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SHORT-TIME ASYMPTOTICS OF THE HEAT KERNEL
ON A CONCAVE BOUNDARY*

PEI HSU

Abstract. A probabilistic method is used to study short-time asymptotic behavior of heat
kernel in the exterior of an insulated smooth convex body. The expansion of the heat kernel p (t, a, b)
when both a and b are on the boundary is obtained by reducing the problem to the computation of
a Wiener functional on a Brownian bridge. The leading terms of log p (t, a, b) are proved to be

2t tl/3 N(s)2/3d8- " + " logt + CO + o(1)

where p is the distance between a and b, N(s) is the normal curvature of the geodesic joining a and
b, and Co is an explicitly identified constant.

Key words, heat kernel, Laplace-Beltrami operator, normal curvature, diffusion process on
manifold, Brownian bridge, Feynman-Kac formula, Girsanov formula
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1. Introduction. Let M be the exterior of a smooth, strictly convex body in
Euclidean space. Let a, b be two points on the boundary such that there is a unique
distance-minimizing curve - joining them which lies completely in M. Since OM is
concave viewed from M, it is clear then " must be the unique geodesic joining a and
b in OM when OM is viewed as a Riemannian manifold with induced metric. Let us
denote the length of- by p d(a, b).

Let p (t,x, y) be the heat kernel of the Laplace operator A/2 on the domain M
with the Neumann boundary condition on OM. In this paper we are interested in the
asymptotic behavior of p (t, a, b) as t --, 0. Recall the basic result of Varadhan [10]:

(1.1) lim t logp (t a, b)
1
p2.

t--0

Our problem is to seek an improvement of (1.1) which reflects the geometry of the
boundary near the geodesic % It has long been recognized in the diffraction theory
that the correction to (1.1) takes the following form

(1.2) logp (t, a, b)
2 t tl/3 " O

where C is a positive constant. In fact, using the idea of path integration, Buslaev
[2] was able to give a heuristic argument of (1.2) and identified constant C explicitly.
However, to make his argument into a mathematically acceptable proof seems not
to be a simple matter. Equation (1.2) has long been known in physics literature as
Busleav’s conjecture.
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We will study the expansion (1.2) by a probabilistic method initiated by Molcha-
nov [9]. Our result can be briefly described as follows. We parametrize the geodesic- by arclength. Let N(s) be the normal curvature of "), (as a curve in OM -. M) at
point (s). N(s) is simply the curvature of when viewed as a curve in the Euclidean
space. Since OM is the exterior of a strictly convex body, N(s) is strictly positive
along % The asymptotic behavior of p (t, a, b) is described by

p2 #lpl/3 joP (d 1logp(t,a,b)
2t tl/3 N(s)2/3ds- " + logt-t- C0-t- o(1).

Here #1 is the first eigenvalue of "(x)/2- 0 on R1 and Co is
nonzero constant.

Probabilistically, the heat kernel p (t,x, y) is the transition density function of
reflecting Brownian motion on M. By a series of asymptotic analyses, we reduce the
computation of p (t, a, b) to that of the following Wiener functional on the standard
Brownian bridge W:

(1.3) E [exp l-ol l(s)li81dsl]
where is a smooth, strictly positive function.

Our research is inspired by the work of Ikeda [5], where a special case of the
present problem is discussed. In [5], manifold M is assumed to have the form of a
warped product (thus the normal curvature N(s) is a constant). This assumption
allows us to construct Brownian motion on M by skew product and to simplify the
analysis involved. In our present work, we have further explored some ideas from [5].
For a related problem under a different context, see Melrose and Taylor [8].

The plan of this work is as follows. In 2, we make precise our geometric assump-
tions and state our main theorem. The proof of the main theorem is outlined in 3.
In order not to interrupt the main line of argument, verifications of some intermediate
results used in 3 are relegated to 4 and 5. The asymptotic analysis of. the Wiener
functional (1.3) is carried out in 6.

Note. The author was informed that Professor N. Ikeda has also obtained results
related to the present work.

2. Assumptions and the main theorem. Unfortunately the Euclidean co-
ordinate system is not suitable for our work. We therefore need a little elementary
differential geometry. Although we may sometimes discuss the problem under general
differentio-geometrical setting, the case where M is the exterior of a smooth, strictly
convex body is our primary concern. We will see that various geometrical assumptions
we make along the way are satisfied in this important case.

So let us assume that (M, g) is a Riemannian manifold with smooth boundary
0M. We assume that OM is strictly concave when viewed from M. Mathematically
this means that the second fundamental form (defined below) ofOM is strictly positive
definite. Now let a and b be two points on OM such that there is a unique geodesic
in OM joining them on which they are not conjugate. For example, a and b can be
any two nonantipodal points on a sphere. The geodesic is the arc of the great circle
passing through a and b of lesser length. We can set up a semigeodesic coordinate
system (x2, xd) on OM in a neighborhood of /with a as the origin and x2 in
the direction of the geodesic f (cf. Molchanov [9, p. 10]). We let x= (x1, 5c) be the
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point in M which lies on the geodesic passing through and perpendicular to OM
with x d(x, OM).

Instead of M, which has a boundary, we can consider (M- U M, g) the double of
M. Here M- is just a copy of M, and M and M- are identified along the boundary.
The heat kernel on M-UM and the Neumann heat kernel on M are related in a very
simple way (see 3 below).

The second fundamental form H of the boundary OM can be identified with the
matrix

Ox Oxj
V

OxJ Ox

(Vi Vo/ox is the covariant derivative). The normal curvature of 7 at 7(s) is by
definition

g(s) H(,)(/(s), /(s))

(see [7, p. 44]). For brevity, we sometimes write Hij(s) for Hij(’(s)) and g(s) for
g(/(s)). The following lemma clarifies the geometric meaning of the second funda-
mental form.

LEMMA 2.1. Let g (gij) be the metric matrix in the semigeodesic coordinates.
(a) We have

gli(X) li, g2i(0, ) (2i, 1,’’’, d.

(b) Near the boundary OM, the metric matrix has the expansion

g(x) g(0,)+ 2H()[xXl + 2<_i,j<_d.

Proof. Since the coordinate line const, is a geodesic perpendicular to N, we
have gl(0, ) for x E OM and 7(O/Ox) O. This implies

It follows that gli(X) 51. The same proof applies to g2i(0, ). Part (a) is proved.
By the definition of the second fundamental form and part (a), we have on OM

Hi(e) x’Vix ’x’Vx Vlgj.

Part (b) follows immediately.
We will prove our asymptotic formula for the heat kernel under the following two

geometrical assumptions.

Assumption (A). The normal curvature N(s) H22(s), 0 _< s

_
p, is strictly

positive along the geodesic

Assumption (B). For any neighborhood G of /in M, there exists e > 0 such
that any piecewise smooth curve in M joining a and b with length _< d(a, b) / e lies
completely inside G. Equivalently, d(a, b) < d(a, OG) / d(b, OG) for any neighborhood
Gof%

It is easy to verify that in the case where M is the exterior of a strictly convex
body in the Euclidean space, the above assumptions (A) and (B) are satisfied.
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Let (1, (1) be the first normalized eigenpairs of the eigenvalue problem

=.(x) -Ixl(x) + 0,
2

xER1.

We are in a position to state our main result.
THEOREM. Let M be a Riemannian manifold with boundary and p(t,x, y) the

heat kernel o.f the Laplace-Beltrami operator A/2 on M under the Neumann boundary
condition (insulated boundary). Suppose that a and b are two points on the boundary
such that there is a unique geodesic in the boundary OM joining them along which they
are not conjugate. Then under further assumptions (A) and (B), we have as t ---, O,

p (t,a, b)

/H(a, b)p2/3[N(a)N(b)]l/6t-(d/2+l/6) exp
2t

1pI/3 0P }$I/3 N(s)2/3ds

where

and

,),- 2(271")-(d-1)/211(0)12

H(a,b)
[g(a)g(b)] -1/4 02/3.

[det f: g(s)-lds] 1/2

Remark. H(a, b) has an intrinsic geometric meaning, cf. Molchanov [9, p. 14-15].
Before proving this theorem, we need to transform Assumption (B) into a form

more suitable for computation. Let G be any neighborhood of 7; by Assumption (B)
we have d(a, b) < d(a, OG) + d(b, OG). One important consequence of this assumption
is that the computation of the asymptotic behavior of p (t, a, b) can be localized inside
G. This means that the metric outside G has no effect on the asymptotics ofp (t, a, b).
In fact if Pgl and pg are two heat kernels for the metrics gl and g2 which coincide on
G, then we have

lim Pgl (t, a, b)
1

t--*O Pg2 (t, a, b)
(See Azencott [1, p. 157]). Note that in [1], the above relation is proved under the
assumption d(a, b) < max{d(a, OG), d(b, OG)}. The result holds, however, under the
more relaxed condition d(a, b) < d(a, OG)+d(b, OG). See Hsu [4] for details. Therefore,
for the purpose of computing the asymptotics ofp (t, a, b), we may arbitrarily alter the
metric outside G to facilitate the computation. Thus we can assume that M R
{X (xl,x2, ,Xn) X

_
0}, M-( M Rn, and that the metric is Euclidean

outside a small neighborhood G of /. Let g-1 (gij) be the inverse of the metric
matrix. From Lemma 2.1 a simple calculation shows

g22(X) 2H22(:)Jx11 _{_

We can then impose the following global assumptions on g22.

Assumption (B1). For all x E R’*, we have g22(X)

_
1.

Assumption (B2). There exists a constant 7 > 0 such that for all x Rn,
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The reason that we can make Assumptions (B1) and (B2) is simple: These two
assumptions hold on a small neighborhood G of the geodesic . We can then choose
the metric so that they also hold outside G. Let us emphasize once more that (B1) and
(B2) are derived from (A) and (B) and the above mentioned localization principle. We
may prove our main theorem under these assumptions without losing the generality
of our result.

Remark. A casual reader might think Assumption (B) is redundant because it
should always hold. (B) may fail if M is not complete in its Riemannian metric. Since
the Euclidean space is complete, (B) indeed holds in this case. On the other hand,
Assumption (A) is essential.

Finally let us look at a simple example where (B1) and (B2) are satisfied by the
obvious choice of coordinates.

Example. Let M C R2 be the exterior component of the ellipse: x a cos , y
sin 8. Introduce coordinates (8, t) on M:

x= a-{- cos y b + sin 8

where A(8)2 a2 sin2 / b2 cos2 . A simple calculation shows

ab )
2

dx2 + dy’ dt2 + A(O)2 I+A(.O)at
Let

We have

and

x1 t, x2 A(u)du.

ab )
-2

g22(x)= I+A(O)3x1

ab

Clearly, Assumptions (A), (B), (B1), and (B2) are satisfied.

3. Proof of the theorem. Let g- (gij) be the inverse of the metric matrix
g. The Laplace-Beltrami operator on (M- t.J M =/d, g) is given by

1 cO v/det g gij gij + 2bi_._A
/det-y Ox"--7 OxiOx Ox

where
bi

1 1 0
5 x/det g Ox’-- V/det gg)"

Let X (X (X,... ,Xd) t >_ 0} be the Riemannian Brownian motion on
(M-t.J M, g), i.e., the diffusion process generated by A/2 (cf. Ikeda-Watanabe [6,
Chaps. IV, V]). Denote by - M-t.J M M the natural projection. Then the
process ’(X) is the reflecting Brownian motion on (M, g). Let pX and pr(X) p be
the respective transition density. Then obviously

+
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where {y, y*} r-l(y). In particular, since b* b

(3.1) p (t, a, b) 2 pX (t, a; b).

Diffusion process X can be obtained as the solution of the stochastic differential equa-
tion on Rd:

dX8 a(Xs) dB + b(Xs) ds.

Here a is a smooth square root of g and B is a standard Brownian motion in R,d.
The behavior of the heat kernel p (t, a, b) depends on the law of the Brownian

bridge from a and conditioned to reach b at time t. As t 0, the Brownian bridge
tends to travel along the geodesic "7 with uniform speed pit. Let

Ys Xs sPt e2

(e2 is the unit vector (0, 1, 0,..., 0) in x2-direction.) We therefore expect Y to be a
process with small magnitude. The equation for Y is

sp
t t

We now alter the drift of this equation by the Girsanov transform. Consider a new
equation

(3.2) sp t) ds.8Pe2) dB, + c (Z, + ----e2;dZ8 a (Z, +
Let PY and pz denote the laws of the processes Y and Z on the sample path space
C([0, t] ---, R’). By the Girsanov formula (Ikeda-Watanabe [6, p. 180]), we have

dPY

dPz

where

(3.3)

Let D be a neighborhood of a (the origin of the coordinates). We have

P[Xt . D + pe2] =P[Y E D] E[Nt; Z D]

=/E [NtlZt y] P [Z
_

dy]
JD

It follows from this and (3.2) that

(3.4) p(t,a,b)
V/det g(p) E[NtlZt 0]pZ(0, 0; t, 0).

where pZ(s,z;v,x) is the transition density of the process Z (with respect to the
Lebesgue measure) defined by (3.2). Formula (3.4) is the key to the subsequent dis-
cussion.
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We now choose the drift c in (3.2):

Or, what is the same thing (see (3.3))

Ph(x; t) a(x) [bl(x) el -e2].
The advantage of this choice will be clear later. Note that

sp
cl (z +---e2)--0.

This means that the first component Z of (3.2) is simply a one-dimensional Brownian
motion.

The last two factors on the right-hand side of (3.4) will now be analyzed separately.
First of all, we have the following lemma.

LEMMA 3.1. As t - O, we have

1 I d12
H1 [1 + O(v)]

where

H Oa/ det 9()-d

To study

sp
Z$ Z, + -re2

t

for brevity. Using (3.6), we verify easily

We also have

It follows that

p2 p2
t2 [1 g22(Z$)] + Ib(Z$)l2

(3.7) p2
logNt=

2 t Ot + log Hz + Ft

with

(3.8) Ot [1 g22(Z:)]ds
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{fOp } [detg(p)] 1/4
H2 exp b2(se2) ds

det g(0)

and
(3.9)

n= Zz + z)z + ()
It is clear now that the proof of the main theorem in 2 will be completed if we show
the following three lemmas.

LEMMA 3.2. Let lfV be the standard Brownian bridge. We have

E [exp{-Ot}[ Zt 0]
lim 1.

[ex Z
LEMMA 3.3. We have

E [exp {-Or + Ft}l Zt 0]
lim 1.
t--.0 E [exp{-Ot }1Zt 0]

Let

[ { /oS(;l) ae E exp - l(s)llfVslds

LEMMA 3.4. Let/’[0, 1] --, R+ be twice continuously differentiable and strictly
positive on the closed interval [0, 1], then for any k > 0

{ /oS(A; l) ’11(0)12[/(0)1(1)]1/61/3 exp -/1/2/3 l(s)2/3ds [1 + O(A-k)].

The next three sections are devoted to the proof of Lemmas 3.1 to 3.4.

4. Proof of Lemma 3.1. Throughout the rest of this paper, letters cl, c2,...,
whose values may change from one appearance to another, represent constants de-
pending only on the geometry of the manifold.

By (3.2), the function pZ(s,z; v, y) is the fundamental solution of the parabolic
operator

(4.1)
o ..( ) o

L -s + -g3 z + --i-e2 OziOzj
sp t) 0

+ ci (z + --i-e; -zi.

Let us investigate the coefficients c more carefully. First of all, as we have pointed out
before, c1 _= 0. By Lemma 2.1

g(x)_ ( 1
0\

o )(7)-1 2()-IH(:)(:)-IIxX + O(Ix112)

(9 is the last (n- 1) x (n- 1) principal minor of g). Hence near the geodesic

(4.2) " 10(IzX(z + sez) )(z + se2) O(s) ezlz / T IIIzll)
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where
D(8) (se,2)-1H(se,2) (8e2)-1

We prove Lemma 3.1 by the method of parametrix (cf. Friedman [3]). We need to
pay special attention to the dependence of the coefficients on t.

Let Lx be the operator obtained from L by freezing the coefficients of L at z x.
Set for a positive definite matrix A

r(A, y)
(271") d/2 v/det A

1
exp l- ly, A-ly) I

Let

with

We have

0(s, ;,,) r(A.(s, ), )

dl.

1)d12(4.3) u0(0, 0; t, 0)

with the same H1 as in the statement of Lemma 3.1.
Now pZ u can be obtained by iteration from the equation

u(s,z;v,x) uo(s,z;v,x) + dl u(s,z;1,y)(L- LX)uo(l,y;v,x)dy.
d

We thus obtain an absolutely convergent series pZ m=o urn. Using the easy
estimate

(4.4) IIg(z) g(x)[I + llc(z; ) c(x; t)ll _< a311z

which follows from (3.5), we verify by induction the following estimate:

V/Vt-- 8] (V- 8)(m-d)/2 exp -c(v-s)
It follows immediately that

C4 [ ) 8
(4.5) pZ(s, Z; X, V)

__
(V 8) d/2 1 -- t

exp {- IIz xII2
(,- )}"

Now that we have

E Im(O’ O; 1, O)l < C5t-(d-1)/2,

it is easy to see from (4.3) that the assertion of Lemma 3.1 is implied by the inequality

(4.6) ]u (0, 0; t, 0)1 < c6t-(d-)/2,
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which we are about to show. By the iteration formula

ul (0, 0; t, 0) dl F(A(0, l), y)[L L0lr(Ao(/, t), y) dy.
d

From (4.2), we have

02 0 pT 0
L- L aiJ OyiOy------- + i. + OY

2p n

(sP) 0

i=2

with a a(y, 1, t), etc., satisfying

(4.s) II,II / IIII / ll’ll In -< llyll.

This fact together with (4.7) gives

(0,0;,0) t D2i dl ,[r((0,/),y)- r(o(O,1),y)]ly1

r(o( t), yldy / O(t-(d-)/2).x
Oy

(Inserting F(A0(0,/), y) creates a term equal to zero after integration.) Finally using
the inequality

Ir((o, ), u) r(o(O, ), y)l _< csl-dnllYlle-Ilulll’

we obtain (4.6) from (4.9) by simple estimation. The proof of Lemma 3.1 is therefore
complete.

5. Proof of Lemma 3.2 and Lemma 3.3. We adopt the following nota-
tional convention. If G(Z) is a functional of the process Z, the same functional
of Z conditioned by Zt 0 is denoted by (, i.e., G(2). Also if x E R’, then

(x,..., x).
Set

Z Z M max Z m
0<s<l 0<s<l

As mentioned immediately before Lemma 3.1, the process

{Ws de Zs,l; 0 <__ 8 __< I}

is a one-dimensional Brownian motion.
Let Pw be the law of t conditioned by the process W. This means that under

the probability Pw, the process Z is the solution of the stochastic differential equation

d2 ---5(vWse + V2 + spe2) d[, + v/5(vWse + v/2 + spe2) ds.

In this equation W {W; 0 _< s _< 1} is assumed to be deterministic. Let pzt be the
2ttransition density of Z and let Pw be that of the process under the probability

Pw.
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Inequality (4.6) and Lemma 3.1 can be paraphrased as follows:

C2 C3pz, (, z; , x) _<
( )/

e-II-ll/=("-) _<
I1 11

pZt (O, O;1, O) (2-) d/2
[1 + O(v/)] _> ca.

The proof of Lemma 3.1 can be applied to obtain the following estimates for function

Pw"
, C2 C3(.) Pw(S,;v,) ( )(d-x)/2e-II-ll/=(-) <- I1- 11

and

(5.1b) Pw(O,O;t,O) > c4 1-c5 IWlds

To see this, we only need to observe that (4.2) and estimates (4.4) and (4.8), which
are crucial to the proof there, should be replaced by

12pt [i- o(vlWs/tel -- S -I- 8e2) -1] e2 -- --O([Ws/tl I111)

and

+ +  )11 <- 11 11
C6

I111 + IIzll cllll, I111 viW#l I111,

with constants c6, cr independent of W and t.

LEMMA 5.1. There exist constants co, cl independent of t such that for sufficiently
large a >> 1,

a o1

(a) Pw 1* > a < e-=, if IW, lds < co.

and

(b) P ill)/t > a < e-cl

Proof. Let

By the Markov property, we have, for any neighborhood D of the origin in R(d-1),

Pw 1I > a, 2 E D Ew PW (a, Ta;1, y) dy; Ta < 1
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Divide (5.2) by P [2 E D] and use (5.1). Letting IDI 0, we see that for a >> 1,

(5.3) Pw [1D > a] <_ -1-ca ,Ws,ds Pw [ID > hi.
To estimate the last probability, we note that the equation of Z’ is

(5.4) d2 dQ, / v5(vWez / v2] / spe2) ds

where
dQ, 5(vWsez + v] + spe2) d8.

By Lemma 2.1 and (3.5) the drift in (5.4) is bounded by

Also note that Q,i 2,... are martingale with bounded characteristic: [Q] _<
dllall. It follows that for some a >_ 2cs and all t _< 1

( /o )]<dPw [ max Ilfl.ll > 1 [W.Ids
LO<s_<dllo.iiL ’<_dexp{-cga2(l-[Ws[ds) }

(/ is an independent one-dimensional Brownian motion). Part (a) follows immediately
from (5.3) by choosing, for example, co < min(c, 1) and c > c9(1- c0)2. The proof
of part (b) is similar and easier.

LEMMA 5.2. For any positive e, K and 0 < 5 < 1/6, there exists a positive
constant to to(e, K, ) such that .for all t <_ to,

[/01P Ild _< Kt/6, max IW I > et-l] < exp {-t-C/a+)}.
O<s<l

Proof. This lemma is proved in Lemma 5.4 of Ikeda [5, p. 188-189].
We now turn to the following proof.
Proof of Lemrna 3.2. Set

{/01At,K w"

Also set

Bt,={w" o<s<max II]ds > t-z/6 }
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We have from (3.8)

p2 f01t [1 g(v/2t + spe.)] ds.

Assumption (B2) implies

2H( + se)lz -71zl- < - g(z +) 2H( + )ll + 71l.
Since

IH22(5 + se2)- N(s)l
and N(s) is strictly positive by Assumption (A), we have

P

Symmetrically, we have

p2
(5.6) t > [1 c4ell t/3] N(sp)lslds a3at on Bc

Now Lemma 5.1(a) implies that if t (co/K)V

(5.7) E, [exp{c3Gt}] exp c5 ]slds + c5 lslds on At,g.

(Imegration by parts) By the Schwartz inequality, (5.7) gives

(5.8) E, [exp{-cGt}] exp -c Ilda a Ilda on At,K.

We also have

t > 2c6Kt-/3
p27 .2 Isl2ds on Ac

tK"

Hence for y [2c6/p2llfll]x/2, we have

(5.9) t > c6Kt-/3 on Ac OBc

Observe that

Thus, on the one hand, using (5.5), (5.8), and Lemma 5.2, we have

E [exp {-t}]

_> S exp -[1 + cae Tt/3 + cTt/2 + cTgt2/3] Y(sp)llds At,K Bct,

E [exp {...}] Z [exp {...} ;A,K] P [At,K Bt,,]

exp -[1 + caeTt/3 + cTt/2 + cTgt2/3] N(sp)lslds
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On the other hand, by Assumption (B1), we have >_ 0; hence using (5.6), (5.7),
(5.9), and Lemma 5.2, we have

By Lemma 3.4, which we will prove independently in 6, there exist constants C9 and
c10 such that as t 0, for any k >_ 0,

p2
(5.10) E [exp {- j0 g(sp)[Vs[ds}] c9$-l/6exp{-clo-l/3}

Choose K > ClO/min(c6, cs). Using (5.10) and the above bounds for E
we obtain

exp{--Clle0’} < lim {sup
E [exp{-}]

< exp{clle’)’}.
-t--,o inf }

E [exp{- f N(sp)[I?VsIds}]
(all 2 C4C10/3.) Letting e 0, we obtain Lemma 3.2.

Proof o:f Lemma 3.3. Let us first prove: There exist constants Cl and c2 such that
for any Iq[ > 1

(5.11) E [exp{q/}] < ale,c2q2.

Set

Cu V bl(v/2$ -[- 8pe2)digd8 + b2(v/2 -- 8p2)- b2(spe2) ds

+ I  (vq2 +

Then we have C1. Obviously

{m [exp{q/}] }2 <_ m [exp{2qCl/2} m [exp{2q(Cl- Ci/2)}]

Thus it is enough to prove the estimate for each of the factors on the right-hand side of
the above inequality. The proofs for the two factors are the same. Take, for example,
the first factor. Since IYV is a standard Brownian bridge, we can write

di?Vs dWs
1 s

ds
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for a Brownian motion W. Set

Au 2qVq bl(v2$ + spe2)dW8 2q2t ]bl(v2$ -t- spe2)]2ds

and

We have

Du 2 qCu Au.

{E [exp(2qCu2}] }2 <_ E [exp{2Au2}] E [exp{2Du2}].

The first factor on the right-hand side is equal to 1 by the choice of A,,. As for the
second factor, we have the bound

21D1/21 <_ c3q2t -I-c3qv/Mt.

It follows immediately from Lemma 5.1(b) that the second factor in (5.12) is bounded
by c4e2c2q2. This implies

q2E [exp{qC/}] <_ clec2 ’.

Inequality (5.11) is proved.
We now complete the proof of Lemma 3.3. By Lemma 3.2, we have

(5.13) E [exp {-c(}] >_ exp{-c-t-/3}

for fixed c. We use the cases c 1, 2. Let p > 1 and lip + 1/q 1. By (5.11), (5.13)
and the Schwartz inequality we obtain

and

Taking q t-l2 and letting t 0, we obtain immediately Lemma 3.3.

6. Proof of Lemma 3.4. Assume first that is a constant. Using the scaling
property of Brownian motion, we have

{ foo
()t)/

S(;t)=E exp
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(W is one-dimensional Brownian motion). By the Feynmann-Kac formula,

S(A; l) x/(,l)l/3q((Ag)2/3, O, O)

where q(s, x, y) is the fundamental solution of

0 1 02
L

Ot 20x2 Ix["

We have the eigenexpansion

q(s,x,y) exp{--#mS}m(X)m(y).
m--O

It follows easily that for any k _> 0,

s(A; t) vl,(O)I2(A/)/3 exp {-/z (A/)2/3 ) [1 + O(A-k)].

Thus Lemma 3.4 holds in this special case. For the general case, let

L(s) l(u)2/3du

1 d
[log l(L_X(s))]() T

(s) L(1) #(L(1)s)
Tx 2/3L(1)

if.,J [’(s) + (s)2ll,12ds

(L-1 is the inverse function of L). It is not difficult to see that Lemma 3.4 is implied
by the following two relations:

S(A;/) [l(O)l(1)]x/6L(1)3
E [exp {-f(T/2,)}]

(6.3) lim
E [exp {-f(A, )}]

1.
x--.oo E [exp {-f(A, 0)}]

To show (6.2), let d be the d-function at x 0, and set

ux(s,x) E [exp {- fl(s)lWlds} 8(W)]
We have S(A; l) V/u(0, 0). Function ux(s,x) satisfies

(gu 1 (92u
At(s)lxlu o,

Os 20x
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Introduce a new function w(s, x) by

(,) [()]/ (AmL(),
Then

S’(A; l) v/[Al(1)]l/awx(O, 0).

We verify directly that w.x(s, x) satisfies the equation

Ow 1 02w Ow
o--? + - + -/’(-/) -Il o, (T, .)

By the Girsanov formula and the Feynman-Kac formula, we can write

wA(O, O) E [exp{A(A)}6(WT)]

where

A(A) A-2/3 t ( s 1,_4/3 Tx 2

-f$) W,dWs - IWl=ds- foo
T

IWIds.

Using the scaling property of Brownian motion, we can write

1
(6.5) wx(0, 0) rz---E [exp{B(A)}]

with

B(A) ox

By It6’s formula,

1/01(s)lsdl28 (s)=ll=d T,/ I,ld.

B(A) [’(s) + (s)2lllI2ds T/2 [lds -1 1(1)f(T,) log/.

(s) ds

The desired formula (6.2) follows from (6.4) and (6.5).
It remains to prove (6.3). We claim

(6.6) 3p > 1: C(p) deal E [exp {-pJ}] < oo.

Let {X1, X2,...} be a sequence of independently and identically distributed random
variables with standard normal distribution N(0, 1). Then the Brownian bridge
can be expanded as

oo
sin krs

We have
1

oo

k,l=l



1126 PEI HSU

with

2/ol [’() +()]
Let H be the Hilbert space

sin krs sin lrs
k
ds.

H {f e AC[0,1] /(o) :(1) o, :o1 }[Ifl]2i.I de.f if,(8)12ds <

Let (el,e2,...} be an orthonormal basis for H. Define A H H by Aek
=1 aklel. Let al, a2,... (a4 0) be the eigenvalues of A with normalized eigen-
vectors fl, f2,’". Define (ckl) by e 1ckft. The random variables

1cuX,i 1,2,... are again i.i.d, with standard normal N(0, 1). rthermore
J = i=1 ai[]2 It follows that as long 1 + pa 0 for all i, we have

P 1]2(6.7) C(p) E exp - a4 H(1 + p4)-1/2.
4=1 4=1

The infinite product (6.7) converges to a finite value if and only if the series 4I a4
converges and 1 + pa4 > 0 for all i. On the other hand, from the definition of C(p),
we know C(p) is finite for small p. Thus the the series 4=1 a4 indeed converges. It is
now clear that C(p) is finite for those p such that 1 +pa4 > 0 for all i. Thus C(p) < o
for some p > 1 if and only if all eigenvalues a4 > -1 (note that a4 0), or what is
the same thing,

(6.S) Vf . H" (Af f)H >--llfll.
A direct computation shows that

1

(Af, f) [’(s) -4- (s)21 lf(s)12ds.

Relation (6.8) follows then from the elementary fact: for all f E H

]01 [’(s) + (s)2l[f(s)12ds +
1

[f’(3)[2d3 [(s)f(s)- ft(8)]2d8 > O.

Equation (6.6) is proved.
We can now finish the proof of (6.3). Let

{ /01c, " IJl < /3

and

Then on C,

{ j01 }DA,K W" ]lTVslds > KA-1/3

I#,lda < n(A, ) > All + /--2/3] 01
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On the set D,K
(, )) >_ g -{-K/2/3.

It follows that on the one hand

(6.9)
E[exp {-G(A, )}] _<E [exp (-All- eA-2/3]/01 [[ds}]

+ C(1)exp(-gA2/3} + C(p)I/PP [C,, n D,K] I/q

Note that we have proved C(1) and C(p) are finite. On the other hand, we have

(6.10)
Z [exp (-(A, )}] _>E exp -All + A-2/3] [I?Vs]ds

Note that

with c() [[’+ Take K > #IL(1). By Lemma 5.2 and (6.1), (6.9), and
(6.10),

e-2Ule/3 < lim { sup } E [exp{-G(A, )}] < e2me/3
---.oo inf E-::0)}]-

Letting e 0 we obtain (6.3). The proof is complete.
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