#5 1 of 12

Northwestern University

Math 290-1 Midterm II Fall Quarter 2018 November 12, 2018

Last name: Solutions	Email address:
First name:	NetID:
Instructions	
• Mark your instructor's name.	
Cañez	
Newstead	
Norton	
	ng this cover page. Verify that your copy of this examnis missing any pages, then obtain a new copy of the

- This examination consists of 6 questions for a total of 100 points.
- You have one hour to complete this examination.
- Do not use books, notes, calculators, computers, tablets, or phones.
- Write legibly and only inside of the boxed region on each page.
- Cross out any work that you do not wish to have scored.
- Show all of your work. Unsupported answers may not earn credit.

#5 2 of 12

November 12, 2018

Math 290-1 Midterm II

Page 1 of 10

- 1. Determine whether each of the following statements is **TRUE** or **FALSE**. Justify your answer. (This questions has **four** parts. Remember: A statement is "true" if it is always true. If not, it is "false.")
 - (a) (5 points) There exists an invertible linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ whose image is the x, y-plane.

Answer: FALSE

If im(T) is the x,y-plane, then dim(im(T)) = 2.

By Rank-Nullity, dim(kerT) = 3-2=1

But if T is invertible, then dim(kerT) = 0.

This is a contradiction. Therefore no such T exists.

(b) (5 points) There exists a basis $\mathfrak B$ of $\mathbb R^2$ relative to which we have

$$\begin{bmatrix} -4 \\ -6 \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 \\ 3 \end{bmatrix}_{\mathfrak{B}} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}.$$

Answer: FALSE

Since $\begin{bmatrix} -4J = -2\begin{bmatrix} 3J \end{bmatrix}$, we must have $\begin{bmatrix} -4J \\ -6J \end{bmatrix} = -2\begin{bmatrix} 3J \\ 3J \end{bmatrix}$ but $\begin{bmatrix} -4J \\ -6J \end{bmatrix} = \begin{bmatrix} 9J \\ 3J \end{bmatrix}$ while $-2\begin{bmatrix} 3J \\ 3J \end{bmatrix} = \begin{bmatrix} -2J \\ -6J \end{bmatrix}$. This is a contradiction. Therefore no such basis exists.

#5 3 of 12

November 12, 2018

Math 290-1 Midterm II

Page 2 of 10

(c) (5 points) Let A be the 2 × 2 matrix for reflection across a line L in R². Then the kernel of A − I₂ consists of all vectors in R² which are parallel to L. (I₂ denotes the 2 × 2 identity matrix.)

Answer:

TRUE

X is in Ker (A=I1) (A-I2) X=0

Since A is reflection across L, AX=X

If and only if X is parallel to L.

(d) (5 points) If k is a scalar, then $det(kI_3) = kdet(I_3)$. (I_3 denotes the 3 × 3 identity matrix.)

Answer:

FALSE

If k=2, then $det(2I_3)=det[200]=8$

while 2 det(I3) = 2.1=2

#5 4 of 12

November 12, 2018

Math 290-1 Midterm II

Page 3 of 10

- 2. Determine whether each of the following statements is **ALWAYS** true, **SOMETIMES** true, or **NEVER** true. Justify your answer. (This question has **four** parts.)
 - (a) (5 points) For a 4×4 non-identity matrix A, there is a basis \mathfrak{B} of \mathbb{R}^4 such that the \mathfrak{B} -matrix of the transformation $T(\vec{x}) = A\vec{x}$ is I_4 . (I_4 denotes the 4×4 identity matrix.)

Answer:

NEVER

If the B-metrix of T is I4, this means

[T(x)] B = I4[x] B for all x in R4.

That is, [T(x)] B = [x] B for all x, ie

T(x) = x for all x Thus the standard

matrix of T must be I4. This is a

contradiction since we were told that A x I4.

(b) (5 points) For a line V through the origin in \mathbb{R}^3 and a plane W through the origin in \mathbb{R}^3 , if (\vec{v}) is a basis for V and $(\vec{w_1}, \vec{w_2})$ is a basis for W, then $(\vec{v}, \vec{w_1}, \vec{w_2})$ is a basis for \mathbb{R}^3 .

Answer: SOMETIMES

If V=span{\vec{e}_i} and W=span{\vec{e}_2,\vec{e}_3}, then
V is a line through \$\overline{D}\$ with basis (\vec{e}_1), \$\widetilde{W}\$

is a plane through \$\overline{D}\$ with basis (\vec{e}_2,\vec{e}_3),

and (\vec{e}_1,\vec{e}_2,\vec{e}_3) form a basis for \$\vec{R}^3\$.

On the other hand, if V=span{\vec{e}_1} and

W=span{\vec{e}_1,\vec{e}_2}, then (\vec{e}_1,\vec{e}_2) is not a
basis for \$\vec{R}^3\$ since it is not linearly independent

#5 5 of 12

November 12, 2018

Math 290-1 Midterm II

Page 4 of 10

(c) (5 points) Let k be a scalar. The determinant of the following matrix is zero.

$$\begin{bmatrix} 0 & 0 & 3k^2 + 2 & k + 3 \\ 0 & 0 & 2k & 0 \\ 2 & 0 & k^3 - 2k & 3 \\ -1 & -1 & -k^5 + 1 & 2 \end{bmatrix}$$
expand down this column

Answer: SOMETIMES

$$=-2(-(k+3)(2k)) = 4k^2 + 12k$$

If $k=0$, $det(A) = 0$.
If $k=1$, $det(A) = 16 \neq 0$

(d) (5 points) If $\vec{v}_1, \ldots, \vec{v}_m$ are linearly **dependent** vectors in \mathbb{R}^n and $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation, then $T(\vec{v}_1), \ldots, T(\vec{v}_m)$ are linearly **dependent**.

Answer: ALWAYS

Since ∇_i , ∇_i , ∇_m are linearly dependent there exist scalars C_1 , C_2 , C_m (not all zero) such that $GV_1+C_2V_2+...+C_mV_m=\bar{O}$. Apply T to both sides of the equations and use the linearity of T to see that $GT(V_1)+GT(V_2)+...+C_mT(V_m)=\bar{O}$. Since this is a nontrivial linear relation on $T(V_1)$, $T(V_m)$, this means $T(V_1)$, $T(V_m)$ are linearly dependent.

#5 6 of 12

November 12, 2018

Math 290-1 Midterm II

Page 5 of 10

3. (12 points) Let $V = \text{span}\left\{\begin{bmatrix}1\\0\\4\end{bmatrix},\begin{bmatrix}2\\0\\k\end{bmatrix},\begin{bmatrix}3\\k\\2\end{bmatrix}\right\}$. For what values of k is the dimension of V the following:

(a) $\dim(V) = 1$?

Regardless of the value of k, we will always have a leading I in the 1st column and either the 2nd or 3nd columns (or both), so din(V) is never!

(b) $\dim(V) = 2$?

If k=8, then the 1st of 3rd columns are lin. independent (and the 2nd is redundant), so din (V)=2.

If k=0, then the 1st and 2nd columns are /in independent (and the 3rd is redundant), so din (V) = 2.

(c) $\dim(V) = 3$?

If k ≠ 0,8, then there is a leading I in each column, so dim(V) = 3.

#5 7 of 12

November 12, 2018

Math 290-1 Midterm II

Page 6 of 10

4. (18 points) Find all vectors \vec{x} in the image of the following matrix which are also in its kernel.

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ -1 & 1 & -3 \end{bmatrix}$$

(Hint: You may want to start by finding all solutions to $A^2\vec{x}=\vec{0}$ and figuring out how this relates to the given problem.)

$$A^{2} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ -1 & 1 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 2 & -4 \\ -1 & 2 & -4 \\ 2 & -4 & 8 \end{bmatrix}$$

$$\begin{bmatrix} A^{2} & 0 \end{bmatrix} = \begin{bmatrix} -1 & 2 & -4 & 0 \\ -1 & 2 & -4 & 0 \\ 2 & -4 & 8 & 0 \end{bmatrix} \xrightarrow{R_{2} + 2R_{1}} \begin{bmatrix} -1 & 2 & -4 & 10 \\ 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$= x_1 + 2x_2 - 4x_3 = 0$$

$$x_1 = 2x_2 - 4x_3$$

$$\Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 2s - 4t \\ s \\ t \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ s + 5 \end{bmatrix}$$

Note: If Vis in image of A, this means there exists V such that $A\vec{x}=\vec{V}$. But since \vec{V} is in Kernel of A, AV = A'X = 0. Thus the

A $\begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\$

#5 8 of 12

November 12, 2018

Math 290-1 Midterm II

Page 7 of 10

- 5. (18 points) Let A be the 2×2 matrix for orthogonal projection onto the line y = 2x, and let B be the 2×2 matrix for orthogonal projection onto the line y = -3x.
 - (a) Find a basis $\mathfrak A$ of $\mathbb R^2$ such that the $\mathfrak A$ -matrix of $T(\vec x) = A\vec x$ is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. You do not have to justify your answer.

$$A = \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}\right) \Rightarrow S_A = \begin{bmatrix} 1 - 2 \\ 2 \end{bmatrix}$$

(b) Find a basis \mathfrak{B} of \mathbb{R}^2 such that the \mathfrak{B} -matrix of $R(\vec{x}) = B\vec{x}$ is $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. You do not have to justify your answer.

$$B = (\begin{bmatrix} -3 \end{bmatrix}, \begin{bmatrix} 3 \end{bmatrix})$$
 $\rightarrow S_B = \begin{bmatrix} -3 & 3 \end{bmatrix}$

(c) Find an invertible 2×2 matrix S satisfying $A = SBS^{-1}$. You do have to justify your answer.

#5 9 of 12

November 12, 2018

Math 290-1 Midterm II

Page 8 of 10

6. (12 points) Let a and b be some numbers, and let A be the matrix

$$A = egin{bmatrix} a & b & a & b \ a & b & a & b \ a & b & b & a \ a & b & b & a \ \end{pmatrix}.$$

(a) Find a basis of the image of A when a = b and neither a nor b is zero.

(b) Find a basis of the image of A when a = 0 and $b \neq 0$.

#5 10 of 12

November 12, 2018

Math 290-1 Midterm II

Page 9 of 10

YOU MUST SUBMIT THIS PAGE.

If you	would	like worl	k on t	his page	scored,	then	clearly	indicate	to	which	question	the	work	belongs	and i	indicate
on th	e page	containir	ıg the	original	question	ı tha	t there	is work (on '	this pa	ge to sco	re.				

#5 11 of 12

November 12, 2018

Math 290-1 Midterm II

Page 10 of 10

DO NOT WRITE ON THIS PAGE.

12A46CC3-4FD0-45A3-A20D-1CB222625151

midterm-2-bdedb

#5 12 of 12