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ABSTRACT. We give an effective escape rate function for Brownian mo-
tion on a complete Riemannian manifold in terms of the volume growth
function of the manifold. An important step in the work is estimat-
ing small tail probabilities of crossing times between concentric geodesic
spheres by reflecting Brownian motions on geodesic balls.

1. INTRODUCTION

Let M be a Riemannian manifold and pM (t, x, y) the (minimal) heat ker-
nel on M. By definition, it is the fundamental solution of the heat operator

LM =
∂

∂t
− 1

2
∆M,

where ∆M is the Laplace-Beltrami operator on M. A Riemannian manifold
is stochastically complete if∫

M
pM (t, x, y) dy = 1

for some, hence for all (x, t) ∈ M× (0, ∞). In other words, M is stochasti-
cally complete if the heat kernel is conserved. Let Px be the law of Brow-
nian motion on M starting from x, and e the lifetime (or explosion time) of
the Brownian motion. Then we have

Px {e > t} =
∫

M
p (t, x, y) dy.

Therefore M is stochastically complete if and only if

(1.1) Px {e = ∞} = 1,

i.e., Brownian motion on M does not explode. Finding geometric condi-
tions for stochastic completeness is an old geometric problem. The problem
has been attacked by both analytic and probabilistic means. Early works on
this problem (Yau [16], Karp and Li [9], Varopoulos [15], and Hsu [6]) im-
pose lower bounds on the Ricci curvature. In particular, in the last two
works it was shown that if there is a strictly positive function κ(r) such that
the Ricci curvature of M on the geodesic ball B(r) is bounded from below
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by −κ(r) and ∫ ∞

0

dr√
κ(r)

= ∞,

then M is stochastically complete. In 1986, Grigor’yan [1] found the fol-
lowing sufficient condition for stochastic completeness solely in terms of
volume growth function of the manifold:

(1.2)
∫ ∞

1

r dr
ln |B(r)| = ∞.

According to (1.1), a Riemannian manifold M is stochastically complete
if Brownian motion does not escape to infinity (in the one-point compacti-
fication) in finite time. Traditionally in probability theory (see, e.g., Itô and
McKean [8] and Shiga and Watanabe [12]), one often looks for upper func-
tions for the escape rate of a diffusion process. The classical Khinchine law
of iterated logarithm for one-dimensional standard Brownian motion is the
most celebrated case. More generally, let rt = d(Xt, x) be the radial process
of Brownian motion X on M. An increasing function ψ (t) called an upper
rate function if

Px {rt ≤ ψ (t) for all sufficiently large t} = 1.

Finding an upper rate function is a more refined problem than proving sto-
chastic completeness, for the existence of an upper rate function implies
stochastic completeness. Various explicit upper rate function for Brown-
ian motion on a complete Riemannian manifold have been obtained under
concrete volume growth assumptions (see Grigor’yan [2], Grigor’yan and
Kelbert [4], and Takeda [13] [14]). More recently, Grigor’yan and Hsu [3]
showed that the inverse function of the increasing function

φ1(R) =
∫ R

1

r dr
ln |B(r)|

related to the integral test (1.2) for stochastic completeness is essentially
an upper rate function for Brownian motion on M. While this result gives
an upper rate function of a very general form, it was proved under the
additional geometric assumption that M is a Cartan-Hadamard manifold,
namely, a simply connected, geodesically complete Riemannian manifold
of nonpositive sectional curvature.

The main purpose of the present work is to obtain an escape rate func-
tion solely based on the volume growth of the underlying manifold. We
introduce the following increasing function:

φ (R) =
∫ R

6

r dr
ln |B(r)|+ ln ln r

.

We will show in THEOREM 4.1 that under the sole assumption that M is a
complete Riemannian manifold, the inverse function of φ is essentially an
upper rate function of Brownian motion on M.
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The difference between the functions φ1(r) and φ (r) is that we have in-
troduced an extra term ln ln r in the latter function. This addition, a result-
ing of removing the extraneous geometric condition, is fully justified on
several grounds. First of all, the integral test (1.2) for stochastic complete-
ness, which can be written as φ1(∞) = ∞, is equivalent to the condition
φ (∞) = ∞. Second, our new upper rate function not only implies all ex-
plicit upper rate functions existent in the literature so far (COROLLARY 4.2),
but also yields a new explicit rate function ψ (t) = C

√
t ln ln t for manifolds

whose geodesic ball volume |B(r)| grows no faster than ln ln r (COROL-
LARY 4.3). In particular, this cover the case when the manifold itself has a
finite volume. Third, in general the radial process of a Brownian motion on
M has the form

rt = βt +
1
2

∫ t

0
∆M r(Xt) dt− Lt,

where β is a standard one-dimensional Brownian motion, and L is a local
time on the cutlocus C(x) of the point z (see Kendall [10] and Hsu [7]).
In the absence of any further geometric assumptions, we do not expect to
obtain an upper rate function (up to a multiplicative constant) for the pro-
cess rt better than the upper rate function of a standard Brownian motion
ψ(t) = C

√
t ln ln t. This rate function cannot be achieved without the pres-

ence of the additional term ln ln r in the function φ.
Our method has two key steps. In the first key step, we follow Hsu [6]

and Grigor’yan and Hsu [3] and reduce by the use of the Borel-Cantelli
lemma the problem of seeking an upper rate function to the problem of
estimating the small tail probability of the crossing time between to con-
centric geodesic spheres (LEMMA 2.1). In the second key step, instead of
estimating the small tail probability by analytic approach as in Grigor’yan
and Hsu [3] under the assumption of a Cartan-Hadamard manifold we
modify the method Takeda [13] [14] using the Lyons-Zheng decomposi-
tion for reflecting Brownian motion. The volume |B(r)| of the geodesic ball
B(r) appears naturally in this step because the uniform distribution on the
ball with respect to the Riemannian volume measure is the invariant mea-
sure of reflecting Brownian motion on B(r). The additional term ln ln r we
have alluded above is a consequence of dealing with the Brownian motion
adapted to the time-reversed filtration in the Lyons-Zheng decomposition.

2. BASIC ESTIMATES ON CROSSING TIMES

Let M be a geodesically complete Riemannian manifold and P(M) the
path space over M. Let X be the canonical coordinate process on the path
space P(M) over M, i.e., Xt(ω) = ωt for ω ∈ P(M). If x ∈ M, we
use Px to denote the law of Brownian motion on M starting from x. The
radial process is rt = d(Xt, x), the Riemannian distance from x to Xt, the
position of Brownian motion at time t. A nonnegative increasing function
R : R+ → R+ is called an upper rate function for Brownian motion on M
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if

Px {(Xt) ≤ R(t) for all sufficiently large t} = 1.

Let {Rn} be a strictly increasing sequence of positive numbers to be cho-
sen later and define a sequence of stopping times as follows:

τn = inf {t : rt = Rn} .

[Convention inf ∅ = ∞.] It is the first time the Brownian motion X reaches
the geodesic sphere

S(Rn) = {x ∈ M : d(x, o) = Rn} .

The difference τn − τn−1, if well defined, is the amount of time Brownian
motion takes to cross from S(Rn−1) to S(Rn). The basic idea of Grigoryan
and Hsu [3] (see also Hsu[6]) for controlling the rate of escape of Brow-
nian motion is to give a good upper bound for the small tail probability
Px {τn − τn−1 ≤ tn} for a suitably chosen sequence {tn} of time steps. If the
sum of these probabilities converges, then the Borel-Cantelli lemma shows
that for sufficiently large n, Brownian motion X has to wait roughly until
at least

Tn =
n

∑
k=1

tk

to reach the sphere S(Rn), or equivalently, rt ≤ Rn for all t ≤ Tn. And this,
after some technical manipulations (see SECTION 4), will give an upper
escape rate function.

We now use the idea of Takeda [13] [14] to estimate the small tail prob-
ability Px {τn − τn−1 ≤ tn} by the Lyongs-Zheng decomposition [11] of re-
flecting Brownian motion starting from the uniform distribution on a geo-
desic balls. For an open set B ⊂ M, we denote by PB the law of Brownian
motion starting from the uniform distribution on B, i.e.,

PB =
1
|B|

∫
B

Px dx.

Likewise we use QB to denote the law of reflecting Brownian motion on
B starting from the same uniform distribution. Let Bn = B(Rn) be the
geodesic ball of radius Rn centered at x. In order to take advantage of the
volume growth condition we consider the probability PB1 {τn − τn−1 ≤ tn}
instead of Px {τn − τn−1 ≤ tn}. Recall that τn is the first time the process
X reaches the boundary S(Rn) of the geodesic ball B(Rn). Before reaching
the boundary, Brownian motion and reflecting Brownian motion have the
same law. Therefore if C ∈ Bτn is an event measurable up to time τn, then
PBn(C) = QBn(C). From

PB1(C) =
1
|B1|

∫
B1

Px(C) dx ≤ 1
|B1|

∫
Bn

Px(C) dx =
|Bn|
|B1|

PBn(C)
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we have

(2.1) PB1(C) ≤ |Bn|
|B1|

QBn(C), C ∈ Bτn .

We apply this inequality to the event

(2.2) C = {τn − τn−1 ≤ tn} .

Now, according to the Lyons-Zheng decomposition [11], on a fixed time
horizon [0, Tn], the radial process can be decomposed as the difference

(2.3) rt − r0 =
Bt

2
− B̃Tn − B̃t

2
,

where B is a standard Brownian motion adapted to the natural filtration
msb∗ = B(P(M))∗ of the path space P(M) and B̃ is also a standard Brow-
nian motion but adapted to the reversed filtration B̃∗ defined by

B̃t = σ {XTn−s : 0 ≤ s ≤ t} , 0 ≤ t ≤ Tn.

The advantage of such a decomposition is obvious, for we have eliminated
from consideration the bounded variation component of the radial process,
which can be rather complicated. The price is that we have to deal with a
Brownian motion not adapted to the original filtration. Another complica-
tion is that the decomposition cannot be applied directly to the event (2.2)
because it may go beyond the fixed time horizon [0, Tn]. In order to remedy
this situation we will use a slightly modified event

Cn = {τn − τn−1 ≤ tn, τn ≤ Tn}
in the inequality (2.1). Fortunately, this additional restriction {τn ≤ Tn}will
not be an obstacle for us, as shown in the following simple observation.

Lemma 2.1. Let Cn be defined as above. Suppose that ∑∞
n=1 P(Cn) < ∞. Then

with probability 1, there is T−1 such that τn ≥ Tn − T−1 for all n.

Proof. By the Borel-Cantelli lemma, the probability that the events {Cn}
happen infinitely often is 0. Therefore, with probability 1 there is n0 such
that for all n ≥ n0 either τn − τn−1 ≥ tn or τn ≥ Tn. We show by induction
that τn ≥ Tn − Tn0 holds for all n. If 1 ≤ n ≤ n0, then τn ≥ 0 ≥ Tn − Tn0 .
Suppose that τn ≥ Tn − T0 for an n ≥ n0. If τn+1 ≥ Tn+1, then trivially
τn+1 ≥ Tn+1 − Tn0 . Otherwise τn+1 − τn ≥ tn+1 and

τn+1 = τn+1 − τn + τn ≥ tn+1 + Tn − Tn0 = Tn+1 − Tn0 .

This completes the proof. �

We now prove the main estimate for the crossing time τn − τn−1.

Proposition 2.2. Let τn be the first hitting time of the sphere S(Rn) and rn =
Rn − Rn−1. Then there is a constant C such that

PB1 {τn − τn−1 ≤ tn, τn ≤ Tn} ≤
|Bn|
|B1|

C√
πtn

Tn

rn
e−r2

n/8tn .
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Proof. The event {τn − τn−1 ≤ tn} implies the event

(2.4)

{
sup

0≤s≤tn

(rτn−1+s − rτn−1) ≥ rn

}
.

Now from the decomposition (2.3) we have

2(rτn−1+s − rτn−1) = Bτn−1+s − Bτn−1 + B̃τn−1+s − B̃τn−1 .

Since τn−1 is a stopping time with respect to the natural filtration B∗, the
first term on the right side is a Brownian motion in time s starting from 0.
This is not so for the second term because τn−1 is not a stopping time with
respect to the filtration B̃∗ of the reversed process. However, for any s ≤ tn
such that τn−1 ≤ Tn, taking k such that (k− 1)tn ≤ τn−1 ≤ ktn, we see that
both τn−1 and τn−1 + s lie in the interval [(k− 1)tn, (k + 1)tn]. From

rτn−1+s − rτn−1 = rτn−1+s − rktn + rktn − rτn−1

the event (2.4) is contained in the union of the [Tn/tn] + 1 events{
sup
|s|≤tn

|rktn+s − rktn | ≥
rn

2

}
, 1 ≤ k ≤

[
Tn

tn

]
+ 1.

Using

rktn+s − rktn =
Bktn+s − Bktn

2
+

B̃ktn+s − B̃ktn

2
,

we see that the event {τn − τn−1 ≤ tn, τn ≤ Tn} is also contained in the
union of the following 2[Tn/tn] + 2 events{

sup
|s|≤tn

|Bktn+s − Bktn | ≥
rn

2

}
and {

sup
|s|≤tn

∣∣B̃ktn+s − B̃ktn

∣∣ ≥ rn

2

}
for 1 ≤ k ≤ [Tn/tn] + 1. Under the probability QBn , these events have the
same probability

P

{
sup
|s|≤tn

|Btn+s − Btn | ≥
rn

2

}
≤ 2P

{
sup

0≤s≤tn

|Bs| ≥
rn

2

}
≤ C
√

tn

rn
e−r2

n/8tn .

The probability QBn {τn − τn−1 ≤ tn, τn ≤ Tn} is bounded from above by
2[Tn/tn] + 2 ≤ 4Tn/tn times the above probability. The desired inequality
now follows immediately from this and the inequality (see (2.1))

PB1 {τn − τn−1 ≤ tn, τn ≤ Tn} ≤
|Bn|
|B1|

QBn {τn − τn−1 ≤ tn, τn ≤ Tn} .

�
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3. TOTAL CROSSING TIME

In the preceding section we have found an upper bound for the proba-
bility PB1 {τn − τn−1 ≤ tn, τn ≤ Tn}. We are still free to choose the upper
bounds tn of the crossing times τn − τn−1 and the radii Rn of the expanding
geodesic balls B(Rn). We need to choose them so that the series

∞

∑
n=1

PB1 {τn − τn−1 ≤ tn, τn ≤ Tn}

≤ C
|B1|

∞

∑
n=1

Tn√
tnrn

exp
[

ln |B(Rn)| −
r2

n
8tn

]
≤ C1

|B1|
∞

∑
n=1

Tn

r2
n

exp
[

ln |B(Rn)| −
r2

n
16tn

]

converges and the Borel-Cantelli lemma can be applied. The obvious choice
is for tn equal to a small multiple of r2

n/ ln |B(Rn)|, as was done in Grigo-
ryan and Hsu [3]. However, this choice will not enable us to eliminate
the factor extra Tn/r2

n, whose present can be traced back to the Brownian
motion B̃ adapted to the reverse filtration B̃∗ in the Lyons-Zheng decom-
position (2.3). We diminish the obvious choice by letting

(3.1) tn =
1
32

r2
n

ln |B(Rn)|+ h(Rn)
with a strictly increasing function h to be determined. If we assume without
loss of generality that B(R1) ≥ 1 and h(R1) ≥ 1, then tn ≤ r2

n/32. If
we further assume that the sequence {rn} is increasing, then there is an
obvious bound

32Tn ≤
n

∑
k=1

r2
k ≤

n

∑
k=1

rkrn = Rnrn.

It follows that
∞

∑
n=1

PB1 {τn − τn−1 ≤ tn, τn ≤ Tn} ≤
C2

|B1|2
Rn

rn
e−2h(Rn).

It remains to choose the radii Rn and the function h such that

(3.2)
∞

∑
n=1

tn = ∞ and
∞

∑
n=1

Rn

rn
e−2h(Rn) < ∞

under the integral condition that

(3.3)
∫ ∞

1

r dr
ln |B(r)| = ∞.

The divergence of the above integral is to be linked to the divergence of the
total crossing time in (3.2). This leads to the natural requirement that

r2
n ≥ CRn(Rn+1 − Rn).
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This requirement can be fulfilled by Rn = 2n with C = 1/4. From (3.1) we
have

Tn =
n

∑
k=1

tn =
1

128

n

∑
k=1

Rn(Rn+1 − Rn)
ln |B(Rn)|+ h(Rn)

≥ 1
128

∫ Rn+1

R1

r dr
ln |B(r)|+ h(r)

,

which seems to fall slightly short of the condition (3.3). The apparent disad-
vantageous situation can be salvaged by first looking at a typical candidate
for the function h. From our choice of Rn = 2n we have Rn/rn = 2 and the
convergence of the total probability in (3.2) becomes

∞

∑
n=1

e−2h(2n) < ∞.

This leads to the choice h(R) = ln ln R. We have the following simple ob-
servation.

Lemma 3.1. Let f be a positive, nondecreasing, and continuous function on
[0, +∞) such that

(3.4)
∫ ∞

3

r dr
f (r)

= ∞.

Then ∫ ∞

3

r dr
f (r) + ln ln r

= ∞.

Proof. Divide the integral into the sum of the integrals over the intervals
[n− 1, n] for n ≥ 4. Since f is increasing we have∫ ∞

3

r dr
f (r) + ln ln r

≥
∞

∑
n=4

n− 1
f (n) + ln ln n

≥ 1
2 ∑

f (n)≥ln ln n

n− 1
f (n)

+
1
2 ∑

f (n)<ln ln n

n− 1
ln ln n

.

Since (n− 1)/ ln ln n ≥ 1 for all sufficiently large n, if the second sum has
infinite many terms, then it is clearly diverges; otherwise, f (n) ≥ ln ln n for
all sufficiently large n and we have for some n0,∫ ∞

3

r dr
f (r) + ln ln r

≥ 1
2

∞

∑
n=n0

n− 1
f (n)

≥ 1
2

∞

∑
n=n0

n− 1
n + 1

∫ n+1

n

r dr
f (r)

≥ 1
2

n0 − 1
n0 + 1

∫ ∞

n0

r dr
f (r)

.

This completes the proof. �

Now we are in a position to bound the range of Brownian motion on a
finite time interval.
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Proposition 3.2. Let Rn = 2n and

Tn =
1

128

n

∑
k=1

Rn(Rn+1 − Rn)
ln |B(Rn)|+ h(Rn)

.

Then with probability 1, there is T−1 such that sup0≤t≤Tn−T−1
rt ≤ 2n for all n.

Proof. By our choice of Rn,
∞

∑
n=1

PB1 {τn − τn−1 ≤ tn, τn ≤ Tn} < ∞.

By the Borel-Cantelli lemma and LEMMA 2.1, with probability 1 there is T−1
such that τn ≥ Tn− T−1. But τn is the hitting time of the sphere S(2n), hence
sup0≤t≤Tn−T−1

rt ≤ 2n for sufficiently large n. �

An easy consequence of the above result is a probabilistic proof of Grigor’yan
criterion for stochastic completeness.

Corollary 3.3. (Grigor’yan [1]) Suppose that M is a complete Riemannian man-
ifold and B(R) its geodesic ball of radius R centered at a fixed point. If∫ ∞

1

r dr
ln |B(r)| = ∞,

then M is stochastically complete.

Proof. By LEMMA 3.1, under the assumption we have

Tn ≥
1

128

∫ Rn+1

R1

r dr
ln |B(r)|+ h(r)

→ ∞

as n → ∞. By the above proposition, supt≤T rt < ∞ for all finite T. Hence,
Brownian motion does not explode and M is stochastic complete. �

4. UPPER RATE FUNCTION

PROPOSITION 3.2 allows us to obtain an upper rate function in terms of
the volume growth function |B(r)|, as was done similarly in Grigor’yan
and Hsu [3].

Let

φ(R) =
∫ R

6

r dr
ln |B(r)|+ ln ln r

.

Then it is clear that (1/128)φ(2n) ≤ Tn. By PROPOSITION 3.2,

sup
t≤(1/128)φ(2n)−T−1

rt ≤ 2n

for all n ≥ 1. This implies that

sup
t≤(1/128)φ(R)−T−1

rt ≤ 2R
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for all R ≥ 0. Denote by ψ the unique inverse function of φ. Letting R =
ψ (128(T + T−1)) in the above inequality we have

sup
t≤T

rt ≤ 2ψ(128(T + T−1)) ≤ 256ψ(256T)

for all sufficiently large T. This shows that 256ψ(256t) is an upper rate
function of Brownian motion on M under the probability PB1 . The tech-
nical point of passing from the average probability PB1 to the pointwise
probability Px is taken care of in the proof of the our main theorem below.

Theorem 4.1. Let M be a complete Riemannian manifold let x ∈ M. Let B(R)
be the geodesic ball on M of radius R and centered at z. Define

φ(R) =
∫ R

6

r dr
ln |B(r)|+ ln ln r

and let ψ be the inverse function of φ. Then there is a constant C such that Cψ(C t)
is an upper rate function of Brownian motion X on M, i.e.,

Px {d(Xt, x) ≤ Cψ(C t) for all sufficiently large t} = 1.

Proof. Let

H = {d(Xt, X0) ≤ Cψ(C t) for all sufficiently large t} .

We have shown that PB1(H) = 1. This shows that Cψ(C t) is an upper rate
function for Brownian motion on M starting from the uniform distribution
on the geodesic ball B1. Passing to a single starting point is easy. Let

h(z) = Pz(H).

Let θt : P(M)→P(M) be the shift operator defined by

(θtω)(s) = ω(s + t).

By the definition of the event H it is clear that for any stopping time τ we
have ω ∈ H if and only if θτω ∈ H; in other words, IH ◦ θτ = IH. It follows
that h(z) = Pz(H) = Ez IH is a harmonic function on M. On the other
hand, we have 0 ≤ h ≤ 1 and

1
|B1|

∫
B1

h(z) dz = 1.

By the maximum principle for harmonic functions, we see that h must be
identically equal to 1. �

The following special cases have been known in the literature (see the
references cited in the SECTION 1. They now follows from our main THEO-
REM (4.1) and all are valid now without any geometric restrictions.

Corollary 4.2. Let M be a complete Riemannian manifold. Under the following
volume growth conditions, ψ is an upper rate function for Brownian motion on
M.

(1) |B(r)| ≤ CRD and ψ (t) = C1
√

t ln t;
(2) |B(r)| ≤ eC rα (0 < α < 2) and ψ (t) = C1t1/(2−α);
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(3) |B(r)| ≤ eCr2
and ψ (t) = C1 exp

(
C1t2 ln t

)
;

(4) |B(r)| ≤ eCr2 ln r and ψ (t) = exp (exp (C1t)).

Proof. These upper rate functions follow directly from the main theorem.
Since the volume grows faster than the additional term ln ln r in the func-
tion φ, these rate functions are the same as if the additional term weren’t
there. �

Previous results, with or without additional geometric assumptions, do
not cover the case where the volume growth of M is at most at the rate of
ln ln r, e.g., a manifold with finite volume. Our new result will provide an
upper rate function for this case.

Corollary 4.3. Let M be a complete manifold with finite volume. Then ψ(t) =
C
√

t ln ln t is a upper rate function.

Proof. In this case we have φ (t) & Cr2/ ln ln r, hence the inverse function
ψ (t) . C1

√
t ln ln t. �

Remark 4.4. In all concrete cases we have mentioned so far, upper rate
functions are determined up to multiplicative constants. The question nat-
urally arises whether we could have been more careful in our computations
to recover the best constants in some cases, e.g., ψ (t) =

√
(2 + ε)t ln ln t for

the standard one-dimensional Brownian motion. This is impossible with-
out further geometric assumptions other than the volume growth. This can
be explained by manifolds with power volume growth |B(r)| ≤ CrD. Ac-
cording to COROLLARY 4.2 (1), the corresponding rate function is ψ (t) =
C1
√

t ln t. By comparison with a euclidean Brownian motion, we would
expect a double logarithm instead of a single one. But there are known
examples showing that the above rate function with a single logarithm is
indeed sharp up to a multiplicative constant (Grigor’yan and Kelbert [5]).
This is the reason that we have been rather cavalier about multiplicative
constants in our proofs. It should be pointed out that these constants, de-
noted by C with or without subscripts, are universal; they do not depend
on the manifold M, not even on its dimension.
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