
Math 291-2: Midterm 2 Solutions
Northwestern University, Winter 2016

1. Determine whether each of the following statements is true or false. If it is true, explain why;
if it is false, give a counterexample.

(a) If a 2 × 2 matrix A only has 1 as an eigenvalue and ( 1
1 ) , ( 2

2 ) are both eigenvectors corre-
sponding to 1, then A is diagonalizable.

(b) If T : R2 → R2 is an affine transformation, then T is differentiable. (Recall that T being
affine means T is of the form T (x) = Ax + b for some 2× 2 matrix A and b ∈ R2.)

Solution. (a) This is false, with the point being that there is not enough information to say whether
or not we can find two linearly independent eigenvectors. For example, the matrix(

0 1
−1 2

)
only has 1 as an eigenvalue and both ( 1

1 ) and ( 2
2 ) as eigenvectors, but is not diagonalizable.

To give a sense for how such an example can be found, note first that the characteristic poly-
nomial of any such matrix must be (λ− 1)2 = λ2 − 2λ+ 1. Thus if(

a b
c d

)
is such a matrix, we must have a+d = 2 and ad− bc = 1. In addition, ( 1

1 ) should be in ker(A− I),
so (

a− 1 b
c d− 1

)(
1
1

)
must be

(
0
0

)
.

This implies that a must be 1−b. Then it is a matter of coming up with a, b, c, d such that a = 1−b,
a+d = 2, ad−bc = 1, and checking that the example we come up with is indeed not diagonalizable.
This isn’t too hard of a guess and check.

(b) This is true. One reason is that if you write out Ax + b, you get polynomial expressions,
which are always differentiable. Alternatively, we have:

T (x + h)− T (x)−Ah
‖h‖

=
(Ax +Ah + b)− (Ax + b)−Ah

‖h‖
= 0,

so the limit defining differentiability of T is 0.

2. Suppose A is a symmetric n × n matrix. Show that there exists a symmetric n × n matrix B
such that B5 = A. Hint: Diagonalization.

Proof. Since A is symmetric, it is orthogonally diagonalizable so there exists an orthogonal n × n
matrix Q and a diagonal n× n matrix D such that

A = QDQT .

Let λ1, . . . , λn denote the diagonal entries of D, which are real since these are the eigenvalues of
the symmetric matrix A. Any real number has a cube root, so set

B = Q


5
√
λ1

. . .
5
√
λn

QT .



Then B is symmetric since it is orthogonally diagonalizable, and

B5 = Q


5
√
λ1

. . .
5
√
λn


5

QT = Q

λ1 . . .

λn

QT = A

as required. (The overarching point here is that you can define all sorts of crazy operations on
symmetric matrices: various roots, exponentials, sine and cosine, etc.)

3. For k 6= 0, determine the point(s) on the surface

−x2 + y2 − z2 + 4xz = k

which are closest to (0, 0, 0). (The answer will depend on k.) You should justify that your answers
are correct, but doing so based on the shape of the surface is good enough.

Solution. The left-hand side of the given equation defines a quadratic form with symmetric matrix−1 0 2
0 1 0
2 0 −1

 .

These has characteristic polynomial (1−λ)(λ2 +2λ−3), and so has eigenvalues 1 and −3. Possible
orthonormal eigenvectors for 1 are 1/

√
2

0

1/
√

2

 and

0
1
0


and a possible orthonormal eigenvector for −3 is−1/

√
2

0

1/
√

2

 .

After taking coordinates c1, c2, c3 with respect to the basis of R3 consisting of these three eigenvec-
tors, the equation for the surface becomes

c21 + c22 − 3c23 = k.

For k > 0 this defines a hyperboloid of one sheet centered along the c3-axis since for a fixed c3

c21 + c22 = k + 3c23

always describes a nonempty curve. The points closest to the origin on this hyperboloid are the
ones making up the circle where the hyperboloid is the thinnest it can be, which occurs when
c3 = 0. Thus the points closest to the origin are those whose (c1, c2, c3)-coordinates are

c1, c2 satisfying c21 + c22 = k and c3 = 0,
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or whose rectangular coordinates are

c1

1/
√

2
0

1/
√

2

+ c2

0
1
0


where c21 + c22 = k.

For k < 0 the given equation defined a hyperboloid of two sheets centered along the c3-axis
since for a fixed c3

c21 + c22 = k + 3c23

only describes a nonempty curve when k + 3c23 ≥ 0, so when |c3| ≥
√
−k/3. (Note that −k > 0

since k < 0.) The points closest to the origin are those where the two sheets intersect the c3-axis,
and so occur when c1, c2 = 0. Thus in (c1, c2, c3)-coordinates these points are

c1 = c2 = 0 and c3 = ±
√
−k
3
,

and in rectangular coordinates they are

±
√
−k
3

−1/
√

2
0

1/
√

2

 .

Note that the k = 0 case was excluded in the setup, but nonetheless we can still give an answer
here as well: when k = 0 we get a double cone which intersects the origin, so the point on this
surface closest to the origin is the origin itself.

4. Suppose that K and L are compact subsets of R2. Show that their union K ∪ L is compact as
well. Hint: To show K ∪ L is closed, first show that ∂(K ∪ L) ⊆ ∂K ∪ ∂L.

Proof. Each of K and L is bounded since each is compact, so there exists M > 0 such that

‖x‖ ≤M for all x ∈ K

and there exists N > 0 such that
‖x‖ ≤ N for all x ∈ L.

Thus
‖x‖ ≤ max{M,N} for all x ∈ K ∪ L,

so K ∪ L is bounded.
Next we claim that ∂(K ∪ L) ⊆ ∂K ∪ ∂L. To see this, let p ∈ ∂(K ∪ L). If this p happens

to be in ∂K then certainly it is in ∂K ∪ ∂L, so we must show that if p /∈ ∂K then we must have
p ∈ ∂L instead. Thus suppose p /∈ ∂K. Then there exists an open ball Br(p) around p which either
contains no element of K or no element of Kc since p is not a boundary point of K. But since
p ∈ ∂(K ∪ L), any ball around p, in particular Br(p), must contain an element outside of K ∪ L.
Thus Br(p) definitely contains something outside of K, so we conclude that Br(p) does not contain
anything of K.

Since p ∈ ∂(K∪L), Br(p) contains an element of K∪L, so this element must come from L since
Br(p) contains no element of K; denote this element by q ∈ L. Then any ball larger than Br(p)
still contains this same q ∈ L. Moreover, any ball smaller than Br(p) cannot contain an element of
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K since then Br(p) would as well, so since Br(p) must contain an element of K ∪ L (because p is
a boundary point of K ∪L), this element must always comes from L. All together this shows that
any ball around p contains an element of L. Any such ball also contains an element outside of L
since it contains an element outside of K ∪L given that p ∈ ∂(K ∪L), so we conclude that p ∈ ∂L
as desired.

Thus ∂(K ∪ L) ⊆ ∂K ∪ ∂L. Since K and L are compact, they are each closed in R2 so each
contains their own boundary. Thus

∂(K ∪ L) ⊆ ∂K ∪ ∂L ⊆ K ∪ L,

showing that K∪L is closed since it contains its own boundary. Hence K∪L is closed and bounded,
so it is compact.

(The portion in the middle which shows that ∂(K ∪L) ⊆ ∂K ∪ ∂L is tricky, and illustrates well
how to work with various definitions.)

5. Define f : R2 → R by

f(x, y) =

1 + x+ x2y√
x2+y2

(x, y) 6= (0, 0)

1 (x, y) = (0, 0).

Show that f is differentiable at (0, 0).

Bonus (3 extra points): Use the formal ε-δ definition of a limit to show that

lim
(x,y)→(0,0)

f(x, y) = 1,

thereby verifying that f is continuous at (0, 0).

Proof. We have
f(0, y) = 1 and f(x, 0) = 1 + x.

The derivatives of these single-variable functions are the partial derivatives of f at (0, 0), so

∂f

∂x
(0, 0) = 1 and

∂f

∂y
(0, 0) = 0.

Thus the Jacobian matrix of f at (0, 0) is Df(0, 0) =
(
1 0

)
.

Setting h = (h, k), we have:

f(0 + h)− f(0)−Df(0)h

‖h‖
=

1 + h+ h2k√
h2+k2

− 1− ( 1 0 )
(
h
k

)
√
h2 + k2

=
h2k

h2 + k2
.

In polar coordinates this becomes
r(cos2 θ + sin θ),

which converges to 0 as (h, k)→ (0, 0) by the squeeze theorem since

|r(cos2 θ + sin θ)| ≤ 2r.

Thus

lim
h→0

f(0 + h)− f(0)−Df(0)h

‖h‖
= 0,

so f is differentiable at (0, 0) as claimed.
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Proof of Bonus. Let ε > 0 and let δ = ε
2 . Then δ > 0, and if need be we can shrink δ to guarantee

that it is also less than 1. Suppose (x, y) satisfies

0 < ‖(x, y)‖ < δ.

Then we also have
|x| =

√
x2 ≤

√
x2 + y2 < δ

and
|y| =

√
y2 ≤

√
x2 + y2 < δ.

Thus:

|f(x, y)− 1| =

∣∣∣∣∣x+
x2y√
x2 + y2

∣∣∣∣∣ ≤ |x|+ |x|2|y|√
x2 + y2

≤ |x|+
√
x2 + y2

3√
x2 + y2

= |x|+ (x2 + y2) < δ + δ2.

Since δ < 1, δ2 < δ so we get
|f(x, y)− 1| < δ + δ2 < 2δ ≤ ε

by the choice of δ. Thus 0 < ‖(x, y)‖ < δ implies |f(x, y)− 1| < ε, which shows that

lim
(x,y)→(0,0)

f(x, y) = 1

as required, and hence f is continuous at (0, 0), which we already knew as a consequence of f being
differentiable at (0, 0).
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