
Math 291-1: Final Exam Solutions
Northwestern University, Fall 2020

1. Determine whether each of the following statements is true or false, and provide justification
for your answer.

(a) If u,v,w ∈ C3 are linearly independent over C, then they are linearly independent over R.
(b) If A,B,C are 2× 2 matrices such that ABC = 0, then none of A,B,C are invertible.
(c) If T : P2(R) → R+ is linear, where R+ is the vector space of positive real numbers from

Problem 7 of Homework 6, then T (0) = 1.

Solution. (a) This is true. For u,v,w ∈ C3 to be linearly independent over C means that the only
complex scalars a, b, c ∈ C satisfying

au+ bv + cw = 0

are a = b = c = 0. But then in particular, the only real scalars satisfying this equation are also
a = b = c = 0, since the real scalars satisfying this are among the complex scalars satisfying it. So
u,v,w are also linearly independent over R.

(b) This is false. Take B = I for instance, and A = C = 0. Then ABC = 0 and B = I is
invertible

(c) This is true. Any linear transformation sends zero vector to zero vector, and the zero vector
of R+ is indeed 1, so T (0) = 1 holds.

2. Suppose A is an m × n matrix and b ∈ Rm. Show that Ax = b has no solution if and only if
rank

!
A b

"
= rankA+1, where

!
A b

"
is the m× (n+1) matrix whose first n columns are those

of A and whose final column is b.

Proof. The equation Ax = b has no solution if and only if the reduced row-echelon form of the
augmented matrix

!
A b

"
has a row of the form

!
0 · · · 0 1

"

since this corresponds to the impossible equation 0 = 1. But rref
!
A b

"
has such a row if and

only if the final column gives rise to one more pivot not present in the portion corresponding to A
alone. Since the number of pivots in the portion of rref

!
A b

"
corresponding to A has as many

pivots as rref(A), this final column gives rise to one more pivot if and only if the number of pivots
in rref

!
A b

"
is exactly one more than the number of pivots in rref(A), which is equivalent to

rank
!
A b

"
= rankA+ 1 as stated.

3. Suppose P is a 2 × 2 matrix of rank 1 such that P 2 = P with the property that anything in
imP is perpendicular to anything in kerP . Show that P is the matrix of an orthogonal projection.
(Hint: First determine the line onto which P should orthogonally project an arbitrary vector, and
for this think about the effect which P has on something in imP .)

Proof. Let L be the image of P , which, being of dimension 1, is a line through the origin in R2.
We claim that P is the matrix which describes orthogonal projection onto this line. Let Q be the
matrix of orthogonal projection onto this line, so we must show that P = Q.

Take a nonzero vector u ∈ L and a nonzero vector v ∈ kerP . Then u and v are linearly
independent since they are perpendicular, so they automatically span R2. Thus if x ∈ R2 we have

x = au+ bv



for some a, b ∈ R. Then:
Px = aPu+ bPv = aPu,

where Pv = 0 since v ∈ kerP . Now, since u is in L = imP , we have u = Pw for some w ∈ R2.
Thus:

Pu = P (Pw) = P 2w = Pw = u

and hence Px = au. On the other hand, Qu = u since orthogonal projection of u ∈ L onto L
leaves u unchanged, and Qv = 0 since vectors perpendicular to L orthogonally project to 0, so

Qx = aQu+ bQv = au

as well. Hence Px = Qx for all x ∈ R2, which means that P = Q as desired. (The overarching point
is that, due to linearity, the behavior of P on a basis determines its behavior on everything.)

4. Suppose A and B are n × n matrices, and that A is row-equivalent to I. Show that AB is
row-equivalent to B. (Careful: it is NOT true in general that rref(CD) = rref(C) rref(D).)

Proof 1. Since A is row-equivalent to I, there exist elementary matrices (i.e. the matrix form of
elementary row operations) which transform A into I:

Em · · ·E1A = I.

Performing these same row operations to AB is the same as multiplying by the same elementary
matrices, which gives:

Em · · ·E1(AB) = (Em · · ·E1A)B = IB = B.

Thus AB is row-equivalent to B.

Proof 2. To show that AB is row-equivalent to B it is equivalent to show that (AB)x = 0 and
Bx = 0 have the same solutions. (This was on Homework 3.) If x ∈ Rn satisfies Bx = 0, then it
also satisfies (AB)x = 0 since:

(AB)x = A(Bx) = A0 = 0.

Conversely, if x satisfies (AB)x = 0, then multiplying this equality by A−1 (which exists since
rref(A) = I) on the left of both sides gives

Bx = A−10 = 0.

Thus x satisfies (AB)x = 0 if and only if it satisfies Bx = 0, which implies that AB and B are
row-equivalent.

5. Suppose U is a subspace of Pn(R) with the property that whenever p(x) is in U , we have that
its derivative p′(x) is also in U . If xn ∈ U , show that U = Pn(R).

Proof. If xn ∈ U , then by the property of U given in the setup, we have that its derivative nxn−1

is also in U . But then applying this same property implies that the derivative of this is also in U :
n(n− 1)xn−2 ∈ U . And so on, continuing to take more and more derivatives gives

n(n− 1)(n− 2)xn−3 ∈ U, . . . , n(n− 1)(n− 2) · · · 3 · 2x ∈ U, n! ∈ U.

Since U is closed under scalar multiplication, dividing each of these elements of U by the appropriate
scalar gives

xn−1 ∈ U, xn−2 ∈ U, . . . , x ∈ U, 1 ∈ U.

Thus U contains all of the basis vectors 1, x, x2, . . . , xn of Pn(R), which means that U = Pn(R).
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6. Suppose V is a 3-dimensional vector space and that T : V → V is a linear transformation
such that T 5 = 0. Show that T 3 = 0. (You cannot just quote a remark you might have seen
somewhere which says that this is true—you must prove it. You can, however, look around at old
exam problems to get an idea for what to do. Note the exponent in T 5 is 5, not 4.)

Proof. Aiming for a contradiction, suppose T 3 ∕= 0. Then there exists a nonzero v ∈ V such that
T 3v ∕= 0. Consider the vectors v, Tv, T 2v, T 3v, T 4v and suppose a1, a2, a3, a4, a5 ∈ K satisfy

a1v + a2Tv + a3T
2v + a4T

3v + a5T
4v = 0.

Applying T to both sides gives

a1Tv + a2T
2v + a3T

3v + a4T
4v = 0,

where use the fact that T 5 = 0 in order to say that a5T
5v = 0. Applying T again gives:

a1T
2v + a2T

3v + a3T
4v = 0,

and again gives
a1T

3v + a2T
4v = 0,

and one more gives
a1T

4v = 0.

Now, there are two possibilities: either T 4v ∕= 0 or T 4v = 0. If T 4v ∕= 0, then we must have
a1 = 0. But then the previous equation becomes a2T

4v = 0, so that again since T 4v ∕= 0 we must
have a2 = 0. Then the equation before this becomes a3T

4v = 0, so a3 = 0; the equation before
this becomes a4T

4v = 0, so a4 = 0; and finally our original equation is simply a5T
4v = 0, so that

a5 = 0. Thus in this case the only coefficients satisfying

a1v + a2Tv + a3T
2v + a4T

3v + a5T
4v = 0

are a1 = a2 = a3 = a4 = a5 = 0, so v, Tv, T 2v, T 3v, T 4v are linearly independent, which is not
possible since dimV = 3.

If instead T 4v = 0, then the equation a1T
3v + a2T

4v = 0 is simply a1T
3v = 0, so a1 = 0

since T 3v ∕= 0. The equation before this is then a2T
3v = 0, so a2 = 0; the equation before this is

a3T
3v = 0, so a3 = 0; and the original equation becomes a4T

3v = 0, so a4 = 0. (Recall that in
this case T 4v = 0, so all of the T 4v terms in each equation are missing.) Thus, the only coefficients
satisfying

a1v + a2Tv + a3T
2v + a4T

3v = 0

are a1 = a2 = a3 = a4 = 0, (again, there is no T 4v = 0 term), so v, Tv, T 2v, T 3v are linearly
independent. This is still impossible since dimV = 3, so we conclude that T 3 must have been 0 all
along.

7. Let T : M2(R) → M2(R) be the transformation defined by

T (A) = A

#
1 2
0 1

$
−

#
1 2
0 1

$
A.

Take it for granted that this is linear. Find the rank of T and a basis for the image of T .
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Solution 1. Set A =
!
a b
c d

"
. Then

T (A) =

#
a b
c d

$ #
1 2
0 1

$
−

#
1 2
0 1

$ #
a b
c d

$
=

#
−2c 2a− 2d
0 2c

$
= c

#
−2 0
0 2

$
+ (a− d)

#
0 1
0 0

$
.

This shows that anything in the image of T is a linear combination of
!−2 0

0 2

"
and [ 0 1

0 0 ], so these
two matrices span imT . Since they are linearly independent (neither is a multiple of the other),
they thus form a basis for the image, and hence rankT = 2.

Solution 2. Here is another approach. A problem from Homework 8 showed that dimkerT = 2, so
by the Rank-Nullity Theorem we have (since dimM2(R) = 4):

4 = rankT + 2,

so rankT = 2. Thus any two linearly independent elements of the image of T will form a basis.
Since

T

#
1 0
0 0

$
=

#
0 2
0 0

$
and T

#
1 0
1 0

$
=

#
−2 2
0 2

$
,

the matrices [ 0 2
0 0 ] and

!−2 2
0 2

"
are in imT , and since they are linearly independent, they form a

basis as desired.
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