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For a geometrically and stochastically complete, noncompact Riemannian
manifold, we show that the flows on the path space generated by the Cameron—
Martin vector fields exist as a set of random variables. Furthermore, if the Ricci
curvature grows at most linearly, then the Wiener measure (the law of Brownian
motion on the manifold) is quasi-invariant under these flows. © 2002 Elsevier Science
(USA)
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1. INTRODUCTION

Let M be a complete Riemannian manifold. The bundle of orthonormal
frames of M is denoted by (M) with the canonical projection n: O(M) —
M. We use P,(M) to denote the pinned path space over M, namely the space
of continuous maps from [0, 1] to M starting from a fixed pointo € M. Itisa
metric space equipped with a standard filtration of o-fields %, = {4,
0<s<1}, where %, is the o-field generated by the canonical process up to
time s. The last o-field %, coincides with the usual Borel o-field on P,(M).
Let P, (denoted by P for simplicity) be the Wiener measure on P,(M), i.e.,
the law of a (Riemannian) Brownian motion starting from o. To ensure that
P is indeed a probability measure on (P,(M), %), we make the standing
assumption that Brownian motion is conservative, or equivalently the
manifold M is stochastically complete. Analytically this means that, for the
minimal heat kernel py (¢, x,y) of M,

/ par(toxay) dy = 1
M
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for some (¢,x) e Ry x M (and hence for all such pairs). We thus obtain a
filtered probability space (P,(M), By, P).
Let # be the Cameron—Martin space,

A = {he Wy®R"):he LX(0,1,R")},

with the norm

1/2

1
|m#—{/ mﬁm}
0

The vector field D, on P,(M) is defined by
Dp(X), = UX)hs, X € Po(M),

where U(X) is the horizontal lift (whenever it is defined) of X to O(M)
starting from a frame u,, assumed to be fixed throughout the discussion.
Thus Dy(X) is a vector field along X. In the present work, we study the
existence of the flow generated by D, and the quasi-invariance of the Wiener
measure P under this flow. More precisely, we seek a collection of
measurable maps (or P,(M)-valued random variables)

CZ:P()(M)_’PO(M)) IERa

dg;

P U, h, & = I, (D

[/p,ar) is the identity map on P,(M)] and ask whether the measures
P, = Po)! (the law of {}) are mutually absolutely continuous with
respect to P.

For a compact manifold, this problem was solved in [1]; see also [2, 3]. The
purpose of the present work is to investigate the case of noncompact
manifolds.

Let d(-,-) be the Riemannian distance function on M. From (1), for any
path X € P,(M),

d('(X),, Xo) <] tllh].

[The reference to / is dropped from the notation for simplicity.] Therefore,
we naturally expect that the flow generated by D, exists as long as the
manifold M is both geodesically and stochastically complete. In (1) the
horizontal lift U({") has to make sense; we therefore require that each (' is an
M-valued semimartingale. We will prove that there exists a unique family of
semimartingales {{’} satisfying (1). Although each map {': P,(M) — P,(M)
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is well-defined P,-almost surely, this does not mean that {{’} is a flow for
the composition (" o{” makes sense only when P” <P, and, without
proving the quasi-invariance, we cannot claim that ("' o (> = (1",

In the compact case, the Radon—Nikodym derivative has the form

d [p)t {/t -
=ex (. a’/l},
P PUL )
1 . 1
I = / <hs — ~ Ricy,hy, dW, >
0 2

Here U is the horizontal lift starting from u, of the coordinate process X on
P,(M)and W = J~' X the anti-development of U (or X). Note that X is a
Brownian motion from o under P. The map J : P,(R") — P,(M) is the Itd
map, which sends an R"-valued semimartingale its (stochastic) development
on M (see [5]). Let r(-) = d(:,0) be the distance from the fixed point o. In
view of the fact that

r(CHO) <V + r(X) <Vl + r(Xo),

the formula for the Radon—Nikodym derivative suggests that a growth
condition on the Ricci curvature together with an effective estimate of the

. def . .. .
size of X = maxg<s<1 "(X;) should be sufficient for the quasi-invariance of

the Wiener measure. On the other hand, it is well known that the size of
Brownian motion can also be controlled by a lower bound of the Ricci
curvature. We will show that the growth condition

IRicy (0)|< C{T + r(x)}

is sufficient for this purpose. We note that a complete Riemannian manifold
whose Ricci curvature satisfies the above growth condition is automatically
stochastically complete; see [4].

2. EXISTENCE OF THE FLOW

We briefly recall how the existence of the flow {{’} generated by D is
proved when M is compact, following the exposition in [3]. For a frame
u€ O(M) and a € R" we denote by H,a the horizontal vector at u such that
nw(Hya) = ua. Thus {Ha,a € R"} are the fundamental horizontal vector
fields on O(M). Let (W,(M), %, P) be the pinned path space over M with
the standard Wiener measure. The coordinate process X is a Brownian
motion starting from o. Let U = {Uj, s € [0, 1]} be the horizontal lift of X
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starting from a fixed frame u, over o and W = {W,,0<s<1} its anti-
development. Then W is a euclidean Brownian motion, and U is the
solution of the following stochastic differential equation on (O(M):

dU, = Hy odW,, Uy = u,.

The above equation makes sense for any R"-valued semimartingale W and
we denote the projection nU of the solution by JW. If X is an M-valued
semimartingale, we denote its anti-development by J~'X, unique after
choosing an initial frame over Xj.

A formal calculation shows that the pullback p = J, D), of the vector
field Dy, is given at W e P,(R") by

p(W), = hy — / K(W), - dW,,
0

where

K(W), = / Quiw, (- dWo, ).
0

Here Q is the curvature form, which is by definition an o(d)-valued
horizontal 2-form on O(M). We have written Q,(a, b) instead of more precise
Q,(Ha, Hb) to simplify the notation. Finding the flow {{’} generated by D,
on P,(M) is equivalent to finding the flow {&'} generated by the vector field
p on W,(R"):
t
% =p&), & =Ipm. 2

Once {¢&'} is found, the desired flow on P,(M) is given by ('(X) = J&
(J7'X). Note that the right-hand side is well defined because J'X is a
euclidean Brownian motion and &'(J~'X) is a semimartingale.

It turns out sufficient to seek solutions in the space of semimartingales of
the form

zsz/‘ A1d1+/‘ 0. dw., 3)
0 0

where O and A4 are, respectively, O(d)-valued and R"-valued processes, both
being adapted to the canonical filtration %. For such semimartingales, we
introduce the norms

1
Al =E / A2 ds,
0
|01 =E supy<,<, |0,

(2* =4I + 0.
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We have included the norm of O to accommodate the situation where O
may not be O(n)-valued. In these norms, (2) can be solved by Picard’s
iteration. Let & = W, and

t
= [ e a
0
If M is compact, there is a constant C depending only on 7 > 0 such that

Em =< e /0 =i, <. )

To prove this estimate we need to write p in Itd’s form, if z is a
semimartingale in the form (3), then

p(2), =hs — % / Ricy) he dt — / (K(z),,dz:),
0 0
K(Z)s = / QU(JZ)I( °© dZT, hr)
0

N 1 5 X X
= / QU(J:)T(erahr)'*'z / HfQU(.]Z)I(ej)h‘E) d<Zl,Zj>T~
0 0

Here {e;} is the canonical orthonormal basis of R”, and H; = He;. Note that
by (3) the stochastic integrals with respect to {z'} and their co-variations in
the above equations can be further reduced to stochastic integrals with
respect to t and dW.. If we write

6§=/ A;dr+/ o' dw,,
0 0

then the flow equation (2) is equivalent to the following system of equations:
&= fOS Aldt+ fos oL dw,,

O'=1- [} K(EH0 dJ,
_1
2

5

A= 0" [j O [h RicU(Jéz)h} di.

With this form of the flow equation, the proof of inequality (4) involves
nothing more than routine bounds of stochastic integrals with respect to
dW, by Doob’s inequality and those with respect to dt by taking absolute
values under the integrals.

Now, inequality (4) implies that the limit £’ = lim,, ., " exists and is the
solution to (2). The uniqueness is clear because we are dealing with a
Volterra-type integral equation. The flow on P,(M) is now obtained by
{'(X) =JE'X).
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Remark 2.1. What we have said so far is still valid if we stop at a %-
stopping time ¢ <1 in the s-direction.

Because the process K takes values in o(n), the space of anti-symmetric
matrices, from (5) we see that O’ takes value in O(n), the space of orthogonal
matrices. If M is compact, the Ricci curvature is uniformly bounded, hence

[Ricy e sl < Clhs| < Clhl .
It follows from (5) that
A< C L] + 1]}

for some constant C. Let Q be the Wiener measure on P,(R"). Girsanov’s
theorem and the hypothesis that 41 € # imply that Q- (£') ! (the law of &) is
mutually absolutely continuous with respect to @, namely, the Wiener
measure is quasi-invariant under the flow {&'} on P,(R"). Transporting
this result to the space P,(M) by the It6 map J, we obtain the
quasi-invariance of the Wiener measure P under the flow {{’} generated
by Dh.

We now turn to a complete, but not necessarily compact Riemannian
manifold. Estimate (4) may not hold because the curvature Q and its
derivatives H;Q, H;H;Q2 may not be uniformly bounded. To overcome this
difficulty, we will truncate the vector field D;, to zero whenever the path are
outside a large compact set. Let ¢p: M — [0, 1] be a cut-off function on M,
vanishing outside a compact subset of M. Consider a modified flow
equation

e
d

HENDUC) = UCN G, O = I,

We rewrite this equation on W,(R"). Define
P =600k~ [ KOWy-dw X =W,
0
KO0V = [ Qoo (W 406h),
0

Note that these definitions are obtained from the old p and K by
replacing A with the semimartingale ¢(X)h. The equation for
W) = I IW) s

dett

7 pP(E), & = Ip, ).
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Equations (5) become

G = 3 A duy [y O AW,
0% =1~ [§ K*EH0dJ,

A = 0% [1 00 {h - % RicU(,é;,d,@(W)h} dj.

(6)

By inspecting the definition of p? we see that these equations involve only
the curvature and its derivatives on the support of ¢. Therefore, we can
apply Picard’s iteration just as we did before for the compact case and claim
that it has a unique solution {E93. Again the solution on P,(M) is obtained
by (X)) = JE (71X,

After these preliminary remarks, we are ready to prove our first main
result.

THEOREM 2.2. Let M be a geodesically and stochastically complete
Riemannian manifold. Let h € A . Then there exists a unique set of measurable
maps (P,(M)-valued random variables)

(' Py(M) > Py(M), teR

with the following properties:

(1) {L,s€[0,1]} is an M-valued B(P,(M))y-semimartingale for each
teR;
(2) for P-almost all X, t — {'(X), is C™ for fixed s and satisfies

dl'(X),

o= U@

Proof. Let ¢p: M — [0,1] be a smooth function such that ¢ =1 on
B(o; N), the geodesic ball of radius N, and ¢, =0 on B(0;2N)‘. Let
N = 9y and ¢ = ("9 for simplicity. From the equation for (*V, we see
that

d(CV X, X) < tllhg| <[l -

This holds for all N. Recall that r(-) is the distance function from the
reference point 0. Now for a fixed positive L let

op =inf{s<1: r(X;) = L}.
Then for all s<o,, all N and |f|<T we have

(N X)<d(N X, X)) + (X < Tlhl, + L.
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In particular, if N> T|h|, + L, then r(C";N X)< N. Thus the stopped process

ot,N;L def ot N
és - Cs AOL

does not wander out of the geodesic ball B(o; N), on which the

cut-off function ¢ = 1. It follows that {{"*V*'} satisfies the same equation
for all N> T|h|, + L. Note that in the s-direction, the equation only runs up
to time ¢, which may be strictly less than 1, see Remark 2.1. By the
uniqueness, for all sufficiently large N we have (VL = ("N*EE for all s e
[0,1], or equivalently, (" ={("N*! for all s<o,. Now because M is
stochastically complete,

Plop=1]11 as L 1 oo.
We define
(= limy o OV on {o; =1}

The properties of {{’} stated in the theorem are inherited from the
corresponding properties of {{*}. The proof is completed.

3. QUASI-INVARIANCE OF THE WIENER MEASURE

Throughout this section we assume that there is a constant C such that
[Ricp (x)[< C{1 + r(x)}. (M

Let {{'} be the semimartingale solution of the flow equation for D; on
P,(M) constructed in Section 2 and {¢&'} the corresponding solution on
W,(R"). We will show that the law of {’ is mutually absolutely continuous
with respect to the Wiener measure P on P,(M), namely

PPyt 2 P

2

This is equivalent to showing that
QEQ) 0
where @Q is the Wiener measure on W,(R"). We need the following criterion.

ProrosITION 3.1.  Let z = {z;,5€[0,1]} be a semimartingale on the
filtered probability space (W,(R"), B+, Q) such that

ZS:/‘ Afdr+/‘ 0. dw..
0 0
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where A is a By-adapted, R"-valued integrable process and O is a By-adapted,
O(n)-valued process. If

1 /!
[EQexp [5 /0 |4,]? ds} <00, (8)

then the law Q° =% Q oz~ is mutually absolutely continuous with respect to
the Wiener measure Q.

Proof. Define the local exponential martingale

es—exp[/ <—Af,odeT>—1/‘ |AT|2dr]
0 2 0

Then it is well known that (8) implies Ee; = 1 (see [6, p. 152]). Define a new
probability measure Q on W,(R") by dQ/dQ = e;. By Girsanov’s theorem,
z is a Brownian motion under Q. Let %° = z~!(%4,) be the o-field generated
by z. General measure theory guarantees the existence of a measurable
function Q: W,(R") — [0, c0) such that

E%Le; 1] = Q).
Now for any nonnegative measurable function f on W,(R"),

EYf = E%f () = B f(2)e; '] = 2L/ (2)0(2)] = E°LfQ).

The last equality holds because the law of z under Q is @. This shows that
Q@ ~QandinfactdQ°/dQ=0Q. 1

In the following, we will use C to denote a constant depending on /i and
M, whose value may differ from one appearance to another. From (5), (7),
and |h,| < k|, we have

t
4l < / (sl + C + Cr(E)} di.
0

Now let
X, = max r(Xj)
0<s<1

SIS
be the maximum distance traveled by the Brownian motion X. We have
r(X) < ths] + r(X) <ty + X

Hence for |f| <1,
|A'| < Ctilh| + |hl + X}
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and
1

1
E/ |AlPds < CER {1 + X2}, 9)
0

In order to apply Proposition 3.1 we need to investigate the exponential
integrability of Xi.

LemMaA 3.2.  Under assumption (7) on the Ricci curvature we have
E /10 < 0.

Proof. It is a well-known fact in stochastic analysis that the radial
process ry = r(X;) has the decomposition (see [7])

1 S
ry =P+ 3 / Apyr(X;) dt — Ly,
0

where f is a one-dimensional Brownian motion, L is a nondecreasing
process which increases only when X is on the cut-locus of 0, and 4, is the
Laplace—Beltrami operator on M. By 1t6’s formula, we have

r=2 / redr, + s
0
Hence, noting that L is nondecreasing we have
N N
r?<2 / e dﬁr—l—/ reAyr(Xy) dt + s. (10)
0 0
Fix a K>1 and let

ox =inf{s:r; = K}.

If r(x)<K, then the Ricci curvature is bounded by C(1 + K). By the
Laplacian comparison theorem (see [5]),

Ayr(x)<(n — 1)y/C(1 + K) coth\/C(1 + K)r(x).

For 1< ok, using the inequality c coth ¢<1 + ¢ for all ¢>0 and the fact that
r. <K, we have

reAyr(X:) <1+ /C(1 + K)yr < C K.
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Letting s = ok in (10), we have
oK
K2<2/ redp, + CK*?ok.
0
From this inequality we see that gx <1 implies
OK K2
2/ rtdﬁT>1<2—C1<3/2>7
0

for sufficiently large K. On the other hand, by Lévy’s criterion there is a one-
dimensional Brownian motion W such that

oK OK
/ redp, =W, n= / rf dr<K>.
0 0

It follows that o <1 implies

2

max N Ws> VI/W ZT
0<s<K?

Since maxy<y<x2 W has the same distribution as K|W)|, we have
K 7K2/8
P{X:=> K} <P{oxk<1}<P Wiz s Ce .

This implies immediately that E ¢*+/10 is finite. N

Remark 3.3. In the above proof, we only used the lower bound
Ricy(x)> — C{1 + r(x)}. The exponential integrability of X? can be proved
under much more relaxed growth condition on the Ricci curvature; for
example, it holds when Ricy(x)= — C{1 + r(x)*} (see [8, p. 128]). But this
does not seem to lead to any improvement on our final result in the next
theorem.

We are ready to prove the second main result of this paper.

THEOREM 3.4. Let M be a complete Riemannian manifold. Suppose that
there is a constant C such that

IRicy ()| < C{1 + r(x)}.

Then for any h € A, the Wiener measure is quasi-invariant under the flow {{},}
generated by D, namely P’ p, (CZ)f1 and P are mutually absolutely
continuous.



QUASI-INVARIANCE OF THE WIENER MEASURE 289

Proof. From (9) and Lemma 3.2 we have

1 /!
Eexp [— / |AL? ds} <00
2 0 :

for all sufficiently small | 7. By Lemma 3.1 we have Q' ~ @ and P’ ~ P for
small |#. It remains to show that this implies that the equivalence holds for
all ¢,

Suppose that P* ~ P for all 0<¢<ty. The composition (""" {" now
makes sense as a P,(M)-valued random Varlable because (7" is P- almost
everywhere defined and P ~ P. If we define g = C’ for 0<t<ty and {' =
{0 M for ty <t<2ty, then it is easy to see that (7' 0<1<2t)} satisfies the
same flow equation as {{’,0<¢<2¢}. By the uniqueness we have Cr = {" for
0<t<2ty, or {'=0""o{" for ty<t<2ty. Now P’ ~ P for 1, <t<2¢
follows from P* ~ P and P ~ P. In fact, if we let R: P,(M) - R be a
measurable function such that

to »
fpfe] e
where 2" & (=)~ (%,), then
dPp’ dp'—h

This method can be continued to show that P'~ P for all #. 1

We end this paper with two remarks.

(1) The need for an upper bound of the Ricci curvature runs counter to
intuition: it seems that a complete manifold whose Ricci curvature is
bounded from below by, say, a negative constant —K should be more likely
to have the quasi-invariance property than the simply connected manifold of
constant curvature —K.

(2) It is unlikely that the quasi-invariance property holds for all
geodesically complete and stochastically complete manifolds without any
further restrictions.
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