t 2 s
= L2(1——2s)2e 2209 Plr < s} ds. (2.5)

Fix a small e (0, 1). By (2.1) for sufficiently small s we have P{r < s} < e"-9/2 On
the other hand, x%™* < (8/¢%)e'"* for all x > 0. Hence from (2.5) we have

s a2 2
E{e-ci/zu—r);r << 8 exp _1-e .5 Vg < 81 Ze-(l~e)(cl+c2)2/2t.
(ec,e)* |, 2 \s t-s (ec,€)

In the last step we used the inequality

ﬁ_'_ 5 S (C1+C2)2'

=
s 1= t
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This proves (3.1) since ¢ can be arbitrarily close to 0.
(b) From (2.5) and (2.3) we have

2 ct [t l+efc®2
E{e a0 r <> 2 | expl ———2+—-||ds.
{ ) 22 ), P 7 (5 15

Restricting the integral to the interval bounded by the points (¢, t/(c, +¢,)) (1 £ ¢), we
have

2
E{e . 1<) >

&c, ¢t Clte(e tey)’
(c;+¢) l—e 2t |

from which (2.4) follows immediately.

3. Proof of Theorem 1.2

We remind the reader that throughout this section Condition (D) stated in Section
1 is in force.

Let Q (M) be the metric space of continuous paths w:[0, c0) — M starting from
x. We shall use P, to denote the law on Q, (M) of the diffusion process starting
from x.

LEMMA 3.1.  Let U be a relatively compact open set in M and A a positive number.
Then, uniformly in all x, y in U such that d(x,y) < d(y,0U)— A, we have

lim2tlogp, (¢, x,y) = —d(x, y)*. 3.1

t10

Proof. By the strong Markov property, we have the following first passage
formula relating p(t, x, y) and p,(t, x, y), namely,

p(t’ x’y) =pU(t’ xay)+Ex{p(t_ranrU’y);TU < t}s (32)

where 7, = inf{t > 0: w,¢ U}. By Condition (D), for the second term on the right side
of (3.2) we have

limsup2tlog E, {p(t—1,, @, y); 7, < 1} < —d(y,0U)?, (3.3)
t}o
uniformly in (x,y)eUx U. Then (3.1) follows from (3.2), (3.3), (1.3) and the
hypothesis that d(y,0U) > d(x,y)+A.
LEMMA 3.2.  Suppose that K is a compact set in M and y > 0. Then there exists a
ty > 0 such that for all (x,y,1)e M x K x (0, t,) such that d(x,y) = y, we have
p(t, x,y) < 1. 39

Proof. Let T =inf{t > 0:w,€ B, ,(y)}. We have by the strong Markov property
at time T,

p(t,x,y) = Ef{p(t—T,w4,y); T < 1} < sup{p(s,z,y):s < t,ye K, d(z,y) = 3y}.
Then (3.4) follows immediately from Condition (D).
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Forafixed y > 0, define 7, = inf{r > 0: d(w,, w,) = y}. (Convention: inf J = (, the
lifetime of the path w.)

PROPOSITION 3.3.  For any fixed xe M and y > 0 we have

limsup 2tlog P{t, < 1} < —y* (3.5)
zlty

301]

Proof. We prove (3.5) in three steps:

(a) for any compact K, there exists y, > 0 such that (3.5) holds uniformly for all
xeKand all y <y,;
(b) if (3.5) holds for y, = 0, then there exists y, > y, such that (3.5) holds for

YEL Pals
(c) if (3.5) holds for all y < y,, then (3.5) holds also for y = y,.

Clearly (b) and (c) imply that the set of y for which (3.5) holds is both open and closed
in [0, c0), which implies that (3.5) holds for all y > 0. Step (a) is needed for the proof
of Step (b).

(a) There exists a small y; > 0 such that for all ye(0,y;) and ¢ > 0 we have
def

a(y,¢) = inf{m[B(x)° N B(2)]: xeK,zedB(x)} > 0.

Note that if y is too large, the above inequality may not hold. This is the case if, for
example, M is compact and y is greater than the diameter of M. In this case B (x)° is
empty.

Let U be a relatively compact open set containing K. We choose a positive y, less
than min {y,, 3d(K, 6U)}. For any y < y,, by the strong Markov property at 7, we have

Piw,eB(x)'t <t,} = E{F(—1, w,y); T, < 1 (3.6)

where F(u,z) = P{w,€ B/(x)’,u <t,}. For any zedB(x) and a fixed positive ¢ <
3d(K,0U) and for all sufficiently small u, by Lemma 3.1 we have

Fu,z) > Piw,e B(x)" N B(2),u <1}

) J pu(,2,2) dz, > mB) 0 B(2)] e
B(2)°n B,(2)

Using this estimate in (3.6) for any fixed 1€(0, 1) and sufficiently small ¢ we have
Piw,eB(x)',t <t1,} = 0(y,e) E, {e‘zfg/“"v’;ry <=1
> 6(y,€) e 2% Pir,<(1-2)1.
On replacing ¢ by /(1 — 1), we see that the above inequality is equivalent to

2 —
eZe (1-A)/At

Pit, <t} < ——
A <O o(y,€)

Plw, -, €B(x)t/(1=2) <7y} (3.7
On the other hand, since p,(t, x,y) < p(t, x,y), we have

Plw,e B, 1 <7, = f pult,x,)dy <m(U) max p(tx,y).  (38)

By(z)c yeU\BY(J:)
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Note that m(U) < oo because U is relatively compact. From (3.7), (3.8), and (1.3) we
have immediately

2
limsup2tlog P{r, <t} < (1-4) (4i—y2).
o A
Letting ¢ | 0 and then A1 1, we obtain (3.5).
(b) We assume that (3.5) holds for y,, that is,
limsup2tlog Pfz, <} < -yl 3.9
tio

Let y, be the one in Part (a) chosen for the compact set K which is equal to the closure
of B, (x), and y, = y, +7,. For any ye[y,,y,] we have

Pir, <1t} = E,L{G(cory J—1,),7, <1 (3.10)
where G(z,u) = Fitg o < ). Clearly zedB,(x) implies that To @) = Tyoyy B2
Hence G(z,u) < P(fr,_, <u}. Using Part (a) we have

limsup2ulog G(z,u) < —(y—7,)° 3.11)

ul0

uniformly in zeaByl(x). By (3.9) to (3.11) and Lemma 2.1(a) we have immediately
(3.5).
(c) Forany y <y, we have P {r, <1} < P{r, < 1}. Since (3.5) holds for y, we have

limsup 2¢log Pz, <1} < -3

t10

Letting y 1y, we see that (3.5) holds for y = y,. The proof of the proposition is
completed.

Proof of Theorem 1.2. By (3.2) it is enough to show that

lim sup 2 log Ez{p(l—ru’wru’y); Ty < t} < _dau(an’)2- (312)

tlo

We denote the expectation in (3.12) by I,(¢, x,y). We shall use Condition (D) to
estimate p(—1y, @, , ). But Condition (D) cannot be applied directly because w,, is
not confined to a compact set. So we fix a large R > d(x, y) and split I,(¢, x, ) into
two parts as follows:

IU(ts X,}’) = Ex{p(t—TUa wtua.V);thEBR(x)’ TU < t}
+Ex{p(t_Tuawr;];y);wruéBR(x)!TU < t}

def

= U(t’ xay)+KU(ta‘x’y)- (313)

The term K, (2, x, ) is easy to estimate. By Lemma 3.2 we have

Ky(t,x,y) < Pio, ¢ By(x), 7y St} S Bit, < 4.
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Hence from Proposition 3.3 we have

limsup 2tlog K (2, x,y) < — R (3.14)
t}o
For the term Jy(#, x, y), the exit position w,  is confined to the relatively compact set
Bg(x) and we can use Condition (D) to estimate p(t—7y, @, ,y). For any given
positive ¢, there exists a positive ¢, depending on R and ¢ such that for all 1 < ¢, we
have

{d(w,u,y)—e} :l (315)

— < _
p( Tu,wtu,y)\exp[ -1

Next, we cover the set U N By(x) by N balls B,(z,) of radius ¢ and centres z,€ 0U. The
number of balls N depends on R and ¢ but is finite. From the definition of J,(¢, x, y)
and (3.15) we have

(dw,,,y)—e)?

N
J(t,x,y) <Y E, {exp [—

j=1

o {d(z,y) _28}2] }def N
<Y E{exp| =822 X278 |0 <l = Y (1, x, y),
; I{ p[ 2(1—1”) ¥ }QZI 6, %, )

where y, = d(z;, x) —¢. In the last step we used the fact that w_ e B,(z,) implies that
dw, ,y) 2 d(z; y)—¢ and 1, > 7,. From Proposition 3.3 for j=1,..., N we have

lim sup 2slog PW{TV; <sp<—yf
sl0

By this inequality and Lemma 2.1(a), for j = 1,..., N we have

limsup 2tlog Ji(t, x, y) < —{(d(x, z;)) + d(z,, y) — 3¢)}*.

t|o
But d(x,z)+d(z;, ) = dyy(x,y) for all j=1,...,N. It follows that for all 1 <1, we
have
limsup 2rlog J, (1, x, y) < —{d,,(x, y) — 2e}%. (3.16)

tlo

Now from (3.13), (3.14), and (3.16) we have

limsup 2t log 1,(2, x,y) < —min {d,,(x, y) — 2¢, R}*.

)

Letting ¢ | 0 and R1 o0, we obtain the desired inequality (3.12). This completes the
proof of Theorem 1.2.

4. Proof of Theorem 1.5

The proof of Theorem 1.5 depends on a more delicate geometric argument. Since
we have shown in Theorem 1.2 that (1.2) holds, it suffices to prove that

liminf2tlog|p(t, x, y) = py(t, x, )| Z —{d(x,2) +d(z, y)}* (4.1)

¢10

for all ze dU. We introduce the following condition.
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T(U; z) There exists a distance-minimizing geodesic ¢ joining x and z such that
¢ lies entirely in U and that ¢ is transversal to the boundary U at z.

We shall first prove (4.1) under the above transversality condition 7(U;z) and
then remove this condition. From (3.2) and (1.3) we have

p(t,x,9)—py(t,x,y) = Efp(t—14,0,,9);7, < 8}
2 Ez{p(t —Tys wtu’ y) ’ a)ru € Be(z), Ty < l}

where W, = B,(z) N 0U. We estimate the probability P, {w, € W, 7, <s}. Lete, <e
and ¥, = B,(z) n U°. Since w,eV, implies that 7, <s, by the strong Markov
property at 7, we have
I)J:{wse Vs} = Ez{Pw {ws—tue I/cl};wrue VVE’ TU S S}
1 17
+ Ex{Pm'U{ws—rUe V;l};wru¢ VVe’ TU S S}.

Hence the probability we want to estimate

Plw, e W,t, <s} 2 Ly(s,x,2)— My(s, x, 2), 4.3)
where

LU(ssva) = Pz{wse I/s‘} = J p(svxszl)dzl

v,
%

and
€ Vgl};w,u¢ W,t, < s}

-1y

M (s,x,z) = EAP, {w,
U
We have by a proof similar to that of Theorem 1.2

lim sup 2slog M (s, x,2) < —dyp\w (%, V, )" 4.9
sl0

On the other hand by (1.3)
liminf2slog L (s, x,2) > —d(x, V). 4.5)
slo
Now Condition T(U;z) implies that for sufficiently small ¢, < ¢
d(x, V,) < dy (5, V,). 4.6)
From (4.3) to (4.6) we have immediately
liminf Pfw, e W, 7, < s} 2 —dx, V,). 4.7
sl0
From (4.2), (4.7) and Lemma 2.1(b) we have
liminf 2t log |p(t, X, ») — py(t, X, V| = —[d(x, V,)+d(z, y) + 26"

¢10
= —[d(x, 2)+d(z, y) + 3¢]?,

which proves (4.1) under Condition T(U;z).
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We now remove the transversality condition 7(U;z). Let zedU and let ¢ be a
distance-minimizing geodesic from x to z. Let z’ be the first point at which ¢ intersects
0U. Then by the triangle inequality we have

d(x,z2)+d(z',y) < d(x,2)+d(Z', z) + d(z, y) < d(x,z)+d(z,y). (4.8)
In the last step we used the fact that z" lies on a distance-minimizing geodesic ¢
from x to z. For any fixed positive ¢ we choose a point z,€ B,(z') N U and a small
¢,€(0,3¢) such that the closure of B,, (z,) does not intersect C(x), the cutlocus of
x. This is possible ‘because C(x) is a closed set of measure zero. Take any point
z,€0B, (z,) N U° such that the unique geodesic ¢* joining x and z, is transversal to
0B, (z) at z,. Now choose a smooth open set U such that

(i) U contains U;
(i) U contains @
(iif) OU near z, coincides with 0B, (z,) in a small neighbourhood of z,.

Such U obviously exists. Now Condition T (U; z,) is satisfied. Hence by what we have
proved under the transversality condition,

liminf2rlog |p(t, X, y)—po(ts X, Y)| = —[d(x, 2,) +d(z,, I (4.9)

tlo
Since U > U we have by the maximum principle for the Dirichlet heat kernel
palt,x,¥) = py(t, x,y). Hence

Pt x,3)=pylt, %,y) 2 p(t, x, y) = py(t, X, y) 2 0. (4.10)
On the other hand by the choice of z, we have d(z’, z,) < 2¢, hence by (4.8)
d(x,z,)+d(z,,y) < d(x,2)+d(z,y)+ 4e. 4.11)

The desired inequality (4.1) follows immediately from (4.9) to (4.11). This completes
the proof of Theorem 1.5.
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