
Math 306: Midterm 1 Solutions
Northwestern University, Winter 2019

1. List the following things. No justification is needed, just list them.
(a) The compositions of 10 into an even number of even parts.
(b) The parenthetical expressions defining the 3-rd Catalan number, or, if you prefer, the paths

in a 3× 3 grid which define the 3-rd Catalan number.

Solution. (a) These compositions are:

8 + 2 6 + 4 4 + 2 + 2 + 2 2 + 4 + 2 + 2

2 + 2 + 4 + 2 2 + 2 + 2 + 4 4 + 6 2 + 8

(b) The parenthetical expressions are:

((())) (())() (()()) ()(()) ()()()

The paths, were U means “up” and R means “right” are:

RRRUUU RRUURU RRURUU RURRUU RURURU

2. Do either (a) or (b). (You can do them both if you’d like for 2 points extra credit.)
(a) Let n ≥ 2. Show that if we select n+ 1 integers from the set [2n], there will be two among

them so that one is a multiple of the other.
(b) Let n ≥ 3. Show that any convex n-gon can be split up into n− 2 triangles by drawing line

segments which connect vertices. (A convex polygon is one where these line segments lie within
the polygon.)

Solution. (a) Create the following groupings (i.e. “boxes/pigeonholes”) of integers:

{1, 2, 4, 8, 16, . . .}, {3, 6, 12, 24, . . .}, {5, 10, 20, . . . , }, {7, 14, 24, . . .}, . . . , {2n− 1}

where the first consists of all powers of 2, the second consists of all numbers obtained by taking
3 times a power of 2, the third takes 5 times powers of 2, and so on. To be clear, we have one
grouping for each odd integer, and the terms in that grouping are all things obtained by taking that
odd integer times powers of 2. Since any integer is expressible as something odd times a power of 2,
all elements of {1, 2, . . . , 2n} occur in exactly one of these groupings. There are n groupings since
there are n odd numbers between 1 and 2n, so with n+1 numbers chosen the Pigeonhole Principle
guarantees that two chosen integers fall within the same grouping. This gives two integers of the
form

m2k and m2ℓ

where k, ℓ ≥ 0 and m is the same odd integer in both. Then the larger of these, say ℓ > k, is a
multiple of the smaller since m2ℓ = m2k(2ℓ−k).

(b) The base case n = 3 is a single triangle, so there is nothing to do since this already consists
of 3− 2 = 1 triangle. Assuming we can do this for any n-gon (for some n ≥ 3), we need to build up
the case of an (n+ 1)-gon. Given some (n+ 1)-gon, we must thus find the “induction hypothesis”
case of an n-gon hiding within our (n+1)-gon. But observe that if we connect two vertices like so:



so we connect two vertices which happen to be adjacent to the same vertex, we end up dividing
our original (n + 1)-gon into an n-gon and a triangle; the resulting n-gon can be broken up into
n − 2 triangles by the induction hypothesis, so in the end we get that our original (n + 1)-gon is
broken up into (n − 2) + 1 = (n + 1) − 2 triangles as required. Note that convexity was used to
guarantee that the segment we introduced to connect the two vertices above does indeed result in
an n-gon and a triangle.

3. Let n ≥ 4. Determine the number of subsets of [n] which contain at least one of 1 or 2, and at
the same time exactly one of 3 or 4.

Solution. First, for a subset which contains 1 but not 2 and exactly one of 3 or 4, the remaining
elements come from a subset of {5, 6, . . . , n}, and there are 2n−4 such subsets. Thus there are
2n−4 + 2n−4 = 2n−3 subsets containing 1, not 2, and exactly one of 3 or 3. Along the same lines,
by exchanging the roles of 1 and 2 we get that there are 2n−3 subsets which contain 2, not 1, and
exactly one of 3 or 4.

Finally, for a subset which contains both 1 and 2, and exactly one of 3 or 4, there are again
2n−4 + 2n−4 = 2n−3 possibilities since the other elements come from a subset of {5, 6, . . . , n}. In
total we thus get

2n−3 + 2n−3 + 2n−3 = 2n−2 + 2n−3

subsets of [n] which contain 1 or 2 and exactly one of 3 or 4.

4. Justify the following identity by interpreting both sides as counting the same thing.
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Hint: Think about a construction involving picking a committee from a group of 2n people. Think-
ing about the identity
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first might help.

Solution. Take 2n people in a line:

1 2 3 · · · n n+ 1 · · · 2n

Both sides of the given identity count the number of ways of forming a committee of n people from
these 2n and then picking a president of the committee who is required to come from the first half
1, 2, 3, . . . , n. We can first pick the president in n ways, and then the rest of the n − 1 committee
members from the remaining 2n− 1 people, which can be done in
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as one expression for the number of ways of forming the required committee.
Alternatively, if k people (where k ≥ 1) in the committee come from the first half of people, and

the other n − k from the second half, we have
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and then k ways of picking the president since k people were chosen from the half the president
must come from. This gives
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ways of forming the required committee, so this expression must equal the one we found before.

5. Let an denote the number of compositions of n into odd parts. (That is, parts each of which
are odd, not necessarily an odd number of parts overall.) Compute a1, a2, a3, a4, a5 and determine,
with justification, a recursive identity for an in terms of some (which ones to use is up to you) ak
for smaller k.

Solution. The allowable compositions for n = 1, 2, 3, 4, 5 are respectively:

1

1 + 1

3, 1 + 1 + 1

3 + 1, 1 + 3, 1 + 1 + 1 + 1

5, 3 + 1 + 1, 1 + 3 + 1, 1 + 1 + 3, 1 + 1 + 1 + 1 + 1

Thus we get a1 = 1, a2 = 1, a3 = 2, a4 = 3, a5 = 5, which you might recognize as the first few terms
in the Fibonacci sequence.

Indeed, we claim that the numbers an in general satisfy the recursion

an = an−1 + an−2 for n ≥ 2.

There are two types of compositions of n into odd parts we can consider: those where the final part
is 1, and those where the final part is at least 3. For those of the first type, removing the final part
of 1 gives a composition of n − 1 into odd parts, where we get odd parts since these were present
in the original composition of n into odd parts. Conversely, given a composition of n− 1 into odd
parts, adding a new final part of 1 gives a valid composition of n, so

(# valid compositions of n with final part 1) = (# valid compositions of n− 1) = an−1

For a valid composition of n with final part at least 3, subtracting 2 from this final part gives a
valid composition of n− 2 (still with odd parts), and given a composition of n− 2 into odd parts,
adding 2 to the final part gives a composition of n into odd parts with final part at least 3, so:

(# valid compositions of n with final part at least 3) = (# valid compositions of n− 2) = an−2

Adding these values together gives all possible valid compositions of n, so we do get the recursive
identity an = an−1 + an−2 as claimed.
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