Math 291-1: Midterm 2 Solutions Northwestern University, Fall 2020

- 1. Determine whether each of the following statements is true or false. If it is true, explain why; if it is false, give a counterexample.
 - (a) If A is a nonzero 2×2 matrix such that $A^2 = A$, then A = I.
 - (b) If U is a subspace of a finite-dimensional space V and $\dim U = \dim V$, then U = V.

Solution. (a) This is false. Take $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ for instance. Then $A^2 = A$ but $A \neq I$. More generally, the matrix of any orthogonal projection (A above gives orthogonal projection onto the x-axis) onto a line will be a counterexample.

- (b) This is true. Take a basis u_1, \ldots, u_k for U. Since $\dim U = \dim V$, a basis for V will also contain k elements, so u_1, \ldots, u_k must already be a basis for V as well. This means that U = V, since both U and V are spanned by the same vectors.
- **2.** Set $\mathbf{v}_1 = \mathbf{e}_1, \mathbf{v}_2 = \mathbf{e}_1 + \mathbf{e}_2$, and $\mathbf{v}_3 = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$ where $\mathbf{e}_i \in \mathbb{R}^3$ is the vector with a 1 as the *i*-th entry and 0 elsewhere. Suppose A is a 3×3 matrix. Show that

$$A\mathbf{v}_1 \in \operatorname{span}(\mathbf{v}_1), \ A\mathbf{v}_2 \in \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2), \ \operatorname{and} \ A\mathbf{v}_3 \in \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$$

if and only if A is upper-triangular. (Recall that an upper-triangular matrix is one where the entry in the i-th row and j-th column is zero for i > j. In the 3×3 case, this means that the entries in the 2nd row 1st column, 3rd row 1st column, and 3rd row 2nd column are all zero.)

3. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \in \mathbb{R}^4$ be vectors which span \mathbb{R}^4 , and suppose A is an 4×4 matrix such that

$$A\mathbf{v}_1 = \mathbf{v}_2$$
, $A\mathbf{v}_2 = 2\mathbf{v}_4$, $A\mathbf{v}_3 = 3\mathbf{v}_3$, and $A\mathbf{v}_4 = 4\mathbf{v}_1$.

- (a) Show that A is invertible by expressing A as a product of invertible matrices.
- (b) Show that A is invertible by showing that the only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$.

Proof. (a) Since

$$A\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} = \begin{bmatrix} A\mathbf{v}_1 & A\mathbf{v}_2 & A\mathbf{v}_3 & A\mathbf{v}_4 \end{bmatrix},$$

the information in the setup gives

$$A\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_2 & 2\mathbf{v}_4 & 3\mathbf{v}_3 & 4\mathbf{v}_1 \end{bmatrix}.$$

Since $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ span $\mathbb{R}^4, \mathbf{v}_2, 2\mathbf{v}_4, 3\mathbf{v}_3, 4\mathbf{v}_1$ also span \mathbb{R}^4 since any linear combination of the first set can be written as a linear combination of the second set:

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 + a_4\mathbf{v}_4 = \frac{1}{4}a_1(4\mathbf{v}_1) + a_2\mathbf{v}_2 + \frac{1}{3}a_3(3\mathbf{v}_3) + \frac{1}{2}a_4(2\mathbf{v}_4).$$

By the Amazingly Awesome theorem, both the matrix with $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ as columns and the one with $\mathbf{v}_2, 2\mathbf{v}_4, 3\mathbf{v}_3, 4\mathbf{v}_1$ as columns are invertible, so multiplying on the right by the inverse of the first gives:

$$A = \begin{bmatrix} \mathbf{v}_2 & 2\mathbf{v}_4 & 3\mathbf{v}_3 & 4\mathbf{v}_1 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix}^{-1},$$

which expresses A as the product of invertible matrices. Hence A is invertible.

(b) Suppose **x** satisfies A**x** = 0. Since $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ span \mathbb{R}^4 , we can write

$$\mathbf{x} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3 + a_4 \mathbf{v}_4$$
 for some $a_1, a_2, a_3, a_4 \in \mathbb{R}$.

Then

$$\mathbf{0} = A\mathbf{x} = a_1 A \mathbf{v}_1 + a_2 A \mathbf{v}_2 + a_3 A \mathbf{v}_3 + a_4 A \mathbf{v}_4 = a_1 \mathbf{v}_2 + 2a_2 \mathbf{v}_4 + 3a_3 \mathbf{v}_3 + 4a_4 \mathbf{v}_1.$$

Since $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ span \mathbb{R}^4 and \mathbb{R}^4 is 4-dimesional, $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are also linearly independent. Thus in the equation above we must have

$$a_1 = 0$$
, $2a_2 = 0$, $3a_3 = 0$, and $4a_4 = 0$,

which implies $a_1 = a_2 = a_3 = a_4 = 0$. Thus

$$\mathbf{x} = 0\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3 + 0\mathbf{v}_4 = \mathbf{0},$$

so the only solution of $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$, and hence A is invertible by the Amazingly Awesome Theorem.

4. Suppose V is a vector space over \mathbb{K} and that U is a subspace of V. Suppose further that $x, y \in V$ are elements such that $2x + 3y \in U$. If $4x + 9y \in U$, show that $x \in U$ and $y \in U$.

Proof. Since U closed under scalar multiplication and $2x + 3y \in U$, we have

$$-2(2x+3y) = -4x - 6y \in U.$$

Since U is closed under addition and $4x + 9y \in U$, we also have

$$(4x + 9y) + (-4x - 6y) = 3y \in U.$$

Then $\frac{1}{3}(3y) = y$ is also in U. Moreover, $-3y \in U$ so

$$(2x + 3y) + (-3y) = 2x \in U$$
,

which implies $\frac{1}{2}(2x) = x$ is in U as well.

5. Let $B \in M_3(\mathbb{R})$ and let U be the set of all 3×3 matrices which commute with B:

$$U = \{ A \in M_3(\mathbb{R}) \mid AB = BA \}.$$

- (a) Show that U is a subspace of $M_3(\mathbb{R})$.
- (b) Find a basis for U in the case where $B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.