
MATH 320-1: Final Exam Solutions
Northwestern University, Fall 2023

1. (15 points) Give an example of each of the following. You do not have to justify your answer.
(a) A Cauchy sequence in (2, 3) which does not converge to an element of (2, 3).
(b) A function f : R→ R such that limx→2 f(x)2 exists but limx→2 f(x) does not.
(c) A continuous function on R that is not differentiable at 2.
(d) A function f : [0, 1]→ R which is not integrable but for which f(x)2 is integrable.
(e) An integrable function on [2, 3] which is not continuous on [2, 3].

2. Suppose the sequence (xn) converges to x and that −2 < xn < 3 for all n ≥ 1000. Show that
−2 ≤ x ≤ 3. You cannot simply quote the fact that convergence of sequences preserves non-strict
inequalities since the goal is to prove exactly this in this special case.

Proof. If x < −2, then for ε1 = −2− x > 0, all elements of the interval (x− ε1, x+ ε1) are strictly
less than −2 since x+ ε1 < −2. But since xn → x, there exists N1 ∈ N such that

|xn − x| < ε1, or equivalently xn ∈ (x− ε1, x+ ε1) for ≥ N1.

For n ≥ max{N1, 1000}, this contradicts the assumption −2 < xn, so we must have −2 ≤ x.
If 3 < x, then for ε2 = x− 3 > 0, all elements of the interval (x− ε2, x+ ε2) are strictly larger

than 3 since 3 < x− ε2. But since xn → x, there exists N2 ∈ N such that

|xn − x| < ε2, or equivalently xn ∈ (x− ε2, x+ ε2) for ≥ N2.

For n ≥ max{N2, 1000}, this contradicts the assumption xn < 3, so we must have x ≤ 3. Hence
−2 ≤ x ≤ 3 as claimed.

3. Suppose f : (0,∞) → R is uniformly continuous and that (xn) and (yn) are two sequences
in (0,∞) that converge to 0. Show that the sequences (f(xn)) and (f(yn)) converge, and that
the thing to which they converge is the same. You cannot use the fact that uniformly continuous
functions can be extended to endpoints since this problem is essentially the proof of this fact. You
can, however, use other properties of uniformly continuous functions.

Proof. First, since (xn) and (yn) converges, they are each Cauchy, so (f(xn)) and (f(yn)) are each
Cauchy since uniformly continuous functions send Cauchy sequences to Cauchy sequences. Denote
by L the number to which (f(xn)) converges. We claim that (f(yn)) also converges to L.

Indeed, let ε > 0 and using uniform continuity pick δ > 0 such that

|x− y| < δ implies |f(x)− f(y)| < ε

2
.

Pick N ∈ N such that

|xn − 0| < δ

2
, |yn − 0| < δ

2
, and |f(xn)− L| < ε

2
,

which is possible using convergence of (xn) and (yn) to 0 and of (f(xn)) to L. (There’s some picking
a maximum of three N ’s going on here.) Then if n ≥ N , we have

|xn − yn| ≤ |xn − 0|+ |yn − 0| < δ

2
+
δ

2
= δ,



and hence
|f(xn)− f(yn)| < ε

2
.

Thus for n ≥ N , we get

|f(yn)− L| < |f(yn)− f(xn)|+ |f(xn)− L| < ε

2
+
ε

2
= ε.

Hence (f(yn)) also converges to L as desired.
Alternatively, you can use the fact that if f is uniformly continuous and xn − yn → 0, then

f(xn)− f(yn)→ 0 to skip some of the work above. Since xn → 0 and yn → 0, we do have

xn − yn → 0− 0 = 0

and thus f(xn)− f(yn)→ 0 as well. Thus, if f(xn)→ L, then

|f(yn)− L| ≤ |f(yn)− f(xn)|+ |f(xn)− L|

implies, by the squeeze theorem, that the left side converges to 0 as n→∞ since the two terms on
the right do, so f(yn)→ L as claimed.

4. Fix a ∈ R and suppose f : R → R is continuous everywhere and differentiable at all x 6= a. If
limx→a f

′(x) exists, show that

f ′(a) = lim
x→a

f(x)− f(a)

x− a
exists and that f ′ is continuous at a. You cannot use L’Hopital’s rule, which we did not cover in
this course, to show this limit exists.

Proof. For any x 6= a, by the mean value theorem there exists cx between x and a such that

f(x)− f(a) = f ′(cx)(x− a), or
f(x)− f(a)

x− a
= f ′(cx).

Thus

lim
x→a

f(x)− f(a)

x− a
= lim

x→a
f ′(cx).

Since cx is between x and a, as x → a we also have cx → a, so the assumption that limx→a f
′(x)

exists implies that

lim
x→a

f(x)− f(a)

x− a
= lim

x→a
f ′(cx)

exists. Hence f ′(a) exists, and

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a
f ′(cx) = lim

x→a
f(x),

which means that f ′ is continuous at a.

5. Suppose f : [a, b]→ R is bounded. Show that

sup{L(f, P ) | P is a partition of [a, b]} ≤ inf{U(f, P ) | P is a partition of [a, b]}.

You can take the relation between the upper and lower sums of f with respect to a partition and a
refinement of that partition for granted. (Recall that P ′ is a refinement of P if P ′ is obtained from
P by introducing more partition points.)

2



Proof. For any partitions P and Q of [a, b], P ∪Q is a refinement of both P and Q, and thus

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

Thus for fixed P , L(f, P ) is a lower bound on the set of all upper sums, and hence

L(f, P ) ≤ inf{U(f,Q) | Q is a partition of [a, b]}

for all P . But this in turns means that the right side is an upper bound on the set of all lower
sums, so

sup{L(f, P ) | P is a partition of [a, b]} ≤ inf{U(f,Q) | Q is a partition of [a, b]}

as claimed.

6. Define g : [0, 1]→ R by

g(x) =

{
5 + e3x − sin(cos 4x) if x 6= 1

n for any n ∈ N
0 if x = 1

n for some n ∈ N.

Show that g is integrable on [0, 1]. You cannot use the Riemann-Lebesgue Theorem from the last
day of class. Hint: For any positive c, there are only finitely many n such that c < 1

n .

Proof. Note first that 35 is a bound on g over [0, 1] since

|5 + e3x − sin(cos 4x)| ≤ 5 + e3x + | sin(cos(4x))| ≤ 5 + e3 + 1 < 5 + 33 + 1 ≤ 35

for all x ∈ [0, 1]. Let ε > 0 and let N ∈ N be the largest positive integer for which

ε

70
<

1

N
.

7. Let f : R→ R be the function defined by

f(x) =

{
1 + 5e−1/x x > 0

0 x ≤ 0,

which is integrable on any closed interval, and define the function F : R→ R by

F (x) =

∫ x3

0
f(t) sin(t) dt.

Show that F is continuously differentiable R but not twice differentiable on R.
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