
MATH 320-1: Midterm 1 Solutions
Northwestern University, Fall 2023

1. Give an example of each of the following. You do not have to justify your answer.
(a) A subset of R which has a supremum but not an infimum.
(b) An unbounded sequence in R with at least two convergent subsequences.
(c) A Cauchy sequence all of whose terms are irrational.

Solution. (a) The interval (−∞, 0] has supremum 0 but no infimum since it is not bounded below.
(b) The sequence where x2n = n and x2n+1 = (−1)n works. The even-indexed terms make

this sequence unbounded, but for n = 2k even the subsequence x2(2k) = 1 converges, as does the
sequence x2(2k+1)+1 = −1 for n = 2k + 1 odd.

(c) The sequence xn =
√
2
n is Cauchy since it converges, but all terms are irrational.

2. Show that the supremum of the following set is 4.
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∣∣∣∣ n ∈ N
}

Proof. For any n ∈ N, we have
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so 4 is an upper bound of the given set. Let ε > 0 and pick N ∈ N such that
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where N ≥ 2 is needed to ensure that 1
2N

2 ≥ N in the fourth step. This gives

4− ε < 4N2 − 6N

N2 −N + 1

for this particular choice of N , which shows that 4 is indeed the supremum of the given set.



3. Suppose the sequence (xn) converges to 1/2. Show, using the definition of convergence, that
the sequence (3/x2n) converges to 12 = 3/(1/2)2.

Proof. Let ε > 0. Since xn → 1
2 , there exists N ∈ N such that

|xn − 1
2 | < min{14 ,

ε
12·16( 3

4
+ 1

2
)
} for n ≥ N.

This in particular implies that
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for such n. Thus for n ≥ N , we have∣∣∣∣ 3
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so (3/x2n)→ 3/(1/2)2.

4. As a consequence of a problem on the homework, the sequence (xn) defined by xn = πn

n! converges
to 0. Using the fact that

xn+1 = π
n+1xn for n ≥ 1,

give an alternative proof that xn → 0 which does not directly use the definition of convergence.
Hint: Which of b4 and b5 is larger? Which of b5 and b6 is larger? What about b6 and b7?

Proof. (Note: I have no idea where b4, b5, b6, b7 in the hint came from, those were supposed to be
x4, x5, x6, x7.) For n ≥ 3, n+ 1 > π so π

n+1 < 1. Hence for n ≥ 3, we have

xn+1 = π
n+1xn < xn,

so (xn) is decreasing for n ≥ 3. Since all xn are positive, they are bounded below by 0, so the
sequence (xn) converges by the monotone convergence theorem. (Technically the full sequence is
not monotone, but being monotone starting at n = 3 is good enough since the first few terms will
not affect convergence.) If we denote the limit of (xn) by L, then taking limits in

xn+1 = π
n+1xn

gives L = 0 · L, so L = 0. Hence xn = πn

n! converges to 0 as claimed.

5. Suppose (xn) and (zn) are convergent sequences and that (yn) is a sequence such that

xn ≤ yn ≤ zn for n ≥ 10.

Show that (yn) has a convergent subsequence. Careful: We are not assuming that (xn) and (zn)
converge to the same thing, so no squeeze theorem applies.

2



Proof. Since (xn) and (zn) are convergent, each is bounded, so there exist M,P > 0 such that

|xn| ≤M, or −M ≤ xn ≤M for all n

and
|zn| ≤ P, or − P ≤ zn ≤ P for all n.

Then for n ≥ 10 we have
−M ≤ xn ≤ yn ≤ zn ≤ P,

so the yn’s are bounded for n ≥ 10. (If you want to be concrete, |yn| ≤ max{M,P} for n ≥ 10.)
Since the subsequence of yn’s starting at n = 10 is bounded, it has a convergent subsequence by
the Bolzano-Weierstrass theorem, which is then also a convergent subsequence of the full sequence
(yn). (Or, you can take the bound on the yn’s starting at n = 10 and make it larger if need be to
get a bound on all of (yn) and apply Bolzano-Weierstrass to the whole thing.)
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