
Math 291-2: Midterm 1 Solutions
Northwestern University, Winter 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) If A,B ∈Mn(R) are orthogonal, then A+B is orthogonal.
(b) If A ∈ M3(R) satisfies Vol(A(P )) = Vol(P ) for some parallelopiped P in R3 of nonzero

volume, then the only eigenvalues of A are ±1. (Here, A(P ) denotes the image of P under the
transformation determined by A.)

Solution. (a) This is false. For instance, I and −I are orthogonal but I + (−I) = 0 is not.
(b) This is false. The condition Vol(A(P )) = Vol(P ) says that the expansion factor |detA| is

1. Taking for instance

A =

2 0 0
0 1

2 0
0 0 1


gives detA = 1, satisfying the given requirement, but the eigenvalues are 2, 12 , 1.

2. Suppose that v1, . . . ,vn is a basis of Rn with the property that

x = (x · v1)v1 + · · ·+ (x · vn)vn for all x ∈ Rn.

Show that v1, . . . ,vn are orthonormal.

Proof. Since the given equality is true for all x, it is in particular true for each x = vi. This gives
that for each i:

vi = (vi · v1)v1 + · · ·+ (vi · vi)vi + · · ·+ (vi · vn)vn.

Since we also have
vi = 0v1 + · · ·+ 1vi + · · ·+ 0vn

and the coefficients needed to express a given vector as a linear combination of v1, . . . ,vn are unique
(since v1, . . . ,vn form a basis of Rn), we must have

vi · v1 = 0, . . . ,vi · vi = 1, . . . ,vi · vn = 0,

or in other words
vi · vj = 0 if i 6= j and vi · vi = 1 for all i.

The first condition says that v1, . . .vn are orthogonal to one another, and the second says they all
have length 1, so v1, . . . ,vn are orthonormal as claimed.

3. Suppose that A is a 2 × 2 matrix such that | detA| = 1 and which preserves angles, meaning
that the angle between x and y is the same as the angle between Ax and Ay for any x,y ∈ R2.
Show that A is orthogonal.

You may use the following facts without proof. First, the angle θ between vectors u and v is
characterized by

cos θ =
u · v
‖u‖ ‖v‖

,

and second, the area of the parallelogram with edges u and v is ‖u‖ ‖v‖ sin θ.



Proof. Take x,y ∈ R2 to be nonzero vectors. Then the angle between x and y is the same as that
between Ax and Ay, so

x · y
‖x‖ ‖y‖

=
Ax ·Ay
‖Ax‖ ‖Ay‖

since both sides give the value cos θ for the same angle θ. Now, the parallelogram A(P ) with edges
Ax and Ay is the image of the parallelogram P with edges x and y under the transformation
determined by A, so

area A(P ) = |detA|(area P ) = area P .

Assuming sin θ 6= 0, since

area A(P ) = ‖Ax‖ ‖Ay‖ sin θ and area P = ‖x‖ ‖y‖ sin θ

for the same angle θ, the equality of these areas gives

‖Ax‖ ‖Ay‖ = ‖x‖ ‖y‖ .

Thus the first equation we had above becomes

x · y = Ax ·Ay,

showing that A preserves dot products, at least when x and y are not parallel, which was needed
to ensure that sin θ 6= 0 above.

To show that x · y = Ax · Ay even when x and y are parallel, we need a modified argument.
(This part was actually much trickier than I envisioned when I first came up with the problem.
Kudos if you were able to figure it out!) Pick any v ∈ R2 which is not a multiple of x. Then x and
x + v are not parallel, so what we did above shows that

x · (x + v) = Ax ·A(x + v),

which gives
x · x + x · v = Ax ·Ax +Ax ·Av.

Since x,v are not parallel, what we did above shows that x · v = Ax ·Av, so we get

x · x = Ax ·Ax.

Hence A preserves the dot product of a vector with itself. (Actually, this implies already that A pre-
serves length, so A is orthogonal, but let’s finish showing it preserves all dot products nonetheless.)
Thus if x and y are parallel, say y = cx for some c ∈ R, we have:

Ax ·Ay = Ax ·A(cx) = c(Ax ·Ax) = c(x · x) = x · (cx) = x · y,

so A preserves all dot products and hence is orthogonal as claimed.

4. Suppose that an n× n matrix M is of the form

M =

(
A 0
0 C

)
where A is a k × k matrix, C is an (n − k) × (n − k) matrix, and the 0’s denote zero matrices.
Show that detM = (detA)(detC). Suggestion: In the case where A is invertible, first consider the
possibility where A = Ik and then think about how you can reduce the general case to this one.
The case where A is not invertible is simpler.
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Proof. If A is not invertible, the its columns are linearly dependent and hence the first k columns
of M are also linearly dependent. Hence M is also not invertible so

detM = 0 = 0(detC) = (detA)(detC)

as claimed. Thus we can now assume that A is invertible. The sequence of row operations trans-
forming A to I will transform M as follows:(

A 0
0 C

)
→
(
Ik 0
0 C

)
.

If this involved t row swaps and row scalings by nonzero factors s1, . . . , s`, we get

det Ik = (−1)ns1 · · · s`(detA) and det

(
Ik 0
0 C

)
= (−1)ns1 · · · s`

(
A 0
0 C

)
.

These together give

det

(
Ik 0
0 C

)
=

1

detA

(
A 0
0 C

)
, or detM = (detA) det

(
Ik 0
0 C

)
.

Now, a cofactor expansion along the k-th column of the final matrix on the right gives

det

(
Ik 0
0 C

)
= (−1)n+n1 det

(
Ik−1 0

0 C

)
since the only nonzero entry in this k-th column is the final 1 in the Ik term, and crossing out the
row and column this is in gives a smaller sized identity matrix in the upper left portion. Repeatedly
doing the same cofactor expansion along the column corresponding to the final column of the I
piece gives a similar expression until at the end we are left with detC alone, or to phrase this a bit
more succinctly: we may assume by induction that

det

(
Ik−1 0

0 C

)
= detC,

and hence

det

(
Ik 0
0 C

)
= (−1)n+n1 det

(
Ik−1 0

0 C

)
= detC.

Thus we get

detM = (detA) det

(
Ik 0
0 C

)
= (detA)(detC)

as claimed.

5. Let S : M2(R)→M2(R) be the linear transformation defined by

S(A) = AT .

Find the eigenvalues of S and determine a basis for each eigenspace. (Just give a basis for each
eigenspace, you do not have to prove that what you claim is a basis is indeed a basis.)
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Solution 1. Set

A =

(
a b
c d

)
.

Then A 6= 0 is an eigenvector of S if (
a c
b d

)
= λ

(
a b
c d

)
for some λ ∈ R. Comparing the first entries gives a = λa, so either λ = 1 or a = 0. If λ = 1,
comparing the upper-right and lower-left entries in the two matrices above gives b = c, so A is of
the form (

a b
b d

)
.

This makes sense, since in order for A to be an eigenvector with eigenvalue 1 we need AT = A,
which says that A is symmetric. A basis for the eigenspace corresponding to 1 is given by(

1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
.

Now, if λ 6= 1, the previous equations require that a = 0. Comparing the lower right entries in(
a c
b d

)
= λ

(
a b
c d

)
then shows that d = 0 as well. Comparing the remaining entries gives

c = λb and b = λc, so c = λ2c.

If c = 0, then b = 0, so our matrix is ( 0 0
0 0 ), which is not an eigenvector. Hence c 6= 0, in which case

λ2 = 1, so λ = ±1. Then eigenvalues 1 was dealt with before, so we see that −1 is the only other
eigenvalue. When λ = −1, c = −b so our matrix is of the form(

0 b
−b 0

)
,

which makes sense since the eigenvector equation AT = −A in this case says that A is skew-
symmetric. Hence a basis for the eigenspace corresponding to −1 is given by(

0 1
−1 0

)
.

To summarize, the eigenvalues of S are ±1, with eigenspace corresponding to 1 being the
space of symmetric matrices, and the eigenspace corresponding to −1 the space of skew-symmetric
matrices. (This wasn’t part of the problem, but note that S is diagonalizable since we have found
four linearly independent eigenvectors and dimM2(R) = 4.)

Solution 2. With respect to the basis(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
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of M2(R), the matrix of S is 
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


since S sends the first and fourth basis elements to themselves and exchanges the second and third.
The eigenvalues of S are the same as the eigenvalues of this matrix. The characteristic polynomial
(if you work it out using a cofactor expansion) is:

det


1− λ 0 0 0

0 −λ 1 0
0 1 −λ 0
0 0 0 1− λ

 = (λ− 1)3(λ+ 1),

so the eigenvalues are ±1.
For λ = 1, we get 

0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 ,

which has kernel spanned by 
1
0
0
0

 ,


0
1
11
0

 ,


0
0
0
1

 .

The matrices which have these coordinator vectors relative to the given basis are(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
,

which agrees with the basis we found for E1 previously.
For λ = −1, we get 

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 ,

which has kernel spanned by 
0
1
−1
0

 .

The matrix with this coordinator vector is (
0 1
−1 0

)
,

which agrees with the basis we found for E−1 in the first solution.
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