Math 291-3: Final Exam
Northwestern University, Spring 2016
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1. (15 points) Determine whether each of the following statements is true or false. If it is true,
explain why; if it is false, give a counterexample.
(a) If f : R? — R is continuous everywhere except on the ellipse 222 + 3y? = 4, then

/—Z/_if(m’y)dmdy:/_Z/_Zf(xvy)dyd:c.

(b) If F is C' on an open set U C R? and curl F = 0 on U, then F is conservative on U.
(c) If F is a C! vector field on a smooth C? closed surface S, then [[gcurl F - dS = 0.
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2. (10 points) Consider

2n /4 V2
/ / / p®sin? ¢ cos O dp do db.
0o Jo 0

(a) Rewrite this as a single iterated integral in rectangular coordinates.

(b) Rewrite this as a sum of iterated integrals in cylindrical coordinates.

The point is that you have to determine for yourself which orders of integration give a single
integral in (a) and a sum of integrals in (b).
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3. (10 points) Let D% denote the disk of radius R centered at the origin in R":

Vol(D}) / / Vol (D" 2 )d:c1 dxo
D? Vi-ai-a3

2
Vol(D}) = == Vol(D™2) for n > 3.
n

(a) Show that

(b) Show that
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4. (10 points) Prove the Fundamental Theorem of Line Integrals: if C is a smooth C! curve in R™
which starts at p € R” and ends at q € R”, and f is a C' function on C, then

/ Vf-ds = f(a) - f(p).
C
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5. (10 points) Suppose X : D — R and Y : E — R? are both parametrizations of a smooth C*
surface in R? which induce the same orientation. Suppose further that Y = X o T for some C!
bijective function 7 : which has invertible Jacobian throughout E. Show that

Y(s,8) - (Ya(s,8) x Yi(s,1)) d(s, ) // X (0, 0) - (Ko (1, 0) 5 X, 0)) d(1, ).

D= (r_: \
You can take it for granted that the normal vector determined by Y at (s,t) is the one determined
by X at (u,v) = T(s,t) scaled by a factor of det DT'(s,t).
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6. (10 points) Suppose C is a simple, closed C! curve in the plane 2z + 3y — z = 3, oriented
counterclockwise when viewed from above. Show that the value of

/(3ecosx+y— +(3:v+ey2—22)dy+(x+y+z)dz
C
depends only on the area enclosed by C in the given plane. \
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7. (10 points) Suppose F is a compact solid in R3 and that v is a C? function on E. If
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on all of E and u(z,y,z) = 0 for all (z,y,z) € OF, show that u(z,y,z) = 0 for all (z,y,2) € E.
Hint: Apply Gauss’s Theorem to a well-chosen vector field.
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