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We study a quasi-invariance property of the Wiener measure on the path space
over a compact Riemannian manifold which generalizes the well-known Cameron-
Martin theorem for euclidean space. This property is used to prove an integration
by parts formula for the gradient operator. We use the integration by parts formula
to compute explicitly the Ornstein-Uhlenbeck operator in the path space. '« 1995

Academic Press, Inc.

1. INTRODUCTION

The general setting of this paper is as follows. Let M be a compact
Riemannian manifold M of dimension d. We use O(M) to denote the
bundle of orthonormal frames over M. Let oe M be a fixed point on M
and u,€ O(M) a fixed orthonormal frame over 0. We will use W, (M) and
W, (O(M)) to denote the (pinned) path spaces based on M and O(M),
namely the spaces of continuous functions from the unit interval [0, 1] to
M and O(M) starting from o and u, respectively. The notations W (M)
and W (O(M)) denote the subset of smooth paths of W (M) and
W, (O(M)) respectively. Similar notations apply when M is replaced by R,
in which case o is taken to be the origin.

Let ye W7 (M). An element ke W, (R“) determines a vector field D,(y)
along y by letting D, (), = Uly), h,, where s+ U(y), 1s the horizontal lift of
y to O(M) with the initial condition U(y),=u,. Thus each he W (RY)
defines a vector field D, on the smooth path space W2 (M).
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Let F be a real-valued function on the smooth path space W (M) We
define the directional derivative at y along the direction / by

Ry~ Fly

D, F(y) = lim Do) = 1) (L.1)
10 t

if the limit exists. Here {(/y, >0} is an integral curve of the vector field

D, starting from y, namely,

dC;ly »0
NLLESRRY S NS =
i Wy ChY =)
The gradient DF(y) at y is defined as follows. Let H be the R“valued
Cameron-Martin space, namely, the completion of the space of smooth
paths in W (R“) with respect to the Hilbert norm

d "..
I, = Zf his)|? ds.
0

i=1

The gradient DF(y), if it exists, 1s the unique element in H satisfying the
condition

{DF(y), hy =D, Fly) for all heH. (1.2)

The directional derivative operator D, and the gradient operator D,
properly extended to a closed operator on L} W (M), v) with v the Wiener
measure, will play a role similar to the usual gradient operator on a finite-
dimensional manifold and will be used to define the Ornstein-Uhlenbeck
operator on W (M), which generalizes the usual Ornstein-Uhlenbeck
operator on euclidean path spaces. Our analysis on the path space W, (M)
is based on the Wiener measure v, the law of the Riemannian Brownian
motion on M starting from o. We will show in what sense the vector field
D, (with heH) generates a flow {(;,1eR'} on the path space W (M).
For a successful integration of the gradient operator D and the Wiener
measure v into an analytical theory of the path space W (M), the quasi-
invariance of v under the flow {{},reR'} is a highly desirable property.
We say that the Wiener measure v is quasi-invariant under the flow
15, te R} if for all re R, the measures v{,=v-({;) "' and v are mutually
absolutely continuous. It is helpful to point out at this point that the exist-
ence and the quasi-invariance of the flow are two closely related problems
and have to be dealt with simultaneously. In the case where the base
manifold M =RY, the quasi-invariance property is the well-known
Cameron—Martin theorem for the euclidean Wiener measure.
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The problem of existence and quasi-invariance of the flow generated by
D), has a long history, but the first significant progress for a general com-
pact Riemannian manifold M was made by Driver [2], who proved the
quasi-invariance property of the flow {{},reR'} for all Lipschitz A.
To extend this quasi-invariance property to its natural domain, namely for
all ~AeH, 1s the main task of the present work. For the history of the
problems discussed here, see the relevant passages and the references in
Driver [2].

The quasi-invariance property of the Wiener measure can be used to
prove an integration by parts formula for the gradient operator D: L*(v) —
L*(H;v) on the path space W, (M) in a natural way, where L*(v) and
L*(H; v) are the spaces of R'-valued and H-valued square integrable func-
tions on W (M) respectively. We will define the directional derivative
operator D, as in (1.1) and the gradient operator D as in (1.2) on cylindri-
cal functions and we will show that D, and D are closable. We will prove
integration by parts formulas for them by computing explicitly their adjoint
D} and D* in terms of stochastic integrals. The closability of D implies the
same for the associated Dirichlet form

SF.F)=[ DRI vdy). (13)

Wol M)

As an application of the explicit formula for the adjoint operator D*, we
will derive a formula for the Ornstein—Uhlenbeck operator, namely the self-
adjoint operator corresponding to the Dirichlet form (1.3).

For general discussions on stochastic and geometric analysis on path
and loop spaces, see Fang and Malliavin [5], Malliavin [10], and
Malliavin and Malliavin [ 11] and the literature cited there. We point out
that directional derivatives D, and their adjoint D} for he H are studied
in Driver [2] via approximation of 4 by a sequence of smooth functions.
The closability of the gradient operator and the integration by parts for-
mula were proved in Fang and Malliavin [5] without using the quasi-
invariance property of the Wiener measure. The closability of the Dirichlet
form (1.3) was proved in Driver and Rockner {4], where the existence of
the Ornstein—Uhlenbeck process on a path space was also proved.

The approach we adopt in the present work is as follows. The It6 map
J: W, (R — W (M) maps a euclidean Brownian motion to a Riemannian
Brownian motion on M, i.e., v=u+J ! where u is the Wiener measure on
W _(R“). The image of the vector field D, under J !, which we denote by
J,'D,, can be computed explicitly. The vector field J, 'D, on W,(RY) can
be identified with an R%valued semimartingale denoted by p,. Let ¢ =
J'(,+J. Then {&},teR'} is the image of the flow {(,,7eR'} on the
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path space W, (R“) and should be the flow generated by the p, as a vector
field on W, (RY), namely, it satisfies the integral equation

fpo=w+ ‘ PalEr) da. (1.4)
Jo

This should be regarded as an equation in the space of semimartingales on
the probability space ( W (R“), 4. ;). We will single out a class of semimar-
tingales {denoted by SM(/) in the paper) so that under a suitably defined
norm on this class, (1.4) can be solved by Picard’s iteration method.

The existence of the flow generated by D, and the quasi-invariance of the
Wiener measure under the flow can also be proved by Euler’s polygonal
method and the infinitesimal quasi-invariance of the Wiener measure. This
is done in Hsu [7].

The paper is organized as follows. In Section 2 we compute p, =J, 'D,,
the image of the vector field D, in W, (R“) under the development map J.
In Section 3 we prove the existence of the flow {&;, 7e R'} generated by p,
and show that the usual euclidean Wiener measure u on W, (R“) is quasi-
invariant under this flow. In Section 4, we show how to transfer the
euclidean flow to the flow on the path space W (M) generated by D,. In
Section 5 we discuss the operators D, and D, compute their adjoints, and
prove the corresponding integration by parts formulas. In Section 6, we
apply the results in Section 5 to give an explicit formula for the Ornstein-
Uhlenbeck operator L on W (M) and show that the set of cylindrical func-
tions lies in the domain of definition of L.

I thank Professor L. Gross for his careful reading of the manuscript and
his suggestions for improvement. Thanks are also due to Professors M.
Cranston, B. Driver, P. Malliavin, and M. Réckner for helpful discussions
at various stages of the work.

Added in the final version. O. Enchev and D. Stroock have worked out
another approach to the problems treated in this paper. Their results will
be published in an article now in preparation.

2. A GEOMETRIC COMPUTATION

The purpose of this section is to motivate the flow equation (3.2) we will
solve in the next section. The computations are therefore carried out on
smooth paths.

We continue to use the notations introduced in the preceding section.
We assume that the compact Riemannian manifold M is equipped with a
connection compatible with the Riemannian metric but not necessarily tor-
sion-free. Let n: O(M)— M be the canonical projection. Each frame
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ue O(M) can be regarded as a linear isometry u: R — T, M, the tangent
space at n{u). We will use the same letter z for the canonical projection
from W, (O(M)) to W, (M). The R%valued 1-form 0 on O(M) defined by
O X)=u"'n,(X) is called the canonical 1-form on O(M). The connection
we fixed on M gives rise to a decomposition of each tangent space T, O(M)
into the direct sum of a horizontal subspace and a vertical subspace. Let
{H, 1<i<d} be the canonical horizontal vector fields on O(M). By
definition, H, is the unique horizontal vector field such that n H,=ue, at
each u e O(M), where ¢, is the ith unit coordinate vector in RY. If he R we
set Hh=Y¢_, H;i' and the value of the vector field at ue O(M) is denoted
by H h; in other words, H , his the unique horizontal vector field such that
n,(H, h)=uh The connection on M also gives rise to an o(d})-valued con-
nection form @ on O(M). where o(d) i1s the set of dxd antisymmetric
matrices, i.e., the Lie algebra of the Lie group O(d) of d x d orthogonal
matrices. The torsion form @, defined by the first structure equation (see
below), is a R*valued 2-form on O(M). The curvature tensor &, defined by
the second structure equation (see below), is a o(d)-valued 2-form on
O(M). See Bishop and Crittenden [ 1] or Kobayashi and Nomizu [9] for
differential geometrical details.

Let we W (RY). The development /= I{w) of w in O(M) is a horizontal
path in W (O(M)) satisfying the ordinary differential equation

K}

dl dw,
&g

IOZH‘,A

The projection Jo =nl(w) is a path on M. The map
JWH(RY)Y > W(M)

is in fact invertible. This can be seen from the following argument. Suppose
that ye W (M), let U= U(y) be the horizontal lift of 7. i.e.,

It is the unique horizontal path in O(M) starting from u, such that U =1.
Then w =J"'ye W/ (RY) is given by the line integral.

o={ o=[ 0av,
~ 0

BRI
and is called the development of y in RY. Note that I(w)= U(y). ie.
I=U-J if we use U: W (M)— W (O(M)) to denote the operation of
horizontal hft.
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Suppose that ye W (M) and w=J 'y its parallel development in R
Let he W (R“) and consider the vector field on W (M) defined by

Dh( y),\' = U(:")Xh.\"
Let {7, t=0} be the flow generated by D,, ie.,

AHERy)
ot

=D, (). (= (2.1

Clearly
Eao=J"0,, teR!,

is a flow on W (R“). We want to compute J 'D,, the pullback of the vec-
tor field D, to W (RY), namely

o, o),

1 =
[J* Dh((u)]x_ at ,:0'

For each we W (RY), the above relation defines a vector field along w,
which we identified with an R%-valued function on [0, 1] denoted by p,(w).

THEOREM 2.1.  Suppose that ye W (M) and he W (RY). The pullback
Ji'D,, of the vector field D, under the development map J': W/ (M)—

o

W (RYY is given at o =J" 'y by the following R“-valued function on [0,17]:

0

pilw), = h‘,.—r & (Hdw,, Hh,) —Jﬁ K, (w), do,, (2.2)
0 4]
where U= Uly) is the horizontal lift of y in O(M) and
Ki(),= | Qu,(Hdo,. Hh,).
Y0

The rest of this section is devoted to the proof of this theorem. We will
use the following three facts:

e Exterior differentiation formula. 1If ¢ is a 1-form then the exterior
differentiation d¢ is a 2-form defined by

d¢(S, T)=SH(T)—T¢(S)— ([ S. T]),

where [ S, T'] is the Lie bracket of the vector fields S and T.
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e First structural equation. The differential of the canonical horizontal
1-form 0 is given by

dd= —w A0+ 0,

where @ is the torsion form.
o Second structural equation. The differential of the connection

l-form w is given by

do= —w A w+ Q,

where £ 1s the curvature form.

For discussions on these facts see Bishop and Crittenden [1] or
Kobayashi and Nomizu [9].

In the following computation we will omit the subscripts h. Let U'=
U({'y) be the horizontal lift of {'y and define

au’ _oU; _6‘(6’(0)‘.
S= s’ r= ar’ N= ds
Then we can write
ph(fU)s=fo {_—‘a, r=0} dr. {2.3)

By &'=J-{"-J ' we see that U'=J(&'w) is the development of &' in
O(M), hence S = HN, which is equivalent to N = (S). Differentiating with
respect to ¢, we have

E=TH(S)‘

By the exterior differentiation formula,
TOS)=SOT)—6O([S, T})—do(S, T).

Clearly, [ S, T} =0. On the other hand, since n{(U')={"y, at t =0 we have
7, (Ty=D,(y)=U(y)h by {2.1). This means

the horizontal component of T= Hh, or HT)=h (24)
Hence

N,

=h,— , T). .
b | _y h,—d&(S, T) (25)

$80:134°2-12
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We now compute d0(S, T) by the first structural equation. We have
@(S) =0 because S is horizontal and the connection form  is a vertical
form. We also have ((S)= N as before. Hence the first structural equation
gives

d(S. T)=6(S, T)+w(T)N. (2.6)

We now compute o T). Using [ S, T]=0 and «(S5)=0 we have by the
exterior differentiation formula and the second structural equation

SoATY=dw(S, T)=Q(S, T).

Integration with respect to s, we have

N

W (T)=| @S, T)dr. (27)

4]

Let 1=0 in this relation. We have seen that the horizontal component of
T is Hh. We also have S= Hc, because U(y)=I(w). Hence at +=0 the
Qu(S, T) in (2.7) can be replaced by Q (Ho,, Hh,) because Q is a
horizontal form. Therefore we have

oA TYy=K,,. (2.8)
From (2.5)-(2.8), and the fact that N=, at t =0 we have

aN'

=h,—O(Hw,, Hh)) — K,(@)o,.
61‘ =0

Integrating with respect to s and using (2.3) we obtain the theorem.

3. FrLows oN EUCLIDEAN PATH SPACE

In this section, we will work in the probability space (W, (RY), 4. i),
where # is the Borel o-field on the path space W, (R“) and y is the Wiener
measure. The canonical filtration of o-fields on W,(R“) will be denoted by
{4, 0<s<1}. The coordinate process {w,, 0<s<1} is a #,-adapted
Brownian motion.

In Section 2 we have introduced the function p,(w) in Theorem 2.1. We
regard p, as a vector field on the path space W (M) whose value at m 1s
pi{). The purpose of this section is to prove the existence of a flow on
W, (M) generated by the vector field p, {in a sense to be made precise
later) under an antisymmetry assumption on the torsion form (sce below)
and the assumption that /i1e H.
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Throughout this section we will fix an element seH, the R%valued
Cameron-Martin space. We use SM(#) to denote the space of R%valued
and #,-adapted continuous semimartingales - of the special form

:JO A,dr+£: 0. do,, (3.1)

where O is an O(d)-valued, 4,-adapted process and A4 is a R“valued,
A, -adapted process such that

ERES VNS

for some (nonrandom constant) K. Note that since A4 is bounded by a
deterministic function in L’[0, 1], the law of z in W, (R“) is mutually
absolutely continuous with respect to the Wiener measure u by the usual
Cameron-Martin theorem for R,

Recall that we assume that the connection is compatible with the
Riemannian metric, but not necessarily torsion-free. From now on, the
following assumption introduced by Driver [ 2] will be in force:

The torsion of the connection is antisynunetric, Le., for afl
ZeTM, the matrix

O(H, Z)={0'(H, Z)} eold).

We define the semimartingale p, on { W (R“), 4, 1) simply by replacing the
integrals in (2.2) by Stratonovich stochastic integrals

pulo),=h, L, v (Hdo H/t,)4f[; K, (w), do.,

(3.2)
Kyw), =3 Qu (H do,. Hh,),

where U= f(w]) is the stochastic development of = in O(M ) determined by
dU,=H,. . Us=u,. (3.3)

Since p,, is defined p-a.s. and the law of a semimartingale - € SM(/1) is equivalent
to s, the composition p,, -z = p,(z) 1s a well defined semimartingale.

For the rest of this section, /1€ H is fixed and we will drop the subscripts
h if doing so causes no confusion.

Let us rewrite p(z) in the It6 form. Let - be given by (3.1). After a
straightforward computation, we obtain

plo),=h, s a(z), dr—f, (biz),. d=),
alz )\—’HOI-(H Hh )+ iRic, (Hh,). (3.4)
h(z),= 0O (H, Hh)+ K(z),.

K}



426 ELTON P. HSU

b can be further written as

b(z)s=O,(H. Hh)+} [ H.Qu(H, Hb,)de
0

+j0 Q. (HA,dr, Hh,)+£; Qu(HO.dw, Hh).  (3.5)

Here Ric,,(-) is the Ricci curvature tensor and is regarded as an R%valued
horizontal 1-form on O(M) defined by

Ric (Z)'= Y, Q{(H, Z).

J=1

Note that our basic antisymmetry assuraption on the torsion form @
implies that b(z). 1s antisymmetric.

THEOREM 3.1.  Suppose that he H. There exists a unique family of semi-
martingales {&, te R'} such that
(i) &,eSM(h) for all teR' and Ew=w; hence the law of &) is
equivalent to y;
(i) For p-almost all w, the function 1+ Ei(w) is a W (RY)-valued
continuous function;
(iii) There exists a continuous version of {p,(&;), teR'} such that
u-almost surely, {&, teR'} satisfies the equation

Go=o+| pi&o) d (3.6)

Proof. The basic strategy is to solve (3.6) by Picard’s iteration. We
divide the proof into several steps.

(a) An equivalent formulation. Consider the equations
O'=1—{;b(&*) 0" dA,
A'=ht—{ya(&h) di—T§, (&) A*d), (3.7)
E={yAldt+; 0ldw..
I is the identity matrix. Suppose that {&', re R'} is given by the third equa-
tion, then {A’, O',reR'} satisfy the first and second equations, respec-

tively. This fact follows from (3.4) by a simple computation. Note that we
can write A’ in terms of O”:

A =0 j [0']7 {li—al(x’)) dA (38)
0
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Thus it is enough to solve for O".

(b) Picard’'s iteration. We may assume that |¢| < T for some fixed
positive 7. The letter C will denote constants whose actual values may vary
from one appearance to another.

Let A"®=0, 0"° =1 Consider the iterative equations

Ot.n:I_jz)b(ék.n \)O}..n d).,
A= 0" ﬁ) [O}..n] —1 {h'_a(éi.n ——l)} di, (39)
Ern={y Atdr + [y O do,.

We prove that the above iteration process converges in a judiciously
chosen norm on SM(h). If £e SM(h) is given by

é\ ‘4‘(‘21 C rd T
.[0 ‘[0 @

) ] 2
nAw=E[LL«|m}

|O>=E[ sup |O,]*],

0<s<1

(&= 1417+ 101"

The norm in which we show the convergence is { - > defined above. We will
prove for n>2 the inequality

<él.n_él.nfl><CJA0’ <é)..nfl_éi."*2> dai. (310)

This together with easily proved inequality
= <
implies that

(Cn"
n! -’

<£l.n_ér.n71> <

Therefore the limits

lim A""=A' and lim O""=0'

n—s o n—s X
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exist in the |-|-norm and the | -]-norm, respectively, and uniformly for
lt| < T. Letting n— o in (3.9) we see that {A", O', &' e R'} satisfy (3.7).
We now prove (3.10). We first show that

lol.n_ Ol.u ll < C ‘H <éi.n 1 _i}t.n ~2> d/{ (31 l)
c0

Since & is o(d)-valued, we have Q" e O(d) and by the first equation in
(3.9)

d ,
;,; [Ot.n] 1 Or.u 1 — [0""] 1 {b(é"" I)—l)(é"" _)} Ol,n I.

Integrating with respect to ¢ and using the equality O, —0,=
0,({— 0, '0,) we obtain

|Or.u — O I| < C [ |h<g“)..n l) —/)(4‘:)“" 2){ dJ.
}

“(
[1 am indebted to Bruce Driver, whose suggestion of using the above

inequality greatly simplifies an early version of this proof.] Hence it is suf-
ficient to show that

lb‘f)ﬂn 1)_17(;:/1,11 ZH < C<é)"” 1 'S:/L" 2>‘ ‘312}
The expression of h(&™" A "} in (3.5) has four terms. Correspondingly the
difference b(E*" ') —b(E*" 2) is the sum of four differences D, ..., D,. It
is easily to see that

|D,|<ClUA YU Y, i=12
The distance function on O(M) can be understood by embedding O(M) in
some euclidean space R” for a large integer L. From the second equation
in (3.9) and the fact that « is uniformly bounded we have
Vo AN < K{h ]+ 1
Hence for a constant (', independent of #,
ID3l SC (Ul + 1} Hhl, (U= U2+ Cy Lh|, 47" =A%)

Using standard L’-estimates for stochastic integrals we have

|D4| g C IU}..n -1 _ U,{.nf’_’l + C |O/Ln 1 OA,M 2|.



QUASI-INVARIANCE OF WIENER MEASURE 429

Combining the above estimates for D, we have
lb(,;:i,n l)_b(él,n¥ 2)| < C | U)..fl -1 Ui,n 2| + (~<é/’.,n 1 _‘;:Ln Z> (313)

for a constant C dependent on /. Here U*” = [(&*7) is the solution of the
SDE

dU,=H, d&".  Uy=u,.

If we embed O(M) in some R* and extend H, to vector fields vanishing
outside a compact set, then the above equation can be regarded as an SDE
on R% with coefficients of compact support. Hence simple estimates on
solutions of SDEs gives the estimate

A1 URn = < O gy, (3.14)

This together with (3.13) implies (3.12) and (3.11) is proved.
Next we prove the inequality

ot

HA:,n_Ar,n— l‘} <CJ <‘;:)L.ll —I__é)‘.,n 2> d/" (315)

0
We use the second equation in {3.9). Using the identity
0,'-0,'=0,'{0,—-0,} 0,
and the fact that ¢, 0™, and [O""] ' are uniformly bounded we have

)

“Al.n_A/.n—f]lg <C1 ‘ a(é}..n— 1)___a(é:/l.n 2)1‘ dl
0

+C1{lhl1}{]+l} |Ot'”7|‘—‘0"" ll

+ Ci{lhly + 1} J |01 —0"" ) dA. (3.16)
0
From the second equation in (3.4) and (3.14) it is clear that

Ha(éi.n l)_a(éi.n - Z)H SC ‘U/i.u I _ U/l.n ZI < C<é/l.nf— { _é/ﬁ.n 2>. (317)

Now (3.15) follows from (3.11), (3.14), (3.16), and (3.17).

(c} End of the proof. So far we have shown that there exists a
family of meaurable random variables { A", O', &', e R'} such that (3.7) is
satisfied a.s. for each fixed r. From the first equation in (3.7) we have O’
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is O(d)-valued; from the second equation there |4’ < K{|h,| + 1} for some
K. Hence ¢&'e SM(h), which proves (i). We see from (3.7) (using
Kolmogorov’s criterion, for example) that there exists a continuous version
of {A', 0", &, te R}, which proves (ii). Finally from (3.4), {p(&'), reR'}
has a continuous version. From (3.7) and (3.4) we see that (3.6) holds for
each fixed ¢. It therefore holds for all ¢ by continuity. This proves (iii). }

Remark 3.2. 1t can be shown that {£', reR'} has a smooth version.

For each fixed ¢, the random variable &.: W, (RY) — W, (R9) can be
regarded as a yu-almost surely defined map from the path space to itself.
In Proposition 3.4 below we will prove the {&',reR'} has the group
property. Thus we can regard {&;, e R'} as the flow on W ,(R“) generated
by p,=J,'D,. If ze SM(h), then the law of z is equivalent to g, hence the
composition &)« z=¢&,(z) is well defined. Furthermore if

Z“‘=F Ardr+f\. 0. do,,
0 0
then
(), = [ {44z)+04z) 4} de+ | 0(2)0, doo,,
0 V]

which implies that &'-ze SM(h). Thus the space SM(h) is invariant
under ¢&;.

Because & - ze SM(h), its law is equivalent to u. Hence we may replace
the w in (3.6) by z(w). The resulting equation shows that x'=¢&'-z is the
solution of the integral equation

x=z+ [ plx)dh (3.18)
0

We prove a uniqueness result for the above equation.

ProrosiTiION 3.3.  The solution to (3.18) in the class SM(h) is unique.

Proof. Let x"', i=1, 2, be two solutions in SM(4). Then we have as in
the proof of Theorem 3.1,

Or.i= 0_]6 b(x/l_i)oi..idi’

A"’=A+Iit—j(’,a(x’1") dl—jgb(xi.i)Al.idl’ (3.19)
xr,f=]‘.(v)A:"dT+jf) OYdw..
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Following the proof of 3.1 we can show from the above relations that there
1s a constant C such that

(M =X <O [ (ot d,

0

which implies x"' = x"? by Gronwall’s lemma. |

PROPOSITION 3.4. Suppose that he H and {&,, te R'} is the unique flow
on W (RY) generated by p,. Then u-almost surely,

wogp=Eate. forall (1),1,)eR' xR

Proof. The composition &'~ &5 makes sense because the law of &' is
equivalent to u for all +. It can be shown {(by Kolmogorov’s criterion, for
example) that

{EM-&7 (1, 1) eR xR}

has a continuous version. Now both {£~¢" reR'} and {&'*, reR'} are
solutions of (3.18) with initial value &2 Therefore by the uniqueness

-

(Proposition 3.3), for each fixed ¢,, we have p-as., £ 2 ="+ for all ¢,.
Therefore p-as., it holds for all 7, and all rational ¢,. Since both sides are
continuous in (,, t,), the equality automatically holds for all r, and 7,. |

Let x4} be the law of &). We give an explicit formula for the Radon-
Nikodym derivative du;, /du.

THEOREM 3.5. Let helH and (&, teR} the flow on on W,(RY)
generated by p,=J,7'D,. Let {A', teR} be the solution of the equation

A=t~ al&ydi—| bej)A*di. (3.20)
Q 0

Then the Radon-Nikydom derivative of the law u; of &) with respect to the
Wiener measure yu is given by

' 1 1
%(w) =exp (fo A& w)* dwj—%fo |A(E 'w)|? dsJ. (3.21)
Proof. By Theorem 3.1 &' is given by

g=[ Arar+| Oldo,, (322)
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Define the exponential martingale

s

({‘(m)zexp{ —J (AN ¥ O dw, — 3 [ |A’T[3dr]. (3.23)

y
0 0

We have Ee, = |. Define a new probability measure y on W (R“) by

dr
du

>

(].

i

By Girsanov’s theorem , ' is a Brownian motion under the measure y.

Hence for any measurable set C < W, (RY),
ulweCl=y[&weC]
=ulelm); Ewe O]
=u'[e, (& ‘o), weC].
This implies immediately that ' is equivalent to u and

dpt’ 1

i ()= o "’u)“)-' (3.24)
Now using (3.22) (with 7 replaced by —¢) and (3.23) we have
loge (& 'm)= ~J;: ALUE o) OUE ) O, () do,
- i: AUE '0)* OUS ‘w4, (w)ds
—15“1 A& ‘o)) ds (3.25)

Replacing o in (3.22) by & ‘@ and using &' ¢ ‘o= (from Proposi-
tion 3.4) we have

w,= | [AUE @)+ 0UE ‘@) A, ()] di+| 0UE '©) 0, () do.
<0 YO

By the uniqueness of the Doob--Meyer decomposition we have
ALE o)+ 0 ') AT (w)=0, O 'w) O (w)=1

Using these two identities in (3.25) we obtain immediately (3.21) from
(3.24). §
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4. FLOWS ON RIEMANNIAN PATH SPACE

The purpose of this section is to transfer the flow {&), 1€ IR‘} on W, (RY)
constructed in the last section to a flow on the path space W (M) by using
the 1td6 map J: W, (RY) — W (M).

On the probability space (W (RY), 4, ) consider the following SDE for
a process I=1I(tw) on O(M):

dl,=H, do,, ly=u,.

By the pathwise uniqueness for this SDE, the solution gives a progressively
measurable map I: W, (RY)— W (O(M)) defined u-as. Thus if = is an
R“valued continuous semimartingale whose law is absolutely continuous
with respect u, then the composition 7.z is a well defined, O(M)-valued
semimartingale and is the unique solution of the SDE with the driving pro-
cess o replaced by =. This holds in particular if ze SM(h).

Let J=mn I, where m: WIO(M))}— W(M) is the canonical projection.
Then the [té map J: W (R?) —» W (M) is a progressively measurable map
defined u-as. As a W, (M)-valued random variable, J is a Riemannian
Brownian motion on M, whose law on W, (M) is the Wiener measure v on
W.M).

We now define an inverse of J. We will work in the probability space
(W, (M), #,v), where # 1s the Borel o-field on W, (M) and v is the
Wiener measure on W (M). Let y the coordinate process on W (M)
The horizontal lift U= U(y) of the Riemannian Brownian motion
{y,.0<s<1} is the solution of the SDE

dU,=H_ U "' dy,, Uy=u,.

Let (/ be the canonical 1-form on O(M). The stochastic line integral

Lo={  0=[0auv,

Jufos &)

is called the stochastic parallel development of y and as a W (R)-valued
random variable the law of L is the Wiener measure u. We therefore have
a progressively measurable map L: W (M) — W, (R9) defined v-as.

From the above discussion, we see that the compositions
L J WRY> W (RY and J L: W, (M)> W, (M) are well defined
p-a.s. and wv-a.s., respectively. The map L is the inverse map of the map J
in the sense that L-J(w) =, p-as. and J- L(y) =7y, v-a.s. For this reason
we denote L by J .
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From now on we work in the probability space (W (M), .7, v). Define
the flow () : W (M) — W (M) by

Sh=JagJ N (4.1)

The composition is well defined v-as. and () is an M-valued semimar-
tingale. The problem remains to show that there is a nice version of
{¢),, te R'} which is the flow generated by D,.

THEOREM 4.1.  Let he H. There is a family of measurable maps (W (M )-
valued random variables)

(e WM — W (M), teR!
with the following properties:

(i)  For each fixed te R, the law v} of {} is equivalent to the Wiener
measure v (quasi-invariance of the Wiener measure) and the Radon—Nikodym
derivative is given by

dv, du'
Dy =

—1
=" (42)

where J ' W (M) — W (RY) is the inverse Ité map and du', /du is given by
(3.21);

(1) v-almost surely, the function tw—('y is a W (M)-valued con-
tinuously differentiable function;

(11}  There is a continuous version of t+— U(L}y) h=D({}y) such that
v-almost surely, (}y satisfies the differential equation

ac,y
dt

=Dh(€;"y); (4.3)

(v} v-almost surely,
Cholp=Crny  forall (1,1,)eR' xR
Proof. Define a new probability measure # on W (M) by
dn
—_1 — J L ,
v () =el 7)

where ¢, is defined on W (R) by (3.23). Then by Girsanov’s theorem, the
law of ¢'~J ! under 5 is the Wiener measure . Therefore the law of
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{'=J- & J ' under n is the measure v. Now for any measurable set
Ca W, (M),

viyeCl=n[{"yeC]
=v[e(J ') {'yeC]
=vie(J ') yeCl
This implies immediately v’ 1s equivalent to v, and by (3.24)

dv’ 1 _iﬂw'(.]fl

o T e Y

This proves (1}.
From J =71 and the SDE for I: W, (RY) — W (O(M)) it is not difficult
to prove that for &', &2 e SM(h),

|J. &' =T &< =8
From (3.6) and {3.4) we have the estimate
=& <0 — 1)
It follows that

=t =g =g T

SRR
<O =&
<Oty — 1,

P

from which we conclude that {{’, 7e R'} has a continuous version. Using
the same argument and the fact that {&'.reR'} has a continuously dif-
ferentiable version, we can show that {(’.,7eR'} has a continuously
differentiable version. This proves (i1).

To prove (iii), we first show that {U({'), 1€ R'} has a continuous
version. From U({") = I(&') we have

(UL = U™ < CCEm =Ry < C it =12,

See the proof of (3.14). It follows that {U({"), fe R'} has a continuous
version. Differenting the equation

dUi=H ( un-todgt
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with respect to 1, we obtain a linear SDE for dU'/dr. Hence it is not difficult to
show as before that {JU({")/dr, t € R'} exists and has a continuous version.

Let
e 4200
N dt ’

i is an R%valued semimartingale. Since ¢’ = n{ U’), the assertion in (iii) is
equivalent to i =h. To prove this we have to essentially repeat the com-
putation in Section 2 with stochastic calculus. Let T=90U" /0t as before.
Using the exterior differentiation formula, we have

0
. =3 OCdU) +d0(dU!, T),

Let x'=¢&-J ' We have U'= I(x'). Hence by the SDE for I(x') we have
we 0(-dU') =dx’, whose derivative with respect to ¢ i1s dp(x'),. We use the
first structural equation on the second term on the right-hand side and
obtain

dh,= dp X))+ O0CdU L TY+o(T) 00 dU').

We have dU = H dx by the SDE for U’ By the definition of 7., the
horizontal component of T is just Hh,. Thus the second term on the right-
hand side can be written as @(H - dx |, Hh,). Using the second structural
equation on the third term on the right-hand side we have

AR

(T =| Quit dUL T)={ Q@u(H- dx'. HE.).

~0 Y0
It follows that

K

dh,=dp,(x'"),+O(H dx', Hh)+ {J Qu(H dxy, HTI,)} dx!.

0

From the above equation and the definition of p, in (3.2), we see that the
above equation is just dp,(x'), =dps(x"),, or equivalently p,(x'}) = pz(x").
Because the law of x' is equivalent to the Wiener measure g and because
Py s linear in f1, we conclude that g-as., p, ;=0. We have to show from
this that /i = A.

Let ¢ =h—h. Using simple L>-estimates on stochastic integrals, we see
from (3.4) that there exists a constant C such that

El(py),—¢I*<C ‘0 E|¢,|? ds
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Since p, = 0. we can write
EpP<C| Elg) dr.
hE

from which we have immediately ¢ =0. This completes the proof of (iii).
Part (iv) follows from Proposition 3.4. |

5. GRADIENT OPERATOR AND INTEGRATION BY PARTS

Let F be a Hilbert space. An E-valued function F on W (M) is called
cylindrical if there is a positive integer n, a set of n points 0<
s, < - <s,<1 and a smooth function F: M x ... x M — F such that

~

Flyy=Fy, . .r,) (5.1)

The set of E-valued cylindrical functions on W, (M) is denoted by %(E).
Typically E =R, RY, H, H ® H {with the usual Hilbert-Schmidt norm). We
denote 4(R) simply by 6.

We will use L3([E; v) to denote the Hilbert space of E-valued measurable
functions F on W (M) such that

"F‘ilm.v.:' ./ [FU); wdy) < .

SN

The inner production on L*(E; v) is denoted by (-, -),;,,,. We write L (v)
instead of L*R';v) and the inner product (-,-),3 ., is simply written
as {-, ).
Let Fe %(E). It is natural to define the directional derivative
F O —F
D,F=lim —>4 — %

1 -0

The limit takes place in LAF;v). If F is given by (5.1), then by
Theorem 4.1,

D,Fy) =Y, (VPEy). U, h,). (52)

Pl

where V'”'F denotes the gradient of F with respect to the pth variable.
There exists an element DFe L*(H® E, v) such that for all ie H

(DF, hy,=D,F.
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DF is called the gradient of F and is given by

d n
DF(y)=73 Y (sAs,)e'@<VPEy), Uy, e (5.3)

i=1 p=1

We want to show that D, and D defined on 4 as above are closable and
to describe their adjoints D and D*.
For an /e H, define 4 martingale

l .
[h( y) = J() <hx - a((U).\,, d(l)_\,>
1
:f Chy—SH,0, (H,, Hh))—\Ric, (Hh,), do.>,  (54)
0

where w=J 'y and U= U(y) is the horizontal lift of 7 to O(M). The
following theorem gives the formal adjoint of D, on .

THEOREM 5.1 (Integration by Parts Formula). Let F, G be two cylindri-
cal functions. Then

(D,F,G)={(F, D}@), (5.5)
where
Df=-D,+1,. (5.6)

Proof. Since Fe %, we have

d
— F =D,F
df Ch o h
Hence we can write
d
(DhF#G):;i—I(F”hIﬁG)' (57)

The derivative is evaluated at 1 =0. We have {, '-{;y =y. The law v} of {},
being equivalent to v by Theorem 4.1 we have by the change of variables
Gy s

.y ., [av,
(F {4 G)=(F,G~{, )Lz(u'h,=<F,G'Q;. {7#}) (5.8)
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The Radon-Nikodym derivative is given by (4.2) and (3.21). From (3.20)
we find that at r=0

!

dt

(w)=h—alw).

Hence from (3.21) and (4.2),

ﬁ ﬂ _f’_ @ (! dA'((u)*} 3
df{dv (})}_dt {d,u ((D)}‘L { dr |, do, = l,{w).

It follows that in L3*(v),

d( . ,
E{Gu y);h—fm%—DhG<y>+l,,mG(-,'>=D:G<y).

From (5.7}, (5.8), and the above identity we have immediately the integra-
tion by parts formula (5.5). ||

Having computed the formal adjoint D} on cylindrical functions, we can
extend the derivative operator and the gradient operator by the usual
method in functional analysis. We will use Dom(4) to denote the domain
of a linear operator 4. Let L**(v)={J,., L7(v).

THEOREM 5.2. Let he H. The directional derivative operator D,:. € —
L3(v) is closable in L*(v). Denote its closure by D, again. Let D} be its
adjoint. Then

Dom(D;)n L**(v) = Dom(D})
and for all Ge Dom(D,)~ L**(v) we have
D}G=-D,G+1,G.

Proof. By definition we have Dom(D,) > % and % is dense in L*(v), the
operator D, is densely defined. The closability of D, follows from the exist-
ence of a formal adjoint D} on .

If heH, then /, is a continuous martingale with uniformly bounded
quadratic variation. Hence /, € L¥(v) for all ¢ >0 by moment estimates for
continuous martingales (see lkeda and Watanabe [8], 110-113.) Suppose
that Ge Dom(D,) ~ L?(v) for some p > 2. To show that Ge Dom(D}) it is
enough to show that there is a D} Ge L*(v) such that

(D,F,G)=(F,D}G)

580°134:2-13
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for all Fe®. From the closability of D, there is a sequence {G,} of cylin-
drical functions such that

G,-G and D,G,—D,G

in L3(v). We have

(D/1F~ Gn): —(F* D/,G”)"—(F, [/zGu)- (59)
We want to let n— oo in the above relation, but we do not know if /,G
converges to /,G in L?(v). We overcome this difficulty by a truncation
argument. Let ¢: R' - R! be a bounded smooth function with bounded

first derivative ¢'. Then ¢(G,)e % and we have D, ¢(G,)=¢'(G,) D,G,,.
Now we write down (5.9) wnth G, replaced by ¢(G and obtcun

(D, F. $(G, )= —(F. ¢'"(G,) D,G,,)+(F. 1,p(G,)).
Letting n — oo we have
(D, F, $(GYy= —(F, $'"(GYD,G)+ (F, 1,$(G)). {5.10)
Now let ¢ go through a sequence of functions {¢,} such that (i) (1) =1
for |t] < N; (ii) |¢pn(0)]) <2 t] for all teRY; (ii1) |¢i(1)] <1 for all re R

Recall that Ge L”(v) for some p>2. Choose ¢ such that 1/p+1/g=1/2.
We have as N — o0,

Hap MG =1, Gl < Nl o, 1@M0G) =Gl gy, — O (5.11)
In the last step we have used the dominated convergence theorem, which
is permissible because ¢ (G)— G and [ (G)— G| <3 |Gl e L”(v) by the

choice of #,. Now replace ¢ by ¢, in (5.10) and let N — oc. Using (5.11)
and the fact that ¢(G) is bounded by | and converges to 1 we have

(D/IF’ G): ‘(Fﬂ D/IG)+(F’ [/lG)'

This shows immediately that Ge Dom(D}}) and D*G= —D,+{,G. |

From now on we fix an orthonormal basis {#*} for the Cameron-
Martin space H. The orthonormal basis satisfies the following relation:

Z he'h% = (s, A 55)07. (5.12)
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From (5.2), (5.3), and (5.12) we have for any Fe %(E),

DF=h*D,.F.

PrROPOSITION 5.3.  The following assertions hold.
(1)  The gradient operator D: 6(E)— LAE®H; v) is closable on
LA(E; v). Denote its closure by D again;

(11) Dom(D) < Dom(D,) for all he H; if Fe Dom(D)} und he H, then
D, F={DF h);

(i) If Fe Dom(D) then

5
Z HD/I’FHl:(I; v) <%
x

and DF =h*D,. F; the convergence takes place v-almost surely as well as in
LAE®H; v).

Proof. The proof for a general E having no particular difficulty, we
assume for simplicity that F =R’

(i) Let %,H) be the cylindrical functions of the form G=
¥_ kG, with G, e 6. We have

(DF. G) 40,0, =(D;uF, G,) = (F. DLG,). (5.13)

The above equality shows that D has a formal adjoint on %,(H) and is
given by

D*G=D}G,.

Note that because G e %,(H), the sum is actually finite. The existence of a
formal adjoint for D on %,(H), which is dense in L>*(H; v), shows that D
is closable as an operator from L*(v) to L*(H; v).

(1) Suppose that Fe Dom(D). Then there exists a sequence of cylin-
drical functions {F,} such that F,— Fin L*(v) and DF, — DF in L*(H; v).
Let he H. We have

|Dll(Fn- Fm)| = |<D(Fn _Fm)~ h>[H]| < |D(Fn_ Fm)|}ﬂ ) Ihl[H]'
Thus the sequence D, F, converges in L*(v). It follows from the closedness

of D, that Fe Dom(D,) and D,F,— D,F. From DF,={DF,.h>, we
have D,={DF. h),.
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(ii1) Suppose that Fe Dom(D). Then for v-almost all y we have
DF(y) e H. By the orthogonal expansion in the basis {A*} and (ii) we have
v-almost surely

DF(y)=h*{DF(y), i)y =h"D,. F(y).
Taking |13, on both sides and integrating, we have

YDy Fl 320y = | DF [ 2204, 5y < -

This also shows that the series for DF converges in LX(H; v). ]

We define a symmetric quadratic form on ¢ as follows:

S(F.F)=[ DRI dy)

WalM)

Proposition 5.3 gives immediately the following result (see Fukushima [6]
or Ma and Rockner [12] for the defimtion of closed symmetric quadratic
forms).

PROPOSITION 5.4. The symmetric quadratic form & on L*(v) is closed. It
is a Dirichlet form with Dom(&') = Dom{D) and € is dense in Dom(&).

We now give a formula for the adjoint operator
D* LXH®E; v)— LYE; v).

For simplicity we will assume that F =R' If Fe ¢(H), then D,F and DF
are well defined and

DF=Y W ®h Dl F, h*> .

x~f

The convergence takes place v-almost surely as well as in L2(H® H; v).

DEFINITION 5.1. We say that an element Ke L*(H® H; v) has L*-trace
if the series

Trace K=Y (K. R*®I) 44 (5.14)

converges in L*(v).
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If Ge%,(H), then it is easy to verify that DG has L*-trace and

Trace DG =3} {D;:G, h* ).

In fact in this case (5.14) is a finite sum.
Define a martingale

A(y)‘\:%ﬁ: (H@y(H,, H), do.y + jo (Ricy (H). do,>. (5.15)

where w =J 'y and U= U(y), the horizontal lift of ;.
Recall that 4,(H) is the set of H-valued cylindrical functions of the form
G=Y%Y_,h*G,, with G,e%. We have the following integration by parts

x=1

formula.

LemMa 5.5. If Fe Dom(D) and G e 6,(H), then
(DF, G) 2., = (F, D*G), (5.16)

where D*G is given by
ol i
D*G = —Trace DG+ | (G,.dw,> —f (G., dA>.
(4] 0

Proof. Let Ge%y(H) has the form G=Y"_, h*G_, where G,e%. We
have from (5.13) that (5.16) holds with

D*G¢=D}G,= —D,G,+1,.G,= —Trace DG+ 1,.G,,.

Thus 1t 1s enough to show that
ol . ol
1,,,01:J (Goodw,y—| (G da,). (5.17)
6] [¢]

Note that all sums over « are finite sums from 1 to N. From (5.4) we see
that /,. is a sum of three terms. Thus the left side of (5.17) is corre-
spondingly a sum of three series, say S,, —S, and —S§,. We have

A S
S, =G, JO Ch*, deod =j0 (G, dw,>,
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which coincides with the first term on the right side of (5.17). For §, and
S, we have

-1
S,=1G, J (H.O,(H, Hh*), do,>

0

1
=% J <Hi9U,(H,'« HG)), do.),
1
=16, [ (Ric, (HAD). doo,>
0

1
=1 j (Ric, (HG,). dw,>.
]
It is clear now that the sum §,—S,—S; is equal to the right side
of (517). §

Compare the following theorem with Theorem 5.2.

THEOREM 5.6. If Ge Dom(D)n L*(H; v) and DG has L*-trace, then
G e Dom(D*) and

al . al
D*G:—TraceDG+. <G‘y,du)_\>~. (G..dA>. (5.18)
“0 <0

In particular, 6(H) <« Dom(D*) and
(DF,G) 2y, = (F, D*G)

for FeDom(D) and Ge% (H).

Proof.  Let G" be the N-truncation of G:

N
GV¥= 3 h<G .

a=1

There is a sequence {G,} <%(H) such that G,— G in L*(H;v) and
DG, DG in LYH®H; v). Fix a positive integer N and let G be the
N-truncation of G,. Then GYe%,(H). By Lemma 5.5 we have for any
FeDom(D),

(DF, G") 2., = lim (DF, G}) 2. ,,= lim (F, D*G}). (5.19)

- £ n— s
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Now the convergence DG, — DG in L*(H® H; v) implies that for each
fixed N,

Trace DG — Trace D"G" in L(v).

The convergence G, — G in L*(H; v) implies that

-1 -l
i (GN L dw,> —+J <G\\, dw >
) 0

nast
M
and

j' (GN L dAD ~»J‘"' (GN, dA,>.
(1] 2

[

Both convergence take place in L*(v). Thus we have D*G - D*G" in
L*(v) with D*G" given as in (5.18). It follows from (5.19) that

(DF, G") 24, ,, = (F, D*G"). (5.20)

We take the limit in the above relation as N — oc. Since GV — G in L(v),
the left-hand side goes to (DF, G). For the right-hand side we have

~1 « ar al .
D*G™ = —Trace DG + J (GY. dw> —J (GN.dA.
0 0

We have

Trace DGY= ) (DG h"®@h™).

xg< N

Since we assume that DG has L’-trace, Trace DG.N—> Trace DG in L3(v).
Now GY— G in L*(H; v), which implies both G¥ - G and GV - G in
L*(H% v), where H®= L?[0, 1]. This shows that

o1 ]
J (GY, doyy - f (G, dw))>,
0 0
and

! a1
j (GY, dv,)y — . (G, dw)>
0 ‘o
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in L*(v). It follows that D*G”™ — D*G, where D*G is given by (5.18). Thus
by letting N — oo in (5.20) we obtain
(DF, G)LIHH];N:(F’ D*G)
This implies that G € Dom{D*) with D*G given by (5.18). [

6. ORNSTEIN-UHLENBECK OPERATOR IN PATH SPACES

The usual Ornstein-Uhlenbeck operator in euclidean path spaces can be
generalized to path spaces over Riemannian manifolds. We define the
Ornstein—Uhlenbeck operator L on W, (M) to be the unique self-adjoint
operator associated with the Dirichlet form

E(F, FY=IDF|| ;24. -

By the general theory of Dirichlet forms (see Fukushima [6] or Ma and
Rockner [12]), we have Dom(é)=Dom(,/—L) and &(F F)=
H\/—LFHLZM. The semigroup generated by the Dirichlet form is P, =¢'"
and L is the L -infinitesimal generator of P,.

THEOREM 6.1. We have L= —D*D. If Fe Dom(D?) and D’F is of trace
class, then Fe Dom(L) and at ye W (M),

I .1
LF = Trace DzF—f (DF); doy + | (DF),.dA>. (61
0 0
where w=J 'y is the stochastic development of v in RY and A is defined in
(5.15).
Proof. Assume that Fe Dom(D*D) and G e Dom( \/”—W“i;). Then they
are both in Dom(D). We have
(/—LF, /—LG)=&(F, G)=(DF, DG) . ,,= (D*DF, G).

Hence ./ —LFeDom(,/—L) and —LF=D* DF, thatis, —D*Dc L.
If Fe Dom(L), then Fe Dom(\/—L) =Dom(D). For any G € Dom(D),
we have

(DF, DG) 2. ,, = &(F, G)=(/—LF, /—LG)=(—LF, G).

Thus we have DFe Dom(D*) and D*DF= —LF. Therefore L< —D*D.
It follows that L= —D*D. The formula for L then follows from
Theorem 5.6. ||
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We give an equivalent but more instructive formula for L. If Q is a con-
tinuous semimartingale and Fe Dom(D), we write

1
DyF=| ((DF);.dQ.).

ProprosITION 6.2. If Fe Dom(D?) and D*F is of trace class, then
LF=Trace D’F—D,F,

where the “drift vector field” is given at ye W (M) by
1
Q\:w_\—ﬂ (s A T)CH, Oy (H, H)+Ric, (H), dw,>.  (62)
0

Here w=J 'y is the stochastic development of y in RY and U= U(y) is the
horizontal lift of y in O(M).

Proof. The second term on the right-hand side of (6.1) corresponds to
the first term in the formula (6.2) for Q. For the third term we have

J" (DF),.dA,> =Y (DF.h*>,, J"] Chz.dAy
0 N 0

al
= <DF. Y b ), Ch®, dA_‘>>

i
and by (5.12)
a1l

1
PR J‘O Chy.dAy =J (s AT)dA,.

0

It follows that the drift vector field is given by
al
Q. =w,— ‘ (sAnt)dA.. |
0

Finally we show that the above formula can be applied to cylindrical
functions. The result is stated in Theorem 6.6 below. We divide the proof
of this technical result into several steps.

LemMmA 6.3. IfheH and Ke Dom(D), then hKe Dom(D) and D(hK) is
of trace cluass.

Proof. There is a sequence {K,} of cylindrical functions such that
K,—- K in L*v) and DK,— DK in L*H;v). We have hK,—hK in
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L*(H;v) and D(hK,)=h® DK, > h® DK in L*(H® H; v). Since DF is
closed we have hKe Dom(D) and D(hK)=h&® DK. We have

DKy =h"@ h*h >, DK
Hence D(hK) is of trace class and
Trace D(hK)=<{h. h*> D, K=D,K. |}

We use ¢, to denote the ith unit coordinate vector in R

LEMMA 6.3. Let Fe6 and g, (t)=(t A s)e;€H. Then

(DF), ;=D F
Proof. By (5.12) we have g, ,(t)=h>"h?. Hence

(DF)/“\:hTJDh’F:D/l?'/h’F:Dg,“\F' '

LEMMA 6.5. Let F be a smooth function on O(M) and G(y)= F(U(y),)
Sfor some 0 <t < 1. Then for any he H we have at t =0,

d

([f k/17)_J1-[h +(Kh) } F( U(;’y)r)s

where K* denotes the canonical vertical vector field on O(M) corresponding
to K, ie., o(K*)=

Proof.  This follows directly from (2.4} and (2.8). |

THEOREM 6.6, If Feé, then Fe Dom(D?) and D*F is of trace class.
Hence ¢ = Dom(L) and (6.1) holds for all Fe6.

Proof. Suppose that Fe%. From (5.3) we have

DF=Y (sAs,)HPE) U,

p=1

where £=F n and U is the horizontal lift operator. Note that H'”F is a
cylindrical function on O(M). Thus to prove the theorem, it is enough to
show the following assertion: If /e ¥ and K= F. U with a cylindrical func-
tion F on O(M), then hKeDom(D) and D(hK) is of trace class. By
Lemma 6.3 all we need to show is K€ Dom(D). For the sake of simplicity,
we assume that F depends only on one time parameter, ic., F(u)=Flu,)
for a smooth function £ on O(M} and some 0 <7< 1.

The basic idea of the proof is to approximate K by cylindrical func-
tions on W, (M) Let y": W, (M)— W, (M) be the following piecewise
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geodesic approximation. Denote the injectivity radius of M by r. If there is
a k such that d(y;,.. 71w =12, then Y'(y),=0 for all 0<s<];
otherwise ¥"(y),=gq,, ewnes il —kj/n), where ¢, . denotes the unique
geodesic joining x and y in time 1/n. Now y"(y) depends only y,..,,
0<k<n Let K,=K " Then K,e%. By dpprox1mat|on theory of
stochastic integrals and SDEs (see Ikeda and Watanabe [8], Chapter 6),
we can show that K, — K in L*(v). Hence it is enough to show that DK,
converges in L*(H; v).

For heH, let Y heH be defined by the equation D, ., =y D, We
have by Lemma 6.4

(DK,); , =D, (K- y").

Let /7 =y, g, .. Then we have from Lemma 6.5,

(DK,); =D, K={Hf} (1) +(Kq ¥} F. (6.3)
Let
dg, |
— n SNy —_ n/ .
v ey,
where h; (1) =x(0.,(T)e;. Then
{
T DK, )= (HI (1) + (K )2 F. (6.4)

By approximation theory it can be shown that as n — «,
al Py
EJ |jr —h, > ds—0, EJ Ky — K, |"ds— 0. (6.5)
0 0 ) h
Define DK by
(DK),,={Hg, (1) + (K, )¥} F.
Then

?(DK) VHh, (1) + (K, ) K (6.6)

It follows from (6.4)-(6.6) that as n — oo,

d I 2
IDK, — DK 314\, Z Ej %ka,,, 1'(1)10,,»} ds — 0.

i=1

This shows that Ke Dom(D) and the proof is completed. §
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Remark 6.7. 1t is proved in Driver and Rockner [4] that there exists
a W, (M)-valued diffusion process {X,,oeR' | generated by L/2. Using

o

the explicit formula (6.1) it is easy to see that the one-point motion
{X, .. 0eR'} is a Brownian motion on M with a drift, which is given at

T

ye W, (M) by

nl

—luy, {(J ")')A.—%J (s A r)d/lr},
0

where (o =J 'y and A is given by (5.15).
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