MATH 320-1: Midterm 1 Solutions Northwestern University, Fall 2023

1. Give an example of each of the following. You do not have to justify your answer.

- (a) A subset of \mathbb{R} which has a supremum but not an infimum.
- (b) An unbounded sequence in \mathbb{R} with at least two convergent subsequences.
- (c) A Cauchy sequence all of whose terms are irrational.

Solution. (a) The interval $(-\infty, 0]$ has supremum 0 but no infimum since it is not bounded below.

(b) The sequence where $x_{2n} = n$ and $x_{2n+1} = (-1)^n$ works. The even-indexed terms make this sequence unbounded, but for n = 2k even the subsequence $x_{2(2k)} = 1$ converges, as does the sequence $x_{2(2k+1)+1} = -1$ for n = 2k + 1 odd.

(c) The sequence $x_n = \frac{\sqrt{2}}{n}$ is Cauchy since it converges, but all terms are irrational.

2. Show that the supremum of the following set is 4.

$$A = \left\{ \frac{4n^2 - 6n}{n^2 - n + 1} \mid n \in \mathbb{N} \right\}$$

Proof. For any $n \in \mathbb{N}$, we have

$$\frac{4n^2 - 6n}{n^2 - n + 1} \le \frac{4n^2 - 4n}{n^2 - n + 1} \le \frac{4n^2 - 4n}{n^2 - n} = 4,$$

so 4 is an upper bound of the given set. Let $\epsilon > 0$ and pick $N \in \mathbb{N}$ such that

$$\frac{1}{N} < \frac{\epsilon}{12}$$

and $N \geq 2$. Then

$$4 - \frac{4N^2 - 6N}{N^2 - N + 1} = \frac{-4N + 4 + 6N}{N^2 - N + 1}$$
$$= \frac{2N + 4}{N^2 - N + 1}$$
$$\leq \frac{2N + 4N}{N^2 - N}$$
$$\leq \frac{6N}{N^2 - \frac{1}{2}N^2}$$
$$= \frac{6N}{\frac{1}{2}N^2}$$
$$= \frac{12}{N}$$
$$< \epsilon,$$

where $N \ge 2$ is needed to ensure that $\frac{1}{2}N^2 \ge N$ in the fourth step. This gives

$$4-\epsilon < \frac{4N^2-6N}{N^2-N+1}$$

for this particular choice of N, which shows that 4 is indeed the supremum of the given set. \Box

3. Suppose the sequence (x_n) converges to 1/2. Show, using the definition of convergence, that the sequence $(3/x_n^2)$ converges to $12 = 3/(1/2)^2$.

Proof. Let $\epsilon > 0$. Since $x_n \to \frac{1}{2}$, there exists $N \in \mathbb{N}$ such that

$$|x_n - \frac{1}{2}| < \min\{\frac{1}{4}, \frac{\epsilon}{12 \cdot 16(\frac{3}{4} + \frac{1}{2})}\}$$
 for $n \ge N$.

This in particular implies that

$$x_n \in (\frac{1}{2} - \frac{1}{4}, \frac{1}{2} + \frac{1}{4})$$
 for $n \ge N$, so $\frac{1}{4} < |x_n| < \frac{3}{4}$

for such n. Thus for $n \ge N$, we have

$$\left|\frac{3}{x_n^2} - \frac{3}{(1/2)^2}\right| = \frac{3|x_n - \frac{1}{2}||x_n + \frac{1}{2}|}{\frac{1}{4}x_n^2}$$

$$< \frac{12|x_n - \frac{1}{2}||x_n + \frac{1}{2}|}{(\frac{1}{4})^2}$$

$$\leq 12 \cdot 16|x_n - \frac{1}{2}|(|x_n| + \frac{1}{2})$$

$$\leq 12 \cdot 16|x_n - \frac{1}{2}|(\frac{3}{4} + \frac{1}{2})$$

$$< 12 \cdot 16(\frac{3}{4} + \frac{1}{2})\frac{\epsilon}{12 \cdot 16(\frac{3}{4} + \frac{1}{2})}$$

$$= \epsilon,$$

so $(3/x_n^2) \to 3/(1/2)^2$.

4. As a consequence of a problem on the homework, the sequence (x_n) defined by $x_n = \frac{\pi^n}{n!}$ converges to 0. Using the fact that

$$x_{n+1} = \frac{\pi}{n+1} x_n \text{ for } n \ge 1,$$

give an alternative proof that $x_n \to 0$ which does not directly use the definition of convergence. Hint: Which of b_4 and b_5 is larger? Which of b_5 and b_6 is larger? What about b_6 and b_7 ?

Proof. (Note: I have no idea where b_4, b_5, b_6, b_7 in the hint came from, those were supposed to be x_4, x_5, x_6, x_7 .) For $n \ge 3$, $n+1 > \pi$ so $\frac{\pi}{n+1} < 1$. Hence for $n \ge 3$, we have

$$x_{n+1} = \frac{\pi}{n+1} x_n < x_n,$$

so (x_n) is decreasing for $n \ge 3$. Since all x_n are positive, they are bounded below by 0, so the sequence (x_n) converges by the monotone convergence theorem. (Technically the full sequence is not monotone, but being monotone starting at n = 3 is good enough since the first few terms will not affect convergence.) If we denote the limit of (x_n) by L, then taking limits in

$$x_{n+1} = \frac{\pi}{n+1} x_n$$

gives $L = 0 \cdot L$, so L = 0. Hence $x_n = \frac{\pi^n}{n!}$ converges to 0 as claimed.

5. Suppose (x_n) and (z_n) are convergent sequences and that (y_n) is a sequence such that

$$x_n \leq y_n \leq z_n \text{ for } n \geq 10.$$

Show that (y_n) has a convergent subsequence. Careful: We are not assuming that (x_n) and (z_n) converge to the same thing, so no squeeze theorem applies.

c	\sim	C

Proof. Since (x_n) and (z_n) are convergent, each is bounded, so there exist M, P > 0 such that

$$|x_n| \leq M$$
, or $-M \leq x_n \leq M$ for all n

and

$$|z_n| \le P$$
, or $-P \le z_n \le P$ for all n .

Then for $n \ge 10$ we have

$$-M \le x_n \le y_n \le z_n \le P,$$

so the y_n 's are bounded for $n \ge 10$. (If you want to be concrete, $|y_n| \le \max\{M, P\}$ for $n \ge 10$.) Since the subsequence of y_n 's starting at n = 10 is bounded, it has a convergent subsequence by the Bolzano-Weierstrass theorem, which is then also a convergent subsequence of the full sequence (y_n) . (Or, you can take the bound on the y_n 's starting at n = 10 and make it larger if need be to get a bound on all of (y_n) and apply Bolzano-Weierstrass to the whole thing.)