Math 291-2: Midterm 1 Solutions
Northwestern University, Winter 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) If A, B € M,(R) are orthogonal, then A + B is orthogonal.

(b) If A € M;3(R) satisfies Vol(A(P)) = Vol(P) for some parallelopiped P in R? of nonzero
volume, then the only eigenvalues of A are +1. (Here, A(P) denotes the image of P under the
transformation determined by A.)

Solution. (a) This is false. For instance, I and —I are orthogonal but I + (—I) = 0 is not.
(b) This is false. The condition Vol(A(P)) = Vol(P) says that the expansion factor | det A| is
1. Taking for instance

2 00
A=10 3 0
0 0 1
gives det A = 1, satisfying the given requirement, but the eigenvalues are 2, %, 1. O

2. Suppose that vq,...,v, is a basis of R” with the property that
x=(x-vy)vi+ -+ (x:vy)v, for all x € R".
Show that vq,...,v, are orthonormal.

Proof. Since the given equality is true for all x, it is in particular true for each x = v;. This gives
that for each 4:
Vv, = (Vz‘ . Vl)Vl 4+ 4 (Vi . Vi)vi 4+ .4 (Vi . Vn)vn-

Since we also have
vi=0vi+--+1vi+---+0vy

and the coefficients needed to express a given vector as a linear combination of v1, ..., v, are unique
(since v1,...,v, form a basis of R™), we must have
vi-vi=0,...,vi-v;=1,...,v;-v, =0,

or in other words
vi-v;=0if i # j and v; - v; = 1 for all <.

The first condition says that vi,...v, are orthogonal to one another, and the second says they all
have length 1, so vi,..., v, are orthonormal as claimed. ]

3. Suppose that A is a 2 x 2 matrix such that | det A| = 1 and which preserves angles, meaning
that the angle between x and y is the same as the angle between Ax and Ay for any x,y € R?.
Show that A is orthogonal.

You may use the following facts without proof. First, the angle 6§ between vectors u and v is

characterized by
u-v

cosf) = ————
[all lv]’

and second, the area of the parallelogram with edges u and v is ||ul| ||v]| sin 6.



Proof. Take x,y € R? to be nonzero vectors. Then the angle between x and y is the same as that

between Ax and Ay, so
Xy Ax - Ay

eyl A [ Ayl

since both sides give the value cos @ for the same angle . Now, the parallelogram A(P) with edges
Ax and Ay is the image of the parallelogram P with edges x and y under the transformation
determined by A, so

area A(P) = |det A|(area P) = area P.

Assuming sin 6 # 0, since
area A(P) = || Ax|| ||Ay|| sin€ and area P = ||x|| ||y/|| sin 6
for the same angle 6, the equality of these areas gives
1A [[ Ayl = lIx[Hy -
Thus the first equation we had above becomes
Xy = Ax - Ay,

showing that A preserves dot products, at least when x and y are not parallel, which was needed
to ensure that sinf # 0 above.

To show that x -y = Ax - Ay even when x and y are parallel, we need a modified argument.
(This part was actually much trickier than I envisioned when I first came up with the problem.
Kudos if you were able to figure it out!) Pick any v € R? which is not a multiple of x. Then x and
X + v are not parallel, so what we did above shows that

X (x+v)=A4Ax-A(x+ V),

which gives
X -X+X-v=Ax - Ax+ Ax - Av.
Since x, v are not parallel, what we did above shows that x-v = Ax - Av, so we get

x-x = Ax - Ax.

Hence A preserves the dot product of a vector with itself. (Actually, this implies already that A pre-
serves length, so A is orthogonal, but let’s finish showing it preserves all dot products nonetheless.)
Thus if x and y are parallel, say y = cx for some ¢ € R, we have:

Ax - Ay = Ax - A(ex) = c(Ax - Ax) = ¢(x-x) =x - (ex) =Xy,
so A preserves all dot products and hence is orthogonal as claimed. O

4. Suppose that an n x n matrix M is of the form

A 0
M =
(0 ¢)
where A is a k X k matrix, C' is an (n — k) X (n — k) matrix, and the 0’s denote zero matrices.
Show that det M = (det A)(det C). Suggestion: In the case where A is invertible, first consider the

possibility where A = I and then think about how you can reduce the general case to this one.
The case where A is not invertible is simpler.



Proof. If A is not invertible, the its columns are linearly dependent and hence the first k columns
of M are also linearly dependent. Hence M is also not invertible so

det M =0 = 0(det C) = (det A)(det C)

as claimed. Thus we can now assume that A is invertible. The sequence of row operations trans-
forming A to I will transform M as follows:

(0 ¢) (o)

If this involved ¢ row swaps and row scalings by nonzero factors sq, ..., sy, we get

. I, 0 n A0
det I, = (—1)"sq1 - - - s¢(det A) and det(é€ C)I(—l) 81"'85<0 C>'

These together give

I, 0y 1 A 0 B I o
det<0 C>_detA<0 C,>,01“ detM—(detA)det<0 C>'

Now, a cofactor expansion along the k-th column of the final matrix on the right gives

I, 0 _ (_1\n+tn Iy1 O
det<0 C>_( 1) 1det< 0 C)

since the only nonzero entry in this k-th column is the final 1 in the I term, and crossing out the
row and column this is in gives a smaller sized identity matrix in the upper left portion. Repeatedly
doing the same cofactor expansion along the column corresponding to the final column of the I
piece gives a similar expression until at the end we are left with det C' alone, or to phrase this a bit
more succinctly: we may assume by induction that

det <I’“ 0) =detC,

0o C
and hence
Ik; 0 _ (_1\ntn Ik—l 0 o
det(o C>_( 1) 1det< 0 C)—detC.
Thus we get
det M = (det A) det <{f g) — (det A)(det C)
as claimed. ]

5. Let S : Ma(R) — M(R) be the linear transformation defined by
S(A) = AT,

Find the eigenvalues of S and determine a basis for each eigenspace. (Just give a basis for each
eigenspace, you do not have to prove that what you claim is a basis is indeed a basis.)



Solution 1. Set

Then A # 0 is an eigenvector of S if

a c¢ a b
RN )
for some A € R. Comparing the first entries gives a = Aa, so either A =1 ora =0. If A =1,
comparing the upper-right and lower-left entries in the two matrices above gives b = ¢, so A is of

the form
a b
b d)’

This makes sense, since in order for A to be an eigenvector with eigenvalue 1 we need AT = A,
which says that A is symmetric. A basis for the eigenspace corresponding to 1 is given by

(0 0) (1 0) (6 1)

Now, if X # 1, the previous equations require that a = 0. Comparing the lower right entries in

a c a b
62
then shows that d = 0 as well. Comparing the remaining entries gives

c=Xband b= \c, soc=\ec.

If ¢ = 0, then b = 0, so our matrix is (J J), which is not an eigenvector. Hence ¢ # 0, in which case

A2 =1, s0 A = 1. Then eigenvalues 1 was dealt with before, so we see that —1 is the only other

eigenvalue. When A = —1, ¢ = —b so our matrix is of the form
0 b
-b 0)’
which makes sense since the eigenvector equation AT = —A in this case says that A is skew-

symmetric. Hence a basis for the eigenspace corresponding to —1 is given by

(50)

To summarize, the eigenvalues of S are +1, with eigenspace corresponding to 1 being the
space of symmetric matrices, and the eigenspace corresponding to —1 the space of skew-symmetric
matrices. (This wasn’t part of the problem, but note that S is diagonalizable since we have found
four linearly independent eigenvectors and dim M(R) = 4.) O

Solution 2. With respect to the basis

G0 (o) (o) ()



of M>(R), the matrix of S is

1 000
0 010
0100
0 0 01

since S sends the first and fourth basis elements to themselves and exchanges the second and third.
The eigenvalues of S are the same as the eigenvalues of this matrix. The characteristic polynomial
(if you work it out using a cofactor expansion) is:

1-A 0 0 0
0 -x 1 o0 |_ 5
det| o | oy o |=0-D0+,

0 0 0 1-2AX

so the eigenvalues are +1.
For A =1, we get

0 0 0

0 -1 1 0

0 1 -1 0}’

0O 0 0 0

which has kernel spanned by

1 0 0
0 1 0
of” (11]” {0
0 0 1

The matrices which have these coordinator vectors relative to the given basis are

(0 0) (1 0) (1)

which agrees with the basis we found for F previously.
For A = —1, we get

S O O N
O = = O
O = = O
N O OO

which has kernel spanned by

The matrix with this coordinator vector is

(5 0)

which agrees with the basis we found for F_; in the first solution. O



