
Math 226: Sequences and Series
Northwestern University, Lecture Notes

Written by Santiago Cañez

These are notes which provide a basic summary of each lecture for Math 226, “Sequences and
Series”, taught by the author at Northwestern University. The book used as a reference is the
14th edition of Thomas’ Calculus by Hass, Heil, and Weir. Watch out for typos! Comments and
suggestions are welcome.
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Lecture 1: Sequences

The goal of this course is to understand series and their use in mathematics. A series is an
expression of the form

a1 + a2 + a3 + a4 + · · ·

obtained by adding together infinitely many quantities. (The · · · are meant to say “keep going
without end.”) It is surprising that a definite meaning can be given to such an “infinite sum”, since
it is not possible to actually sit down and perform the required addition by hand—it would take
an infinite amount of time! Nonetheless, we will see how to make sense of this, and why equalities
such as

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · = ln 2

are true. (On the left we are adding reciprocals of positive integers with alternating signs.) This
equality says that if we could actually perform the infinite summation on the left, we would get the
value of ln 2, but again the point is that we can determine this without having to actually perform
this infinite summation.

Series show up in various contexts, and in particular are heavily used in techniques developed
to approximate functions. For instance, the values of the function f(x) = ex turn out to also be
given by the following infinite series

1 + x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

which can be viewed as an “infinite” polynomial. As a consequence, the polynomial 1+ x provides
an approximation to the value of ex, the polynomial 1 + x + x2

2! provides a better approximation,

1 + x+ x2

2! +
x3

3! an even better approximation, 1 + x+ x2

2! +
x3

3! +
x4

4! even better, and so on. This
final approximation

To see this in action, note that the value of e1 is approximately

e1 ≈ 2.7182818285

which is as many decimal places as my computer whould show me. Plugging x = 1 into the
polynomials above gives the values:

1 + 1 = 2 1 + 1 +
12

2!
= 2.5 1 + 1 +

12

2!
+

13

3!
≈ 2.667 1 + 1 +

12

2!
+

13

3!
+

14

4!
≈ 2.708

which are indeed getting closer and closer to the actual value of e1. This final approximation is
called a fourth-order approximation since it came from a polynomial of degree 4, and is the first
approximation which agrees with the actual value of e1 to the first decimal digit. A question we can
ask is: could we determine beforehand that we would need to use the fourth-order approximation in
order to obtain a value which is accurate to first decimal digit? What if we wanted an approximation
which was accurate to two decimals, or more? These are questions we will explore as well.

But before all this, we must understand the notion of a series better. Our first overall goal is to
understand when a series expressed as an infinite sum gives a well-defined value, since it is highly
non-obvious that adding together infinitely many numbers can still give a finite value as a result.
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Sequences. Before talking about series, we must first talk about sequences, which are the things
from which series are built. A sequence is nothing but an infinite list of numbers:

a1, a2, a3, a4, . . . .

(The connection between sequences and series is that a series is obtained by adding together the
terms of a sequence.) To say that a sequence converges to a number L—which we call the limit
of the sequence—is to say that the terms of the sequence get closer and closer to L the further
along the sequence we go. Written in terms of limits, a sequence whose n-th term is denoted by an
converges to a number L when

lim
n→∞

an = L.

To say that a sequence diverges just means that it does not converge.

Example 1. Consider the sequence

an = 2 +
(−1)n

n2
.

To be clear, this notation refers to the sequence whose n-th term is the given an. So, the first term
of this sequence is teh value a1 (when n = 1), the second term is a2 (when n = 2), and so on. The
first few terms of this sequence are thus

2 +
−1

12
, 2 +

1

22
, 2 +

−1

32
, 2 +

1

42
, . . . .

As n goes to infinity, the (−1)n

n2 gets closer and closer to zero since the numerator bounces back
forth between −1 and 1 while the denominator gets larger and larger. Thus

lim
n→∞

an = lim
n→∞

󰀕
2 +

(−1)n

n2

󰀖
= 2 + 0 = 2,

so this sequence converges to 2.

Example 2. The sequence
bn = n2

diverges. To be clear, the first few terms of this sequence are

1, 4, 9, 16, 25, . . . ,

and the point is that these terms get larger and larger, and thus grow without bound. In particular
then, these terms cannot be approaching any one definite value. (We could say that this sequence
diverges to infinity, meaning that its terms keep getting larger and larger and larger.)

Example 3. The sequence
cn = 1 + (−1)n

also diverges, but for a different reason than that in the previous example. Here the sequence looks
like:

0, 2, 0, 2, 0, 2, . . .

so this sequence consists of alternating 0’s and 2’s. Here it’s not that these terms get larger and
larger, but rather that the alternating behavior prevents them from approaching any one specific
value. (So, this sequence diverges, but would not say that it “diverges to infinity”.)
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Example 4. Consider the sequence

dn =
3n2 − 3n+ 1

2n2 + 4n− 1

whose first few terms are:
1

5
,

7

15
,
19

29
, . . .

In this case it is not clear yet whether the sequence should converge or diverge. To get some
intuition, the key observation is that the n2 terms in the numerator and denominator “dominate”
all the other terms in the sense that they should determine the overall behavior because they end
up being the largest terms involved as n gets larger and larger. In other words, this sequence should
in a sense behave similarly to the constant sequence

3n2

2n2
=

3

2

which converges to 3
2 . Hence the sequence an converges to 3

2 . So, we might guess that our sequence
will converge to 3

2 as well.
In order to make this guess precise we recall some things about manipulating limits from previous

calculus courses. The point is that we cannot simply take the limit as n → ∞ of the numerator
and denominator just yet because neither of these limits actually exist: both the numerator and
denominator individually describe sequence which diverge to infinity. Here we can rewrite the given
sequence by dividing the entire numerator and denominator each by n2. We get:

lim
n→∞

3n2 − 3n+ 1

2n2 + 4n− 1
= lim

n→∞

3− 3
n + 1

n2

2 + 4
n − 1

n2

.

The 3
n ,

1
n2 ,

4
n , and

1
n2 terms go to 0 as n goes to infinity, so we get

lim
n→∞

3− 3
n

2 + 4
n − 1

n2

=
3− 0

2 + 0− 0
=

3

2

as the value of the limit. In this final step, we are able to indeed take the limit of the numerator
and denominator separately since each of these limits actually exist.

A similar technique works for any sequence defined by taking a fraction of polynomials. In
general, when the highest power of n in the numerator is greater than that in the denominator, the
sequence will diverge; when the highest power of n in the numerator is smaller than that in the
denominator, the sequence will converge to 0; and when these highest powers of n are the same, the
sequence will converge to the fraction obtained by taking the coefficients of these highest powers.
However, you SHOULD work out such limits carefully using the same technique as above where we
divide numerator and denominator by a power of n to simplify the given expression.

Example 5. Finally we consider the sequence

an =
2 + sinn

n
.

Intuitively, the sinn term can only have values between −1 and 1, so the fraction

sinn

n
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should have limit 0 as n → ∞ because we have a numerator which is constrained between −1 and 1
with a denominator that keeps getting larger and larger. If we had a sequence defined by dividing
a constant by n, like 3

n , this would be enough to say that the limit was zero, but here we should
be more careful: sinn is not constant, and we cannot make this jump directly.

To make this more precise, we argue as follows. Since sinn is always between −1 and 1, we
have the inequalities:

2 + (−1)

n
≤ 2 + sinn

n
≤ 2 + 1

n
,

or in other words
1

n
≤ 2 + sinn

n
≤ 3

n
.

The sequence on the left converges to 0, as does the sequence on the right. So, the sequence we
actually care about is “sandwiched” between terms which are themselves getting closer and closer
to zero, but this then actually implies that the terms in the middle are also getting closer and
closer to zero! so, we conclude that

lim
n→∞

2 + sinn

n
= 0

as expected by our intuition.

Sandwich Theorem. The technique used in the final example is important enough that we give
it a special name: the Sandwich Theorem. To be clear, this says that if we have three sequences
an, bncn related by inequalities

an ≤ bn ≤ cn,

then if the two “outer” sequences an and cn both converge to the same number L, so does the
sequence in the middle: if limn→∞ an = L = limn→∞ cn, then limn→∞ bn = L. Again, the intuition
is that terms bn are “sandwiched” between terms that are each getting closer and closer to L, so the
terms bn must be getting closer to L as well. Note that this fact also goes by the name “Squeeze
Theorem”, which you might come across in other references.

Lecture 2: More on Sequences

Warm-Up 1. We determine whether or not the sequence defined by

an =
2 · 3n+1

5n
+

(3n− 1)!

(3n+ 1)!

converges. First, we can rewrite the first part of the sum as

2 · 3n+1

5n
=

2 · 3 · 3n
5n

= 6

󰀕
3

5

󰀖n

.

As n gets larger and larger, (35)
n gets smaller and smaller:

3

5
,
9

25
,
27

125
, . . .

since the denominator is getting larger at a much faster rate than the numerator. Thus (35)
n

converges to 0, so

lim
n→∞

2 · 3n+1

5n
= lim

n→∞
6

󰀕
3

5

󰀖n

= 0.
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(In general, if r is any number strictly between −1 and 1, then the sequence rn converges to 0 as
well. This will be an important fact when we study what are called geometric series.)

Now, the second part of the sum in the definition of an can be written as:

(3n− 1)!

(3n+ 1)!
=

(3n− 1)!

(3n+ 1)(3n)(3n− 1)!
=

1

(3n+ 1)(3n)
.

To be clear, (3n+ 1) is the product of 3n+ 1 and all positive integers before it:

(3n+ 1)! = (3n+ 1)(3n)(3n− 1)(3n− 2)(3n− 3) · · · 3 · 2 · 1,

and the portion of this which looks like (3n− 1)(3n− 2) · · · 3 · 2 · 1 is precisely (3n− 1)!. So

lim
n→∞

(3n− 1)!

(3n+ 1)!
= lim

n→∞

1

(3n− 1)(3n)
= 0

since the numerator is constant and the denominator gets larger and larger.
Since both parts of the sum in the definition of an individually converge, we can say that

lim
n→∞

an = lim
n→∞

󰀕
2 · 3n+1

5n
+

(3n− 1)!

(3n+ 1)!

󰀖
= lim

n→∞

2 · 3n+1

5n
+ lim

n→∞

(3n− 1)!

(3n+ 1)!
= 0 + 0 = 0,

so our given sequence an converges to 0.
To highlight a fact we used: if limn→∞ bn and limn→∞ cn each exist individually, then

lim
n→∞

(bn + cn) = lim
n→∞

bn + lim
n→∞

cn.

But take note that we would not be able to “split up” a sum in this way if either limit of bn or cn
did not exist on its own.

Warm-Up 2. Next we consider the sequence

bn =
2n− 3

10
√
n+ 4

.

Here is some intuition: the numerator behaves more and more like the 2n term alone (in other
words, the 2n term “dominates” the others in the numerator) and the denominator behaves more
and more like 10

√
n (i.e. 10

√
n “dominates” the denominator), so this sequence should behave in

way similar to the sequence
2n

10
√
n
=

√
n

5
,

which diverges to infinity. So we can make a good guess that our given sequence should diverge to
infinity as well.

To be precise, we can rewrite our given sequence by dividing everything by the largest power
of n which appears, so in this case divide numerator and denominator by n:

2n− 3

10
√
n+ 4

=
2− 3

n
10√
n
+ 4

n

.

As n → ∞, the fractions 3
n ,

10√
n
, and 4

n all converge to 0, so the numerator above converges to 2

while the denominator converges to 0. Thus the entire fraction will diverge to infinity since it has
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a numerator getting closer and closer to a nonzero constant, being divided by numbers which are
getting smaller and smaller, which causes the fraction itself to get larger and larger.

As an alternate approach, we also divide the numerator and denominator of our original sequence
fraction by

√
n to rewrite it as:

2n− 3

10
√
n+ 4

=
2
√
n− 3√

n

10 + 4√
n

.

As n gets larger and larger, 3√
n
and 4√

n
both converge to 0. Hence the denominator converges to

10 but the numerator diverges to infinity since the 2
√
n terms grows without bound. Thus the

sequence 2n−3
10

√
n+4

diverges to infinity as well.

Warm-Up 3. Finally we look at the sequence

bn =
n!

nn
.

Again, both the numerator and denominator are going to infinity, but the fact that the denominator
goes to infinity more quickly than the numerator suggests that bn might converge to zero. However,
to justify this requires some care.

Note that bn is always bigger than or equal to zero. If we write out what the numerator and
denominator look like, we get:

0 ≤ n!

nn
=

1 · 2 · 3 · 4 · · ·n
n · n · n · n · · ·n.

To be clear, we wrote out n! as “1 times 2 times 3 times · · · all the way up to n”, and we write
out nn has n times itself n times. Note that each term in the numerator is smaller than or equal
to the corresponding term in the denominator below it. In particular, in:

0 ≤ n!

nn
=

1

n

󰀗
2 · 3 · 4 · · ·n
n · n · n · · ·n

󰀘
,

the fraction in brackets is less than 1 since the entire numerator is smaller than the entire denomi-
nator. This says that the entire term on the right is less than 1

n · 1 = 1
n , so

0 ≤ n!

nn
=

1

n

󰀗
2 · 3 · 4 · · ·n
n · n · n · · ·n

󰀘
≤ 1

n
.

The terms 0 on the left converge to 0 and the term 1
n on the right converges to 0, so the Sandwich

Theorem we saw last time says that the term bn = n!
nn in the middle converges to 0 as well! So we

get

lim
n→∞

n!

nn
= 0.

One point to make here is that it is not at all obvious that we should be looking to compare
our given sequence n!

nn with the simpler sequence 1
n , nor how the comparison should actually work

out. This is the type of things which comes with practice and having seen enough examples; not
that you have seen this particular comparison used in this example, you can be on the lookout for
similar things which might work in related examples.

Using continuous functions. Building off the last example, suppose we now look at the sequence

an = cos

󰀕
n!

nn

󰀖
.
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We know that the expression n!
nn at which cosine is being evaluated itself converges to 0, and so we

might be tempted to say that cosine of this expression should converge to cos 0:

lim
n→∞

cos

󰀕
n!

nn

󰀖
= cos 0 = 1since lim

n→∞

n!

nn
= 0.

This is true! But, we should be clear about the reason why.
The point is that this works because the function f(x) = cosx is a continuous function, of the

type you would have seen in a previous calculus course. This is the property which guarantees that
we can interchange a limit operation and function in the following way:

lim
n→∞

f(xn) = f( lim
n→∞

xn).

Thus, since the cosine function is continuous, we do indeed have

lim
n→∞

cos

󰀕
n!

nn

󰀖
= cos

󰀕
lim
n→∞

n!

nn

󰀖
= cos 0 = 1.

Similarly, since the function g(x) = ex is continuous, we could also say that

lim
n→∞

e
n!
nn = elimn→∞

n!
nn = e0 = 1.

This is useful in computing limits of sequences in that it allows us to focus on the specific part of
the limit which actually matters, say the n!

nn terms in the two examples above.
For an example where this doesn’t work if our function is not continuous, consider the function

h(x) defined by

h(x) =

󰀫
cosx if x > 0

10 if x ≤ 0.

Here it is NOT true that

lim
n→∞

h

󰀕
n!

nn

󰀖
= h

󰀕
lim
n→∞

n!

nn

󰀖

since the left-hand side is limn→∞ cos
󰀃
n!
nn

󰀄
= cos 0 = 1 but the right-hand side is h(0) = 10. The

“jump” which this function has at x = 0 prevents this limit property from working out.

Example with L’Hopital’s rule. Consider the sequence

an = n2e−n, which can be written as an =
n2

en
.

Note that here both the numerator and denominator are getting larger and larger (so going to ∞)
as n goes to infinity. However, the denominator goes to ∞ much faster than the numerator, which
suggests the sequence should converge to 0. To make this precise we need to use L’Hopital’s rule.
But, L’Hopital’s rule is a technique used for functions not sequences, so we should be clear about
how it is exactly that we’re applying it.

Consider the function

f(x) =
x2

ex
.

The sequence we’re looking at is the sequence an = f(n) obtained by plugging in whole numbers
n into f , which suggests that it should be possible to determine the behavior of our sequence by
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looking at the behavior of this function instead. (But, to be sure, this function and our sequence
are technically different things, although they are related.) We want to determine

lim
x→∞

x2

ex
.

Since the numerator and denominator both go to ∞, L’Hopital’s rule applies and says that we can
attempt to compute the limit by taking the derivative of the numerator and denominator:

lim
x→∞

x2

ex
= lim

x→∞

2x

ex
.

In this new fraction, the numerator and denominator each again go to ∞, so we can apply
L’Hopital’s rule to get:

lim
x→∞

x2

ex
= lim

x→∞

2x

ex
= lim

x→∞

2

ex
.

This final limit is zero since the numerator has limit 2 and the denominator ∞, so the fraction goes
to 0. Hence

lim
x→∞

x2

ex
= 0.

Since the original sequence is obtained by plugging in whole numbers n into f(x), we also get

lim
n→∞

n2e−n = 0,

so an converges to 0. The point is that the values of our sequence are among the values of the
function f(x) above, so if the values of this more general function approach some value, so too
should the values of our specific sequence.

Final example. Finally, we determine whether the sequence bn = (1 + 1
n)

n converges. Now, it
does not make sense to say that since 1

n converges to 0 and 1 raised to any power is still 1, we
should have

lim
n→∞

󰀕
1 +

1

n

󰀖n

= lim
n→∞

1n = 1.

This type of reasoning is NOT valid, since there is no limit property which will allow us to take
the limit of only a certain part of our expression (such as the 1

n term) while leaving any other
dependence on n as is. In other words, we must consider the entire expression (1 + 1

n)
n as a whole

to determine the behavior, and not simply the exponent n alone or the 1+ 1
n being exponentiated.

Another comment is that (1 + 1
n)

n is the product of a bunch of factors, but the number of factors
changes as n changes:

󰀕
1 +

1

1

󰀖
,

󰀕
1 +

1

2

󰀖󰀕
1 +

1

2

󰀖
,

󰀕
1 +

1

3

󰀖󰀕
1 +

1

3

󰀖󰀕
1 +

1

3

󰀖
, . . . .

Standard limit properties like limn→∞ anbn = (limn→∞ an)(limn→∞ bn) only work when the number
of factors considered is not change itself.

So, we need something new here. The key point is that we rewrite the given sequence expression
in an alternate way, using the fact that

x = elnx

for any positive number x. In our case, this means we can rewrite (1 + 1
n)

n as

󰀕
1 +

1

n

󰀖n

= eln(1+
1
n)

n

.
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But now, the natural log term in the exponent can be further written as

eln(1+
1
n)

n

= en ln(1+ 1
n).

Thus we were able to rewrite our given sequence expression (1 + 1
n)

n in a way which no longer as
something raised to the n-th power. Moreover, since ex is continuous, we can go one step further
and say:

lim
n→∞

en ln(1+ 1
n
) = elimn→∞ n ln(1+ 1

n
)

so that in the end this all comes down to finding the limit of the sequence n ln(1 + 1
n). The

overarching idea here, as we have seen in other examples, is to find a way to rewrite our given
sequence expression in a way which makes other limit properties applicable.

To compute the limit of the sequence n ln(1 + 1
n), we consider the function f(x) = x ln(1 + 1

x).
Rewriting this as

f(x) =
ln(1 + 1

x)
1
x

and taking a limit as x → ∞ gives a numerator and denominator which both approach 0. Thus
L’Hopital’s rule is applicable, and we get

lim
x→∞

ln(1 + 1
x)

1
x

= lim
x→∞

1
1+ 1

x

󰀃
− 1

x2

󰀄

− 1
x2

= lim
x→∞

1

1 + 1
x

= 1.

Since limx→∞ f(x) = 1, we also then have limn→∞ f(n) = limnto∞ n ln(1 + 1
n) = 1, so

lim
n→∞

󰀕
1 +

1

n

󰀖n

= lim
n→∞

en ln(1+ 1
n
) = elimn→∞ n ln(1+ 1

n
) = e1 = e.

Thus the sequence bn = (1 + 1
n)

n converges to e. The idea used in this example, rewriting an
expression using properties of e and ln as

expression = eln(expression),

is especially useful for sequences which involve n in both the exponent and thing being exponenti-
ated. Such examples will often involve L’Hopital’s rule as well.

Lecture 3: Newton’s Method

Warm-Up 1. We show that the sequence

an = n
√
n = n1/n

converges and determine its limit. As in the final example from last time, it is not the case that
we can argue that since the n being exponentiated diverges the entire sequence will diverge, nor
can we make immediate use of the fact that the exponent 1

n converges to 0; we must analyze the
behavior of the entire expression as is. We can rewrite the given sequence expression as

an = n1/n = eln(n
1/n) = e

lnn
n ,

and hence will use the fact that the function f(x) = ex is continuous so that we can focus on
computing the limit of the exponent first.

10



The function g(x) = lnx
x is one to which L’Hopital’s rule is applicable since the numerator and

denominator each go to ∞ as x → ∞, so we get:

lim
x→∞

lnx

x
= lim

x→∞

1/x

1
= lim

x→∞

1

x
= 0.

Thus, the sequence g(n) = lnn
n converges to 0 as well, so since f(x) = ex is continuous we have:

lim
n→∞

n1/n = lim
n→∞

e
lnn
n = elimn→∞

lnn
n = e0 = 1.

Warm-Up 2. Here is a new type of example. Define a sequence x1, x2, x3, x4, . . . by setting
x1 =

√
2 and then recursively defining each other term in terms of the previous one via:

xn+1 =
√
2 + xn for n ≥ 1.

This says that each term in our sequence beyond x1 is definee to be the square root of 2 plus the
previous term. So for instance, when n = 1 we get

x2 =
√
2 + x1 =

󰁴
2 +

√
2.

When n = 2 we get

x3 =
√
2 + x2 =

󰁵

2 +

󰁴
2 +

√
2.

Then the x4 term is the square root of 2 plus x3, which looks like:

x4 =

󰁶

2 +

󰁵

2 +

󰁴
2 +

√
2,

and so on. Thus our sequence looks like

√
2,

󰁴
2 +

√
2,

󰁵

2 +

󰁴
2 +

√
2,

󰁶

2 +

󰁵

2 +

󰁴
2 +

√
2, . . .

where we keep getting “nested” expressions involving more and more
√
2’s.

The goal of this problem is to find the number to which this sequence converges. First we say
something about why this sequence actually does converge. The first key observation is that this
sequence is increasing, which means that each term is larger than the one which came before:

√
2 <

󰁴
2 +

√
2 <

󰁵

2 +

󰁴
2 +

√
2 <

󰁶

2 +

󰁵

2 +

󰁴
2 +

√
2 < . . .

This happens because at each step we actually take the square root of a larger expression than
before, which results in a larger term still. The second key observation is that all terms in this
sequence are smaller than 2, so that this sequence is bounded meaning that its terms are constrained
to lie within some interval of finite length; in this case, all terms are between

√
2 and 2. This happens

because the expression of which we are taking the square root at each step is smaller than 4, so
that the resulting square root is smaller than 2. (We are only giving some intuition for why this
sequence is increasing and bounded, and actually justifying this carefully would take us outside the
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scope of this course, so we skip the precise justification here, but ask in office hours if you interested
in learning more.)

The upshot is that it is a fact that any sequence which is increasing and bounded must converge!
(Also, any sequence which is decreasing and bounded converges. We can summarize both of this
cases in one statement by saying that any sequence which is monotone and bounded converges,
where “monotone” refers to a sequence which is either increasing or decreasing.) Intuitively, if the
terms of a sequence are getting larger at each step but never larger than a fixed value (2 in this
case), then they should indeed “clump” towards some definite number, which will be its limit.

So, we know that this sequence xn does converge, say to some to-be-determined value L. To
figure out what L actually is, we go back to the recursive definition of our sequence:

xn+1 =
√
2 + xn.

Let us the take the limit now of both sides as n → ∞. On the right, we have

lim
n→∞

(2 + xn) = 2 + L,

so since the square root function is continuous we get

lim
n→∞

√
2 + xn =

󰁴
lim
n→∞

(2 + xn) =
√
2 + L.

Now, what about the limit of the left side limn→∞ xn+1? Let us write out some terms of this
sequence. The first term when n = 1 is x1+! = x2, the second term when n = 2 is x2+1 = x3, the
third term is x4, and so on:

x2, x3, x4, x5, . . .

The point is that this is almost the same sequence as the original xn:

x1, x2, x3, x4, x5, . . .

only with the first term x1 missing! That is, xn+1 is the same sequence as xn only with the terms
“shifted” over to the left by one spot and with the x1 term dropped. But, the behavior as n → ∞
for this new sequence will be the same as that for the original sequence, simply because as we go
further and further along in xn+1 we are getting the values as when we go further along in xn. So,
the shifted sequence xn+1 will also converge to L:

lim
n→∞

xn+1 = L.

Thus, the limit of the left side of
xn+1 =

√
2 + xn

is L and the limit of the right side is
√
2 + L. But the left and right side sequences above are meant

to be equal after all, so the resulting limits must be the same! Thus the to-be-determined value of
L must satisfy

L =
√
2 + L

and we can now use this equality to actually figure out what L is. Solving for L (and recalling that
L must be positive since the right

√
2 + L is a positive number) gives L = 2, so we conclude that

the sequence

√
2,

󰁴
2 +

√
2,

󰁵

2 +

󰁴
2 +

√
2,

󰁶

2 +

󰁵

2 +

󰁴
2 +

√
2, . . .
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of nested
√
2 expressions will converge to 2. Surprising, no?

Newton’s Method. Recursive sequences like the one in the second Warm-Up show up often in
practice. As our final topic before moving on to discussing series we give one such application,
called Newton’s Method. The setup is some equation

f(x) = 0

we want to solve. It is not often the case that we will be able to solve for x explicitly, so the goal
of Newton’s Method is to instead approximate these solutions using a sequence.

Here is the picture to have in mind:

The value x = a satisfying f(a) = 0 we are after is the point at which the graph of f intersects the x-
axis. Take some number x1 as a starting point, which is our first maybe not-so-good approximation
to a. Consider the tangent line to the graph of f at x = x1:

Denote by x2 the point where this tangent line intersects the x-axis. The key observation is that,
at least in the picture, this value x2 is now a better approximation to a than x1 was. To find what
x2 actually is, we recall that the tangent line to the graph of f at x1 has the following equation:

y = f(x1) + f ′(x1)(x− x1)

with slope f ′(x1). This intersects the x-axis when y = 0, which gives

0 = f(x1) + f ′(x1)(x− x1), or − f(x1) = f ′(x1)(x− x1).

13



The point x2 is the value of x which satisfies this equation, so solving for x gives

x2 = x1 −
f(x1)

f ′(x1)
.

(We will assume that f ′(x1) ∕= 0 so that this expression makes sense; indeed, if f ′(x1) = 0 the
tangent line is horizontal and hence would not actually intersect the x-axis. Newton’s Method does
not work if f ′(x1) = 0, in which case we should pick a different x1 as our starting value.)

Now consider the tangent line to the graph of f at the point x2:

The point where this tangent line intersects the x-axis is what we’ll call x3, with the point being
that this is now an even better approximation to the number a we want than x2 was. This tangent
line has equation

y = f(x2) + f ′(x2)(x− x2),

and solving for the x-intercept just as before will give

x3 = x2 −
f(x2)

f ′(x2)
.

And so on and so on, we continue this process, at each step taking the x-intercept of the tangent line
corresponding to the previously obtained point to get a whole sequence of numbers x1, x2, x3, x4, . . ..
Concretely, all terms beyond the first are characterized by the equality

xn+1 = xn − f(xn)

f ′(xn)

which recursively defines each term in the sequence we are constructing in terms of the previous
ones. The upshot is that—under some assumptions we’ll take for granted hold in the examples
we’ll look at—the numbers x1, x2, x3, x4, . . . do indeed approximate a solution a of f(x) = 0, with
the approximation becoming more accurate the further along we go.

Example. We use Newton’s Method to approximate the positive solution of x2 − 7 = 0, or in
other words the positive root of the function f(x) = x2 − 7. (A root of a function is just an input
which results in the value 0.) Take x1 = 3 as a starting point. Indeed, we know that number we
actually want,

√
7 (i.e. the positive solution of x2 − 7 = 0), should lie between 2 and 3 since

22 < 7 < 32,

14



so x1 = 3 seems like a good first approximation.
Since f ′(x) = 2x, the recursive equality defining the sequence in Newton’s Method looks like:

xn+1 = xn − f(xn)

f ′(xn)
= xn − x2n − 7

2xn
.

Thus, starting with x1 = 3, we next get

x2 = x1 −
x21 − 7

2x1
= 3− 32 − 7

2(3)
= 3− 2

6
≈ 2.66667

after we round to the nearest fifth decimal location. We expect this value to be a better ap-
proximation to

√
7 than x1 = 3. Now we use this value of x2 to find the next term in Newton’s

Method:

x3 = x2 −
f(x2)

f ′(x2)
= 2.66667− 2.666672 − 7

2(2.66667)
≈ 2.64583.

The next term is:

x4 = 2.64583− 2.645832 − 7

2(2.64583)
≈ 2.64575.

To summarize, the numbers we have obtained from Newton’s Method so far are:

3, 2.66667, 2.64583, 2.64575,

each giving a better approximation to
√
7 than the last. In fact, the fourth term already gives

the correct first five decimals in the decimal expression of
√
7, and any further terms we get from

Newton’s Method will only give an even better degree of accuracy.

Lecture 4: Infinite Series

Warm-Up. We approximate the solution of the equation cosx = x using Newton’s Method. The
point is that a number x satisfying this equality is the same as a number x satisfying cosx− x = 0
instead, and this can be characterized as saying x is a root of the function f(x) = cosx − x. So,
we use Newton’s Method to approximate this root.

The recursive sequence we get in Newton’s Method is defined by:

xn+1 = xn − f(xn)

f ′(xn)
= xn − cos(xn)− xn

− sin(xn)− 1
.

We can visualize the point we are looking for as the point at which the graphs of y = cosx and
y = x intersect, and by drawing these (say using a computer) we can eyeball that the intersection
seems to occur near x1 = 1, which we will take as our starting point in Newton’s Method. Then
we get:

x2 = 1− cos(1)− 1)

− sin(1)− 1
≈ 0.75.

Next we get:

x3 = 0.75− cos(0.75)− 0.75

− sin(0.75)− 1
≈ 0.73911,

and then

x4 = 0.73911− cos(0.73911)− 0.73911

− sin(0.73911)− 1
≈ 0.739085,
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which turns out to give the correct value up to six decimal places.
One quibble you might have about our previous use of Newton’s Method when approximating√

7 is that Newton’s Method was no necessary since, if we are going to use a calculator anyway, we
may just as well have plugged in

√
7 to see the answer right away. One answer to this quibble is

that the way your calculator actually computed
√
7 is likely through the use of Newton’s Method

itself, which is just hidden in the inner workings of whatever software was used. A better answer
is that not all things one might want to approximate have easy answers like “

√
7” in terms of well-

known expressions; indeed in this example, there is no way to easily write down what the solution
of cosx = x is exactly, and approximating it using something like Newton’s Method is the best we
can do. This is the case for most equations of interest which pop-up in applications.

Why does Newton’s Method Work? One final thing to clarify is the reason as to why Newton’s
Method works, in the sense that if the sequence it generates does converge, why it converges to a
root of the given function: if xn converges to L, why does L satisfy f(L) = 0? Take the recursive
definition in Newton’s Method:

xn+1 = xn − f(xn)

f ′(xn)

We compute the limit of both sides as n → ∞. On the left we get L again, since, as we saw in an
earlier example, the terms in xn+1 are the same as those in xn, only shifted over one spot, so they
approach the same thing. The xn term on the right also approaches L.

Now, f is continuous since otherwise it would not have a derivative, so since xn converges to L,
f(xn) converges to f(L):

lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(L).

If we also assume that f ′ is continuous (a standard assumption in Newton’s Method), then f ′(xn)
will converge to f ′(L). Thus after taking limits of both sides in the recursive definition, we get:

L = L− f(L)

f ′(L)
,

and solving for f(L) indeed gives f(L) = 0. So, if the sequence Newton’s Method generates does
converge, it will definitely converge to a root of f(x).

Series. And now, after having spent time developing the idea of a sequence, we can now talk
about series, which are our main objects of interest this quarter. Recall that a series is an infinite
sum, i.e. an expression where we attempt to add together infinitely many quantities. (To be clear,
what makes this as “infinite” sum is the fact that we are adding infinitely many things, NOT that
the resulting sum itself might be infinite.) We use the same

󰁓
notation for series we might have

previously seen for Riemann sums when discussing integrals, only now we indicate the fact that
our sums go on forever without end. To be clear, the notation

∞󰁛

n=0

an

denotes the infinite sum obtained by adding together all terms of the sequence an, starting at n = 0
and going beyond. So, in this case we get

∞󰁛

n=0

an = a0 + a1 + a2 + a3 + a4 + · · · ,
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where the · · · indicate that our sum is without end. Series don’t have to start at 0; for instance,

∞󰁛

n=2

an = a2 + a3 + a4 + · · ·

begins the infinite sum at n = 2 instead. In general, the notion says we plug in the first value of
n to get the first term, then increase n by 1 to compute the next term, then increase again and so
on, adding on each new term we get at each step.

The key question we care about is whether a series converges, meaning that we actually get a
finite value out of the given infinite sum, or diverges, meaning that we don’t get a specific value.
It is kind of amazing that even though we are adding together infinitely many quantities, we often
get finite sums as a result.

Example 1. Consider the series
∞󰁛

n=1

n2.

The first term when n = 1 is 12 = 1, the second term when n = 2 is 22 = 4, and so on. Writing
out this series as an infinite sum gives

∞󰁛

n=1

n2 = 1 + 4 + 9 + 16 + · · · .

In this case, this infinite sum should intuitively not result in a finite value. One way to say this is
that the terms we are adding on at each step are getting larger and larger, which in turn makes
the resulting sum larger and larger. Another way to say this is to note that each term in our sum
bigger than or equal to 1, so this given sum should be larger than the sum obtained by replacing
each term by 1:

1 + 4 + 9 + 16 + · · · ≥ 1 + 1 + 1 + 1 + · · · .

But adding together infinitely many 1’s certainly results in ∞ as the value, so our sum, which is
larger, should be infinite as well and hence should not converge, so it should diverge.

Partial Sums. But to make all of this precise, we have to be more careful about what it actually
means for a series to converge. Consider the partial sums sk of the series

󰁓∞
n=0 an in question,

which are the sums obtained by adding one more term in our series at each step:

s0 = a0

s1 = a0 + a1

s2 = a0 + a1 + a2

s3 = a0 + a1 + a2 + a3
...

In this notation, the k in sk denotes the last term in the series we are adding on. We could also
write this using

󰁓
notation as

sk = a0 + a1 + · · ·+ ak =

k󰁛

n=0

an.
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These numbers sk form a new sequence, the sequence of partial sums of
󰁓

an.
Now, if the infinite sum in question were to actually exist and equal S:

∞󰁛

n=0

an = a0 + a1 + a2 + a3 + a4 + · · · = S,

the key point is that the partial sums ak would provide better and better approximations to this
value L: as we add on more terms in a0+a1+a2+ · · · we should get closer and closer to number S
which the entire infinite sum equals. So, we will take precisely this idea and use it to define what
it means for the series to converge and have the value S:

We say that the series
󰁓∞

n=0 an converges precisely when the sequence of partial sums
sk = a0+ · · ·+ak converges, and if so we say that the limit S of this sequence of partial
sums is the value of the infinite series:

󰁓∞
n=0 an = S. The series

󰁓∞
n=0 an diverges if

the sequence sk of partial sums diverges.

So, the upshot is that asking whether or not a series converges to diverges is exactly the same as
asking whether or not its sequence of partial sums converges or diverges. We will use this definition
directly in a few examples, but soon enough we’ll start to develop better convergence tests we can
use to determine convergence or divergence of a series.

Warning. There are a lot of concepts and terms involved in saying that a series converges: first
there is the sequence an, then the series

󰁓
an obtained by adding together the terms of an, and

then another sequence sk = a0 + · · · + ak formed by taking partial sums. These objects are all of
course related, but they are not the same thing, so take care not to confuse them. In particular,
asking whether or not a series

󰁓
an converges is NOT the same asking whether or not the sequence

an converges, which is common point of confusion.

Back to Example 1. Back in Example 1 we mentioned the series
󰁓∞

n=1 1 obtained by adding
together infinitely many 1’s in relation to the series

󰁓∞
n=1 n

2. We said that intuitively
󰁓∞

n=1 1
should diverge since adding together infinitely any 1’s should not result in a definite, finite value.
But now we can be more precise. We can compute the partial sums of

󰁓∞
n=1 1 as:

s1 = 1

s2 = 1 + 1 = 2

s3 = 1 + 1 + 1 = 3

s4 = 1 + 1 + 1 + 1 = 4

and so on. In general, the k-th partial sum is sk = k. Determining the convergence/divergence of
the series

󰁓∞
n=1 1 is the same as determining the convergence/divergence of this sequence sk = k

as k → ∞, by definition of what it means for a series to converge. Since the sequence of partials
sums sk = k diverges as k → ∞, we thus know that the series

󰁓∞
n=1 1 diverges.

Now considering
󰁓∞

n=1 n
2, its partial sums looks like:

s1 = 1

s2 = 1 + 4 = 5

s3 = 1 + 4 + 9 = 14

s4 = 1 + 4 + 9 + 16 = 30
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and so on. These partial sums are diverging since they only get larger and larger, and this is why
the series

󰁓∞
n=1 n

2 diverges. Again, the point is that the behavior of the partial sums determines
the behavior of the series, by definition.

Example 2. Finally, we determine whether or not the series

∞󰁛

n=1

󰀕
1

n
− 1

n+ 1

󰀖

converges. The point is that here we can also determine the partial sums explicitly. The k-th
partial sum is the sum obtained by adding up the terms of the series only up to the n = k term, so
for instance the first partial sum is:

s1 = 1− 1

2
,

the second partial sum is

s2 =

󰀕
1− 1

2

󰀖
+

󰀕
1

2
− 1

3

󰀖
= 1− 1

3
,

the third partial sum is

s3 =

󰀕
1− 1

2

󰀖
+

󰀕
1

2
− 1

3

󰀖
+

󰀕
1

3
− 1

4

󰀖
= 1− 1

4
,

and so on. In general, this pattern where intermediate terms cancel out carries through in all
partial sums, so the k-th partial sum is

sk =

󰀕
1− 1

2

󰀖
+

󰀕
1

2
− 1

3

󰀖
+

󰀕
1

3
− 1

4

󰀖
+ · · ·+

󰀕
1

k − 1
− 1

k

󰀖
+

󰀕
1

k
− 1

k + 1

󰀖
= 1− 1

k + 1
.

(This is what is known as a telescoping series, which is one where a piece of term cancels with a
piece from a different term.) A series converges by definition when its sequence of partial sums
converges, so since the sequence of partial sums sk = 1− 1

k+1 in this case converges to 1 as k goes
to infinity, our given series converges to 1. That is, the value of this infinite sum does exist and is
equal to 1:

∞󰁛

n=1

󰀕
1

n
− 1

n+ 1

󰀖
= 1.

Careful. The infinite sum we considered above looks like
󰀕
1− 1

2

󰀖
+

󰀕
1

2
− 1

3

󰀖
+

󰀕
1

3
− 1

4

󰀖
+ · · · .

If we regroup terms like so:

1 +

󰀕
−1

2
+

1

2

󰀖
+

󰀕
−1

3
+

1

3

󰀖
+

󰀕
−1

4
− 1

4

󰀖
+ · · · ,

it might at first glance make sense to say that this is

1 + 0 + 0 + 0 + · · ·

19



since each term the parentheses in the regrouped expression is 0. This seems to suggest that the
series should converge and indeed have the value 1. However, we have to be careful with this type
of reasoning. For instance, instead consider the series

∞󰁛

n=0

(−1)n = 1− 1 + 1− 1 + 1− 1 + · · · .

Grouping terms like this:
(1− 1) + (1− 1) + (1− 1) + · · ·

would suggest the value is 0 + 0 + 0 + 0 + · · · = 0, while grouping terms like this:

1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·

suggests the value is 1 + 0 + 0 + 0 + · · · = 1. The series
󰁓∞

n=0(−1)n is actually divergent (i.e. not
convergent) as we will see next time, so neither of these “values” is valid. The point is that trying
to manipulate an infinite sum (by regrouping terms) as if it were a finite sum can lead to trouble.
We really do have to rely on, for now, the behavior of the partial sums.

Lecture 5: More on Series

Warm-Up 1. We show that the series
󰁓∞

n=0(−1)n diverges. This makes sense intuitively since
alternating between adding and subtracting 1’s does not lead to a sum that approaches any one
particular thing, but we need to look at the partial sums to be precise.

The partial sums of this series look like:

s0 = (−1)0 = 1

s1 = 1 + (−1) = 0

s2 = 1 + (−1) + 1 = 1

s3 = 1 + (−1) + 1 + (−1) = 0

and so on. We get that the partial sums themselves alternate between 1 and 0: sk is 1 when k is
even and 0 when k is odd. Since this sequence of partial sums diverges (alternating 1’s and 0’s do
not approach any one definite value), the series in question then diverges by definition.

Warm-Up 2. Now consider the series

∞󰁛

n=1

n = 1 + 2 + 3 + 4 + · · ·

The first few partial sums look like:

s1 = 1

s2 = 1 + 2 = 3

s3 = 1 + 2 + 3 = 6

s4 = 1 + 2 + 3 + 4 = 10.
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In general, it turns out that adding together the first k positive integers gives the value k(k+1)
2 :

sk = 1 + 2 + · · ·+ k =
k(k + 1)

2
.

(If you haven’t seen this equality before, one way to derive it is to consider 2sk = sk + sk, only
where we write the second sk in the reverse order: 2sk = (1 + 2+ · · ·+ k) + (k + [k − 1] + · · ·+ 1),
which can be written as k + 1 added to itself k times by pairing the 1 in the first sum with the k
in the second, the 2 in the first sum with the k − 1 in the second, and so on. Thus 2sk = k(k + 1),

and dividing by 2 gives the formula for sk.) Thus since the sequence sk = k(k+1)
2 of partial sums

diverges as k → ∞, the series
󰁓∞

n=1 n diverges as well.

First divergence test. The two Warm-Up examples already illustrate our first divergence test: in
a series

󰁓∞
n=1 an, if the sequence an does not converge to 0, the series

󰁓∞
n=1 an must diverge. Now,

it is absolute crucial here to recognize what this is saying, which highlights the difference between
sequences and series. Saying that the series

󰁓∞
n=1 an converges is NOT the same as saying that

the sequence an converges! As emphasized last time, these are related concepts for sure, but they
do not mean the same thing. The sequence an describes the individual terms being added together
to produce the series

󰁓
an.

What this first divergence test says is that if the terms of the sequence an do not themselves
approach 0, the infinite sum

a1 + a2 + a3 + a4 + · · ·
cannot possibly exist. In the previous example, the sequence n2 does not converge to 0 (in fact it
diverges), so the series

󰁓∞
n=1 n

2 cannot converge. The intuitive idea is that in order for an infinite
sum

a1 + a2 + a3 + a4 + · · ·
to have any hope of resulting in a finite value, it had better be the case that the terms being added
on at each step are getting smaller and smaller; if this is not the case, the infinite sum cannot
actually exist as a finite value. This test goes by various names: our book calls it the “n-th term
test”, and other books call it the “test for divergence”.

Warning. So, possibly the first thing to do when considering whether a series
󰁓

an converges
or diverges is to see what is happening with the sequence an: if limn→∞ an ∕= 0, you’re finished—
the series

󰁓
an will diverge. But as a warning (also a common cause of confusion): just because

limn→∞ an does equal 0 does NOT mean that the corresponding series
󰁓

an converges! Knowing
that an converges to 0 only tells us that the series

󰁓
an has some hope of converging, but does

not by itself tell us that the series does indeed converge; this is why we need to consider further
convergence tests, as we’ll develop in the coming days. Again, the convergence of the sequence an
is related to the convergence of the series

󰁓
an, but it is not literally the same idea; sequences and

series are related but different concepts!

Geometric series. One of the most important types of series is what is known as a geometric
series. This is a series of the form ∞󰁛

n=0

rn,

where we are adding together higher and higher powers of a number r. So, written as an infinite
sum, a geometric series looks like

∞󰁛

n=0

rn = 1 + r + r2 + r3 + r4 + · · · .
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The first term of 1 comes from r0 = 1. Geometric series are important because it is often the case
that other series can be related to or compared with such a series, which is good because we can
tell exactly when a geometric series converges and what it converges to when it does!

Here is the basic fact you should know by heart: when r is a number outside of the interval
(−1, 1) (so when r ≤ −1 or 1 ≤ r), the geometric series

󰁓∞
n=0 r

n diverges, while when r is a number
in the interval (−1, 1) (so when −1 < r < 1), the geometric series

󰁓∞
n=0 r

n converges to the value
1

1−r . We write this as

∞󰁛

n=0

rn = 1 + r + r2 + r3 + · · · = 1

1− r
when − 1 < r < 1.

Amazingly this is saying that if we add up the numbers 1, r, r2, r3, r4, . . . we get 1
1−r as the result,

at least when −1 < r < 1, even though there are infinitely many numbers we are adding together.
So, this is a concrete example of an infinite sum which actually has a finite value.

So, how do we know that
󰁓∞

n=0 r
n converges when −1 < r < 1 and that its value in this case

is 1
1−r? The answer, of course, comes from the partial sums. The first few partial sums are:

s0 = 1

s1 = 1 + r

s2 = 1 + r + r2

s3 = 1 + r + r2 + r3

so sk = 1 + r + r2 + · · · + rk in general. It turns out there is a simpler way of expressing such a
sum. For instance, when k = 1 we have

1 + r =
1− r2

1− r
,

which we can see by factoring 1− r2 into (1− r)(1 + r). When k = 2 we have

1 + r + r2 =
1− r3

1− r
,

which can see by noting that (1 + r + r2)(1− r) = 1− r3. In general, the k-th partial sum can be
written as

1 + r + r2 + · · ·+ rk =
1− rk+1

1− r
.

Indeed, you can check that (1+ r+ r2+ · · ·+ rk)(1− r) does multiply out to 1− rk+1, and dividing
through by 1− r gives the formula above.

Now we’re in business! Recall that r was a number between −1 and 1. For such numbers, we
have

lim
k→∞

rk+1 = 0.

Thus the limit of the k-th partial sums as k goes to ∞ is:

lim
k→∞

1− rk+1

1− r
=

1− 0

1− r
=

1

1− r
,

so in this case the series
󰁓∞

n=0 r
n converges and has the value 1

1−r . For a number r which is not

between −1 and 1, limk→∞ rk is not zero, and then the partial sum sk = 1−rk+1

1−r diverges, so the
geometric series

󰁓∞
n=0 r

n diverges when r is outside (−1, 1).
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Example. We show that the series
∞󰁛

n=0

2 · 3n+1

5n

converges and determine its value. The key is that we can express this series in terms of a geometric
series. By rewriting the terms we are adding together, we get:

∞󰁛

n=0

2 · 3n+1

5n
=

∞󰁛

n=0

2 · 3n · 3
5n

=

∞󰁛

n=0

6

󰀕
3

5

󰀖n

.

The point of doing this is to obtain an expression which involves taking a fixed number to the n-th
power, since this is the type of expression which shows up in a geometric series. After “factoring
out” the 6, we’re left with a geometric series with 3

5 < 1, so

∞󰁛

n=0

2 · 3n+1

5n
=

∞󰁛

n=0

6

󰀕
3

5

󰀖n

= 6

∞󰁛

n=0

󰀕
3

5

󰀖n

converges. The value of the series above before we multiply by 6 is found using

∞󰁛

n=0

rn =
1

1− r

with r = 3
5 ; we get

󰁓∞
n=0

󰀃
3
5

󰀄n
= 1

1− 3
5

. Hence after multiplying by 6 and simplifying we see that

the series in question converges to 15:

∞󰁛

n=0

2 · 3n+1

5n
= 6

∞󰁛

n=0

󰀕
3

5

󰀖n

= 6

󰀣
1

1− 3
5

󰀤
= 6

1
2
5

=
30

2
= 15.

To clarify one point: why is that we can “factor out” 6 as we did above? The point is that this
is simply a version of the distributive property of multiplication. If we write out the terms of the
sum ∞󰁛

n=0

6

󰀕
3

5

󰀖n

we get:

6 + 6

󰀕
3

5

󰀖
+ 6

󰀕
3

5

󰀖2

+ 6

󰀕
3

5

󰀖2

+ · · · .

Here we can factor the 6 out to get:

6

󰀕
1 +

3

5
+

32

52
+

33

53
+ · · ·

󰀖
,

which can be written back in terms of summation notation as:

6

∞󰁛

n=0

󰀕
3

5

󰀖n

.

The point, again, is that this is just an infinite version of the distributive property.
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Alternatively, imagine we had the same series only with a different starting point:

∞󰁛

n=1

6

󰀕
3

5

󰀖n

.

How do we determine the value of this series? If we write out these terms we get:

6

󰀕
3

5

󰀖
+ 6

󰀕
3

5

󰀖2

+ 6

󰀕
3

5

󰀖3

+ · · · .

The key observation is that this sum is the same as the one we had above:

6 + 6

󰀕
3

5

󰀖
+ 6

󰀕
3

5

󰀖2

+ 6

󰀕
3

5

󰀖2

+ · · ·

only that the initial 6 (the zeroth) term is missing. So, this new sum should be equal to the old
one minus 1: ∞󰁛

n=1

6

󰀕
3

5

󰀖n

=

∞󰁛

n=0

6

󰀕
3

5

󰀖n

− 1.

We found the value of the old one above to be 15, so the value of this new series is 24:

∞󰁛

n=1

6

󰀕
3

5

󰀖n

=

∞󰁛

n=0

6

󰀕
3

5

󰀖n

− 1 = 25− 1 = 24.

In general, since
∞󰁛

n=0

an = a0 + a1 + a2 + · · · = a0 +

∞󰁛

n=1

an,

we get
∞󰁛

n=1

an =

∞󰁛

n=0

an − a0.

A similar thing works for other sums that start at a value larger than 1; for instance:

∞󰁛

n=2

=

∞󰁛

n=0

an − a0 − a1.

Lecture 6: Integral Test

Warm-Up 1. Consider the series
∞󰁛

n=1

(−1)n
4n+2

3n−1
.

We claim that this diverges, which we can show by expressing it in terms of a geometric series. We
can rewrite the n-term in the sequence being summed up as:

(−1)n
4n+2

3n−1
=

(−1)n4n42

3n3−1
= 48

󰀕
−4

3

󰀖n

.
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To be clear, the 48 came from 42

3−1 = 16 · 3. Thus our given series is

∞󰁛

n=1

(−1)n
4n+2

3n−1
=

∞󰁛

n=1

48

󰀕
−4

3

󰀖n

= 48

∞󰁛

n=1

󰀕
−4

3

󰀖n

.

But now the resulting geometric series
󰁓∞

n=1

󰀃
−4

3

󰀄n
diverges since −4

3 falls outside the interval
(−1, 1), so the original series diverges as well.

Warm-Up 2. We now look at the series

∞󰁛

n=2

󰀕
1

2n
+

1

3n

󰀖
.

This is not itself a geometric series, but it can be expressed as the sum of two geometric series,
namely

∞󰁛

n=2

1

2n
=

∞󰁛

n=2

󰀕
1

2

󰀖n

and

∞󰁛

n=2

1

3n
=

∞󰁛

n=2

󰀕
1

3

󰀖n

.

Each of these converges since the respective values we are taking powers of, 1
2 and 1

3 , are each
between −1 and 1. It is a fact that sum of two convergent series is itself convergent, so our given
series is convergent.

To find the value of our series we find the value of each component series first. We have:

∞󰁛

n=2

󰀕
1

2

󰀖n

=

∞󰁛

n=0

󰀕
1

2

󰀖n

−
󰀕
1

2

󰀖0

−
󰀕
1

2

󰀖1

=
1

1− 1
2

− 1− 1

2
= 2− 1− 1

2
=

1

2
,

where we use the fact that the series starting at n = 2 is almost the series starting at n = 0 except
that it excludes the term corresponding to n = 0 and the term corresponding to n = 1:

a2 + a3 + a4 + · · · = (a0 + a1 + a2 + a3 + a4 + · · · )− a0 − a1.

Similarly, we have:

∞󰁛

n=2

󰀕
1

3

󰀖n

=

∞󰁛

n=0

󰀕
1

3

󰀖n

−
󰀕
1

3

󰀖0

−
󰀕
1

3

󰀖1

=
1

1− 1
3

− 1− 1

3
=

3

2
− 1− 1

3
=

1

6
.

Thus, overall we find that

∞󰁛

n=2

󰀕
1

2n
+

1

3n

󰀖
=

∞󰁛

n=2

1

2n
+

∞󰁛

n=2

1

3n
=

1

2
+

1

6
.

Just one final observation. Note it makes intuitive sense to say that

∞󰁛

n=2

󰀕
1

2

󰀖n

=
1

4
+

1

8
+

1

16
+

1

32
+ · · · = 1

2

as we derived above by interpreting what this means in terms of distance: start at the point 0 on
a number line and walk a distance of 1

4 (half the way to 1
2), then another distance of 1

8 (half the
remaining distance to 1

2), then another distance of 1
16 (half the remaining distance to 1

2), and so
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on and so on; if we keep moving half the remaining distance to 2 at each step forever and ever, we
will overall (in an infinite amount of time) reach 1

2 itself, which is what the equality above says.

Convergence tests. The main question we will be interested in for now is determining whether
or not a series converges. So far we can only easily answer this for geometric series, or possibly
examples where a formula for the partial sums can be determined explicitly, such as for a telescoping
series. But most series are not of these types, so we need more convergence tests. This is what we’ll
focus on over the next few lectures; in particular we’ll look at the Integral Test, the Comparison
Test, the Limit Comparison Test, the Alternating Series Test, and the Ratio Test. It is crucial to
learn to recognize the types of series each of these tests is best suited for. Our eventual goal is to
understand how we can represent functions as series, but the point is that first we need to better
understand when series actually converge.

None of the tests we’ll consider will give us a way to determine the actual value of a convergent
series, only a way to determine that a series does indeed converge. Finding values is something
we’ll be able to do more easily after we discuss the idea of expressing a function as a series.

Integral test. The integral test applies to series of the form

∞󰁛

n=1

f(n)

where f is a continuous, positive, decreasing function. The integral test says that in this setting,
the series

󰁓∞
n=1 f(n) and the improper integral

󰁕∞
1 f(x) dx both behave in the same way, meaning

they both converge or they both diverge. This is useful since it is usually simpler to determine
whether or not an improper integral converges since we can often try to compute its actual value.
So, we can turn problems about series convergence into ones about integral convergence instead.
Note that the integral test does NOT say that

∞󰁛

n=1

f(n) and

󰁝 ∞

1
f(x) dx

have the same value, only that both values are either finite or infinite at the same time. We’ll give
some intuition behind the integral test after the first example below.

Example 1. Consider the series
∞󰁛

n=1

1

n
.

This is known as the harmonic series. The terms 1
n in our series come from plugging n into the

function

f(x) =
1

x
.

Since this function is positive and decreasing, the integral test applies. (Note that this function
is decreasing since increasing x makes the value f(x) smaller. Another way to see this is that the
derivative f ′(x) = − 1

x2 is always negative.) So, we instead consider the integral

󰁝 ∞

1

1

x
dx,
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which we can work with directly. We get:
󰁝 ∞

1

1

x
dx = lim

b→∞

󰁝 b

1

1

x
dx = lim

b→∞
lnx

󰀏󰀏󰀏
b

1
= lim

b→∞
(ln b− 1) = ∞.

Thus
󰁕∞
1 f(x) dx diverges, so the integral test says that the series

󰁓∞
n=1

1
n diverges as well.

Note here that even though the terms of this series 1
n approach zero, the series obtained by

adding these terms together does NOT converge. We’ve mentioned previously that if limn→∞ an
is not zero, then

󰁓
an for sure diverges, and this now an examples where limn→∞ an = 0 and

yet
󰁓

an diverges. In general, knowing that limn→∞ an = 0 says nothing about whether or not󰁓
an convergence, so a different convergence test is needed. The point of this example is that even

though the terms being added on at each step in

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·

are getting smaller and smaller, the sum of all of them is actually infinite. (Surprising, no?)

Why does the integral test work? To get a glimpse as to why the integral test works, we note
that the series ∞󰁛

n=1

f(n)

in the setup of the integral test can be interpreted as a sum of areas. Indeed, think of each f(n)
term as

f(n) · 1,
which is the area of a rectangle of height f(n) and base length 1. Draw these rectangles like so,
where the n-th one has base given by the interval [n, n+ 1]:

The sum of the areas of these (infinitely many) rectangles is:

f(1) + f(2) + f(3) + f(4) + · · · =
∞󰁛

n=1

f(n).

The integral test is saying that this sum of areas is finite if and only if the area under the curve
y = f(x) from x = 1 to infinity is finite.

Based on the picture above, we can see that the sum of the areas of the rectangles is actually
larger than the area under the curve, so:

∞󰁛

n=1

f(n) ≥
󰁝 ∞

1
f(x) dx ≥ 0.

Thus if the integral is infinite, so is the series and hence it diverges. Now, from this picture below:
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we see that 0 ≤
󰁓∞

n=2 f(n) ≤
󰁕∞
1 f(x) dx, so if the integral is finite so is the series. (Technically,

this picture will imply that
󰁓∞

n=2 f(n) converges, but this in turn implies that the series starting
at n = 1 also converges.) Again the idea is that even though these values aren’t the same, they are
pretty close to one another so that either both are finite or both are infinite simultaneously, which
is the statement of the integral test. Again, this is not a proof, but is meant to suggest that there
should be some relation between the value of

󰁓∞
n=1 f(n) and that of

󰁕∞
1 f(x) dx.

p-series test. The same type of integral computation used in the example above applies to series
of the form ∞󰁛

n=1

1

np

where p is some constant. (The previous example was the case p = 1.) The function f(x) = 1
xp is

positive and decreasing on the interval [1,∞), so the integral test applies to say that

∞󰁛

n=1

1

np
converges if and only if

󰁝 ∞

1

1

xp
dx converges.

For p > 1, the corresponding integral is:

󰁝 ∞

1

1

xp
dx = lim

b→∞

󰁝 b

1

1

xp
dx = lim

b→∞

1

(1− p)xp−1

󰀏󰀏󰀏󰀏
b

1

= lim
b→∞

1

1− p

󰀕
1

bp−1
− 1

󰀖
=

1

p− 1
.

It is important that p > 1 since otherwise bp−1 would not remain in the denominator of the fraction
in the final limit; if instead p < 1, we end up with the limit of 1

1−p(b
1−p − 1) as b → ∞, which is ∞

since 1− p > 0. Hence in this case the integral diverges.
Thus we get that

∞󰁛

n=1

1

np
converges if p > 1, and diverges if p ≤ 1.

Such series are known as p-series, and so we’ll call this is the p-series test.

Fun fact. Here is an interesting fact, which goes way beyond the scope of this course: the actual
value of the p-series above when p = 2 is π2

6 :

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · · = π2

6
.

That is, if you could literally add up all the infinitely many terms on the left, you would get π2

6
as the result. This is surprising since it is in no way clear what π has to do with the sum of such
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fractions, and the π seems to come out of nowhere. You might see a justification of this value if
you ever learn about Fourier series, but this is not something we’ll come back to in this course.
So, no, you do NOT have to know that

󰁓∞
n=1

1
n2 = π2

6 for the purposes of an exam; this was only
meant to illustrate an interesting observation.

Example 2. Finally we consider the series

∞󰁛

n=2

n2e−n3
.

First, the fact that we are starting at n = 2 instead of n = 1 is not important: in this case we simply
use the integral test with the integral

󰁕∞
2 x2e−x3

dx instead. The fact that x2e−x3
is possible to

integrate (using the substitution u = −x3) without too much trouble is what suggests the integral
test may be useful. To be sure the integral test applies, we consider the function

f(x) = x2e−x3
.

This is positive for x ≥ 2, and

f ′(x) = 2xe−x3
+ x2e−x3

(−3x2) = (2x− 3x4)e−x3

is negative for x ≥ 2 since 2x − 3x4 is negative but e−x3
is positive. The function f(x) is also

continuous, so the integral test is applicable.
We have

󰁝 ∞

2
x2e−x3

dx = lim
b→∞

󰁝 b

2
x2e−x3

dx

= lim
b→∞

−1

3
e−x3

󰀏󰀏󰀏
b

2

= lim
b→∞

−1

3
(e−b3 − e−8)

=
1

3
e−8.

(To be clear, to evaluate the integral
󰁕 b
2 x2e−x3

dx we used the substitution u = −x3.) Thus󰁕∞
2 x2e−x3

dx converges, so the integral test says that
󰁓∞

n=2 n
2e−n3

converges as well.

Lecture 7: Comparison Tests

Warm-Up 1. We determine whether the series

∞󰁛

n=3

n2

n3 + 1

converges or diverges. The fact that x2

x3+1
is possible to integral using a substitution suggests that

the integral test may be useful. (The integral test is not the only thing which works here; we’ll
see later that we can also use the limit comparison test.) First we verify that the integral test is
actually applicable. The function

f(x) =
x2

x3 + 1
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is positive for x ≥ 3, and since

f ′(x) =
(x3 + 1)2x− x2(3x2)

(x3 + 1)2
=

2x− x4

(x3 + 1)2
=

2x(1− x3)

(x3 + 1)2

is negative for x ≥ 3 (since the numerator is negative and the denominator positive), the integral
test is indeed applicable.

We have:

󰁝 ∞

3

x2

x3 + 1
dx = lim

b→∞

󰁝 b

3

x2

x3 + 1
dx

= lim
b→∞

1

3
ln |x3 + 1|

󰀏󰀏󰀏
b

3

= lim
b→∞

1

3
[ln(b3 + 1)− ln 10]

= ∞,

where the integral
󰁕 b
3

x2

x3+1
dx was computed using the substitution u = x3 + 1. Thus

󰁕∞
3

x2

x3+1
dx

diverges, so the integral says that
󰁓∞

n=3
n2

n3+1
diverges as well.

Warm-Up 2. We determine whether the series

∞󰁛

n=2

1

n lnn

converges or diverges. The function

f(x) =
1

x lnx

is positive for x ≥ 2, and

f ′(x) = − lnx+ 1

(x lnx)2

is negative for x ≥ 2, so f is decreasing. Hence the integral test is applicable.
We have:

󰁝 ∞

2

1

x lnx
dx = lim

b→∞

󰁝 b

2

1

x lnx
dx

= lim
b→∞

ln | lnx|
󰀏󰀏󰀏
b

2

= lim
b→∞

(ln ln b− ln ln 2)

= ∞,

so
󰁕∞
2

1
x lnx dx diverges. Hence

󰁓∞
n=2

1
n lnn diverges by the integral test. (The integral of 1

x lnx was
computed using the substitution u = lnx.)

If instead we considered the series ∞󰁛

n=2

1

n(lnn)2
,
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the same technique would apply. The function g(x) = 1
x(lnx)2

is still positive and decreasing (which

can be checked by seeing that the derivative is negative), so the integral test applies. In this case
we have:

󰁝 ∞

2

1

x(lnx)2
dx = lim

b→∞

󰁝 b

2

1

x(lnx)2
dx = lim

b→∞
− 1

lnx

󰀏󰀏󰀏
b

2
= lim

b→∞
−
󰀕

1

ln b
− 1

ln 2

󰀖
=

1

ln 2
.

Hence
󰁕∞
2

1
x(lnx)2

dx converges, so
󰁓∞

n=2
1

n(lnn)2
converges as well by the integral test.

Direct comparison test. The direct comparison test (and the limit comparison test we’ll look at
next) allows us to determine whether or not a series converges by comparing it to a simpler series
whose convergence/divergence is simpler to determine. This test applies to series consisting of all
positive terms, so to something like

∞󰁛

n=0

an where each an is positive.

The key facts to remember are:

if the larger series converges, so does the smaller one; and, if the smaller series diverges,
so does the larger one.

The point is that such a series of positive terms definitely cannot result in a negative value, so
the value is either some positive number or is infinite. So, the only thing we need to determine is
whether or not the series has an infinite value (so diverges) or a finite value (so converges).

The first thing we need to do with such series is come up with a guess as to whether it should
converge or diverge, so that we know which type of comparison we’ll need to apply. This is also
important because the way in which we come up with this guess will often suggest with which series
we should compare our given one. Let’s work out some examples to see how this works.

Example 1. Consider the series
∞󰁛

n=1

10n2 − 3n− 1

n4 + n2 + 1
.

First we need a guess. The things to focus on are the “dominant” terms in the sequence

10n2 − 3n− 1

n4 + n2 + 1
.

In this case, the dominant term (i.e. the term that overpowers everything else) in the numerator
is 10n2, while the dominant term in the denominator is n4. This suggests that, roughly, our given
series should behave in a “similar” way to the series

∞󰁛

n=1

10n2

n4
=

∞󰁛

n=1

10

n2
.

This latter series converges by the p-series test, so we make an educated guess that our given series
does as well.

Now to make this guess actually precise, we can make a comparison. Note that

10n2 − 3n− 1

n4 + n2 + 1
≤ 10n2

n4
=

10

n2
,
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where the inequality came from making the numerator bigger and the denominator smaller. This
equality implies that

0 ≤
∞󰁛

n=1

10n2 − 3n− 1

n4 + n2 + 1
≤

∞󰁛

n=1

10

n2
.

Since the sum on the right is finite (since
󰁓∞

n=1
10
n2 converges), the first infinite sum should be finite

as well. (This is what it means to say that “if the larger series converges, so does the smaller one”.)
Thus ∞󰁛

n=1

10n2 − 3n− 1

n4 + n2 + 1

converges by the direct comparison test. Note that the series
󰁓 10

n2 we compared our given one
with wasn’t just pulled out of thin air, but rather came from the series we used in our guess.

Example 2. Consider now the series

∞󰁛

n=2

10n4 + n2 + n+ 1

n5 − n4 − 3
.

The dominant term in the numerator is 10n4 and in the denominator it is n5. Thus our series
should behave in a manner roughly similar to

∞󰁛

n=2

10n4

n5
=

∞󰁛

n=2

10

n
,

which diverges since it is just 10 times the divergent series
󰁓∞

n=2
10
n . So, we guess that our given

series diverges.
To show that it diverges using the comparison test, we have to find a “smaller’ series which

diverges. (In the first example we wanted to show that the given series converged, which meant we
had to compare it with a larger series which converged.) In this case we have:

10n4

n5
≤ 10n4 + n2 + n+ 1

n5 − n4 − 3

since the fraction on the left has a smaller numerator and larger denominator than the one on the
right. This implies that

0 ≤
󰁛

n=2

10n4

n5
≤

∞󰁛

n=2

10n4 + n2 + n+ 1

n5 − n4 − 3
,

so since the smaller series
󰁓∞

n=2
10
n diverges, so does the larger one. Hence

∞󰁛

n=2

10n4 + n2 + n+ 1

n5 − n4 − 3

diverges by the direct comparison test. Again, note that series we used to compare our given one
to came from our educated guess.

Example where direct comparison doesn’t quite work. Consider the series

∞󰁛

n=1

n2

n3 + n+ 1
.
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Focusing on dominant terms suggests that this series should diverge since

∞󰁛

n=1

n2

n3
=

∞󰁛

n=1

1

n

diverges. If we wanted to use the direct comparison test to show that our original series diverged,
we would have to find a smaller series which diverged. The simplest inequality we can use given
the terms of our series is

n2

n3 + n+ 1
≤ n2

n3
=

1

n
,

which comes from making the denominator smaller. However, this does us no good: in this case,
the divergent series

󰁓 1
n is the larger one, and knowing that the larger series diverges tells us

nothing about the smaller one. So, doing an ordinary comparison between our original series and󰁓 1
n leads us nowhere.
However, the guess that our given series should diverge since it should be similarly to

󰁓 1
n was

a good one, we just need another way to make this precise. Here is where the limit comparison test
comes in; this is also a way to compare a given series with another, but where we don’t have to
worry about which series is “larger” and which is “smaller”. To match up with the notation we’ll
use in a second when stating the limit comparison test in general, denote the terms of our given
series and the one we’re comparing it to by:

an =
n2

n3 + n+ 1
and bn =

1

n
.

We compute the limit limn→∞
an
bn
:

lim
n→∞

an
bn

= lim
n→∞

n2

n3+n+1
1
n

= lim
n→∞

n3

n3 + n+ 1
= lim

n→∞

1

1 + 1
n2 + 1

n3

= 1,

where the third equality came from multiplying numerator and denominator by 1
n3 . Since this limit

exists and is positive, the limit comparison test says that

∞󰁛

n=1

an =

∞󰁛

n=1

n2

n3 + n+ 1
indeed diverges since

∞󰁛

n=1

bn =

∞󰁛

n=1

1

n
diverges.

Limit comparison test. Here is the statement. First, as with the direct comparison and integral
tests, the limit comparison test only applies to series consisting of positive terms. For such series󰁓

an and
󰁓

bn, look at the limit

L = lim
n→∞

an
bn

.

The limit comparison test says that if this limit exists and is positive, then both series
󰁓

an and󰁓
bn behave in the same way, meaning they both converge or they both diverge. Compared to the

direct comparison test, we still need to come up with a series to which we can compare our given
one, but the benefit is that now we don’t have to work with inequalities.

Intuition behind limit comparison. This is not something you have to know, but it’s nice to
get a sense for why the limit comparison test works. The idea is that we can think of

L = lim
n→∞

an
bn

existing and being positive
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as saying that an
bn

should get closer and closer to L as n gets larger, so that (after multiplying
through by bn)

an itself gets closer and closer to behaving like Lbn.

This suggests that

󰁛
an should behave similar to how

󰁛
Lbn = L

󰁛
bn behaves,

so either both
󰁓

an and
󰁓

bn give finite values (i.e. converge), or both give infinite values (i.e.
diverge). Again, this is not an actual proof, just some intuition.

Lecture 8: Ratio Test & Absolute Convergence

Warm-Up 1. Consider the series
∞󰁛

n=5

e−n

n2 + 3
.

The e−n term is getting smaller and smaller as n increases, so, if we think of this term as 1 · e−n,
in a sense the “dominant” term in the numerator is 1. In the denominator the dominant term is
n2, so the series should behave similarly to

∞󰁛

n=5

1

n2
,

which converges by the p-series test. Thus we guess that our original series converges.
Since we want to show the original series converges, if we want to apply the comparison test we

need to come up with a larger series which converges. We have:

e−n

n2 + 3
≤ 1

n2
,

which we can see is true by noting that the numerator on the right is larger than the one on the
right and the denominator is smaller. Thus since the larger series

󰁓∞
n=5

1
n2 converges, so does the

∞󰁛

n=5

e−n

n2 + 3

converges by the comparison test.

Warm-Up 2. Consider the series
∞󰁛

n=5

n(1 + e−n)

n3 + 3
.

All of the terms in this series are positive, and focusing on dominant terms suggests that this series
should behave similarly to

∞󰁛

n=5

n

n3
=

∞󰁛

n=5

1

n2
,

which converges. Thus we guess that our given series should converge too.
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To show this, we use the limit comparison test with the series
󰁓 1

n2 we used in our guess. We
look at the limit:

lim
n→∞

n(1+e−n)
n3+3
1
n2

,

which is limn→∞
an
bn

in the case where an denote the terms of our given series and bn the terms of
the one we are comparing it to. After simplifying, we get:

lim
n→∞

n(1+e−n)
n3+3
1
n2

= lim
n→∞

n3(1 + e−n)

n3 + 3
= lim

n→∞

1 + e−n

1 + 3
n3

= 1.

Thus limn→∞
an
bn

exists (meaning it is finite) and is positive, so since
󰁓 1

n2 converges, the series

∞󰁛

n=5

n(1 + e−n)

n3 + 3

converges as well by the limit comparison test.

Careful. When limn→∞
an
bn

= 0, the limit comparison test may or may not give us enough infor-
mation to determine convergence. For instance, consider the series

∞󰁛

n=5

e−n

n2 + 3

we saw in the first Warm-Up. If we try to use a limit comparison with the series
󰁓∞

n=5
1
n2 , we

would get:

lim
n→∞

e−n

n2+3
1
n2

= lim
n→∞

n2e−n

n2 + 3
= lim

n→∞

e−n

1 + 3
n2

= 0.

Since we got a limit of zero for limn→∞
an
bn
, the limit comparison test we described does not apply.

However, there is actually a version of the limit comparison test which does apply here, and
would say that since

󰁓 1
n2 converges, so does our series. Similarly, there is a version of the limit

comparison test which applies when limn→∞
an
bn

= ∞. We did not look at these in class, but you
can find them in the book. On an exam you should not expect that one of these alternate versions
will be necessary and some other test will be applicable instead; for instance, in the example above,
the direct comparison test (as we used in the Warm-Up) works just fine.

This suggests that there is not always one single test tor try: sometimes one test works when
another doesn’t, and sometimes multiple tests work. As I said last time, getting used to recognizing
which type of test to use in which scenarios is something which comes with much practice.

Ratio test. Our next convergence test is called ratio test, which is possibly the simplest one to
apply when it works. Say we have a series

󰁓∞
n=1 an. We look at the limit:

L = lim
n→∞

|an+1|
|an|

obtained from the absolute value of the fraction of the (n+1)-st term in our series and the n-term.
The ratio test says that:

• if L < 1, then
󰁓

an converges (actually, it converges absolutely, which is better; we’ll define
this term in a bit)
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• if L > 1 or L = ∞, then
󰁓

an diverges, and

• if L = 1, the ratio test gives no information.

Thus, computing the required limit will tells us whether or series converges or diverges, as long as
the limit is not equal to 1.

Example 1. Consider the series
∞󰁛

n=1

(−1)n
n

5n
.

In the notation of the ratio test, an = (−1)n n
5n , so we compute the limit:

lim
n→∞

|an+1|
|an|

= lim
n→∞

|(−1)n+1 n+1
5n+1 |

|(−1)n n
5n |

= lim
n→∞

(n+ 1)5n

n5n+1
= lim

n→∞

(n+ 1)

5n
=

1

5
.

Note that the (−1)n terms disappeared after taking absolute values. Thus since this limit is less
than 1, the ratio test tells us that this series converges. (Actually, as stated above, it tells us that
it converges absolutely.)

Example 2. Next we consider
∞󰁛

n=0

(−3)n

(2n+ 1)!
.

In the ratio test we need the following limit:

lim
n→∞

| (−3)n+1

(2(n+1)+1)! |

| (−3)n

(2n+1)! |
= lim

n→∞

3n+1

(2n+ 3)!

(2n+ 1)!

3n
= lim

n→∞

3

(2n+ 3)(2n+ 2)
= 0.

To be clear, here we used the fact that

(2n+ 3)! = (2n+ 3)(2n+ 2)(2n+ 1)(2n) · · · 2 · 1 and (2n+ 1)! = (2n+ 1)(2n) · · · 2 · 1

in order to simplify:
(2n+ 1)!

(2n+ 3)!
=

1

(2n+ 3)(2n+ 2)
.

Since we got a limit of zero, the ratio test implies that our given series converges.

Example 3. For
∞󰁛

n=1

n2n,

the ratio test gives

lim
n→∞

(n+ 1)2n+1

n2n
= lim

n→∞

2(n+ 1)

n
= 2.

Since this is larger than 1, the given series diverges. (In this case, the n-th term test would also
tell us it diverges, since limn→∞ n2n ∕= 0.)

Absolute convergence. As stated above, the actual conclusion of the ratio test in the L < 1
case is that the given series converges absolutely. To say that

󰁓
an is absolutely convergent means
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that the series obtained by taking absolute values
󰁓

|an| converges. This always implies that the
original series converges as well, so absolute convergence is a special type of convergence. If a series
converges but does not converge absolutely (so

󰁓
an converges but

󰁓
|an| does not), we say it is

conditionally convergent. For instance, the series

∞󰁛

n=1

(−1)n

n

converges, as we’ll see using the alternating series test we’ll discuss next time, but the series of
absolute values ∞󰁛

n=1

1

n

diverges. Thus
󰁓∞

n=1
(−1)n

n converges conditionally.
Next time we’ll mention why people care about this distinction between absolute vs conditional

convergence. This won’t play a big role in this course, so for us the key takeaway is that absolute
convergence implies ordinary convergence, which is really all we care about.

Lecture 9: Alternating Series Test

Warm-Up 1. We determine whether or not

∞󰁛

n=1

n!

100n

converges. We compute:

lim
n→∞

(n+1)!
100n+1

n!
100n

= lim
n→∞

(n+ 1)!100n

100n+1n!
= lim

n→∞

n+ 1

100
= ∞,

where we use the fact that
(n+ 1)!

n!
=

(n+ 1)n!

n!
= n+ 1.

Since this limit is ∞ (which we consider to be in the L > 1 case), the ratio test tells us that this
series diverges.

Warm-Up 2. We determine the values of x for which the series

∞󰁛

n=1

n23nxn

converges. We will use the ratio test, so first we compute the limit limn→∞
|an+1|
|an| where an =

n23nxn. We have:

lim
n→∞

|(n+ 1)23n+1xn+1|
|n23nxn| = lim

n→∞

󰀕
n+ 1

n

󰀖
3|x| = 3|x| lim

n→∞

1 + 1
n

1
= 3|x|.

If this limit is less than 1, the ratio test says that the series converges; while if this limit is greater
than 1, the series diverges. So, the series converges at least when 3|x| < 1, which gives −1

3 < x < 1
3 ,

and diverges at least when 3|x| > 1, which gives x < −1
3 and 1

3 < x.
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Now, when this limit is exactly equal to 1, the ratio test is inconclusive. This happens when
3|x| = 1, so when x = −1

3 and x = 1
3 . In these cases we have to go back to the original series: when

x = −1 the series in question is
∞󰁛

n=1

n23n(−1)n

and when x = 1 the series is ∞󰁛

n=1

n23n.

Both of these diverge by the n-term test since neither limn→∞ n23n(−1)n nor limn→∞ n23n equal
0. Thus, to summarize, the given series only converges for −1

3 < x < 1
3 .

Absolute vs conditional. Now we give the reason why the distinction between absolute vs
conditional convergence matters. This is NOT something we’ll focus on in this course and is more
of a “fun fact” everyone should hear about once in their lifetime. Here is the basic idea: rearranging
the terms of an absolutely convergent series does not affect the convergence nor the value, whereas
rearranging the terms of a conditionally convergent series could affect the value!

If we have an infinite sum:
a1 + a2 + a3 + a4 + · · · ,

we can rearrange the terms in some way:

a100 + a3 + a10 + a4 + a1 + a567 + · · · and so on.

The fact is that this new sum does NOT necessarily have the same value as the original one; this
is only guaranteed to happen when the original series is absolutely convergent! So, for instance,
we’ve seen previously claimed that

∞󰁛

n=1

(−1)n

n
= −1 +

1

2
− 1

3
+

1

4
− 1

5
+ · · ·

is conditionally convergent, as we’ll soon see. Because of this, rearranging terms could definitely
have an effect on the actual value of the series. Even worse, I claim that there is a rearrangement
which gives the value π as a result, there is another rearrangement which gives the value e, another
giving the value 2sin 1, etc: given any real number whatsoever, there is a way to rearrange the terms
of a conditionally convergent series to obtain a series whose value is that chosen real number! This
cannot happen for absolutely convergent series, where rearrangements affect nothing.

These facts might seem counterintuitive, since rearranging the terms of a finite sum never affects
the value:

x+ y + z + w is the same as x+ w + z + y is the same as z + w + x+ y

and so on. This is yet another subtle distinction between infinite and finite sums which shows
that we have to be careful applying whatever intuition we have for finite sums to infinite sums.
Understanding why infinite sums have the properties listed above is way beyond the scope of this
course, and, as I said, this will not play a further role for us. But, it is an interesting observation
nonetheless!

Example where ratio test doesn’t work. Now consider the series

∞󰁛

n=1

(−1)n−1 n

n2 + 4
.
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Applying the ratio test gives:

lim
n→∞

|(−1)(n+1)−1 n+1
(n+1)2+4

|
|(−1)n n

n2+4
| = lim

n→∞

(n+ 1)(n2 + 4)

n(n+ 1)2 + 4
= lim

n→∞

n3 + n2 + 4n+ 4

n3 + 2n2 + n+ 4
= 1.

Since we got a limit of 1, the ratio test gives us no information.
However, we can instead show that this series converges using the alternating series test, which

we will now describe. Since it does converge, we can ask whether it converges absolutely. For this
we consider the series obtained by taking absolute values is:

∞󰁛

n=1

n

n2 + 4
.

You can show that this diverges by comparing it to
󰁓∞

n=1
1
n using either the direct comparison or

limit comparison test. So, since our original series converges but the series of absolute values does
not, our original series

∞󰁛

n=1

(−1)n−1 n

n2 + 4

is conditionally convergent.

Alternating series. An alternating series is a series where the terms alternate between being
positive and negative, or negative and positive. For example,

∞󰁛

n=1

(−1)n

n
= −1 +

1

2
− 1

3
+

1

4
− 1

5
+ · · ·

is an alternating series. There is nice, simple test for convergence of such series: the alternating
series test.

In general, an alternating series can be written as

∞󰁛

n=1

(−1)nbn where the bn are positive.

In other words, bn is what you get when you factor out −1 from the negative terms and keep the
positive terms as they are. In the series

∞󰁛

n=1

(−1)n

n
=

∞󰁛

n=1

(−1)n
1

n
,

we have bn = 1
n . (The alternating series test also applies to something like

󰁓∞
n=1(−1)n−1bn, meaning

that whether we have (−1)n or (−1)n−1 or something else like (−1)n+4 is not important; all that
matters is that we have signs which alternate between positive/negative or negative/positive.) The
alternating series test says that:

if bn is decreasing and limn→∞ bn = 0, then
󰁓∞

n=1(−1)nbn converges.

Thus, for an alternating series, we can demonstrate convergence simply by showing that the terms
of the series approach 0 and (after we forget any negative signs) are decreasing, which means that
each term is smaller than the one which came before.
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Example. We apply the alternating series test to the series

∞󰁛

n=1

(−1)n

n
.

As we said above, in this case we consider bn = 1
n . These terms are definitely decreasing since the

denominators get larger as n increases (we can also see they decreasing by showing that f(x) = 1
x

has negative derivative for x ≥ 1) and since

lim
n→∞

1

n
= 0,

the alternating series test shows that our given series converges.

Fact. The actual value of the series above is:

∞󰁛

n=1

(−1)n

n
= − ln 2.

This is not important for the midterm, but is actually something we’ll be able to determine once
we talk about power series. Nonetheless, without knowing that the value is actually − ln 2, we can
ask if there is a way in which we can approximate the correct value. We’ll touch on this a bit next
time, and this will play a larger role towards the end of the quarter when we talk about using power
series to approximate functions.

Another example. We show that the alternating series

∞󰁛

n=2

(−1)nn

n2 + 4

converges, as we claimed above. In the notation of the alternating series test, here we have

bn =
n

n2 + 4
.

First, the function f(x) = x
x2+4

is decreasing since its derivative

f ′(x) =
(x2 + 4)− x(2x)

(x2 + 4)2
=

4− x2

(x2 + 4)2

is negative for x > 2. Thus bn = n
n2+1

is decreasing. Next,

lim
n→∞

bn = lim
n→∞

n

n2 + 1
= lim

n→∞

1
n

1 + 1
n2

= 0,

so the alternating series test says that
󰁓∞

n=2
(−1)nn
n2+1

does converge.
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Lecture 10: Convergence Strategies

Warm-Up. We show that
∞󰁛

n=1

(−1)n
n

en

converges using the alternating series test. The sequence n
en consists of all nonnegative terms. Also,

the function f(x) = x
ex is decreasing since its derivative is nonpositive:

f ′(x) =
ex − xex

e2x
=

(1− x)ex

e2x
≤ 0 for x ≥ 1.

Hence the sequence f(n) = n
en is also decreasing. Finally, we have

lim
x→∞

x

ex
= lim

x→∞

1

ex
= 0

by L’Hopital’s rule, so limn→∞
n
en = 0 as well. We conclude that this series converges by the

alternating series test.
In fact, other tests are also applicable in this example. For instance, we can use the ratio test:

lim
n→∞

|(−1)n+1 n+1
en+1 |

|(−1)n n
en |

= lim
n→∞

n+ 1

ne
= lim

n→∞

1 + 1
n

e
=

1

e
.

This is limit is smaller than 1, the given series converges absolutely. Also, we can apply the integral
test, not to the given series since it does not consist of all positive terms, but instead to the series
of absolute values: ∞󰁛

n=1

n

en
.

The integral test will show that this series converges, and hence so does the original series. Again,
the point is that multiple convergence tests might be applicable to a given problem, and in a bit
we’ll discuss strategies for deciding which to apply in which scenario.

Approximating values. Alternating series give us our first example of a series where it is possible
to come up with good approximations to the value of a series in cases where we can’t determine the
actual value. Say that

󰁓∞
n=1(−1)nbn denotes an alternating series. Recall that k-th partial sum of

this series is the sum of the first however many terms up to n = k:

−b1 + b2 − b3 + · · ·+ (−1)kbk.

The idea is that as we get partial sums with more and more terms, such partial sums should be
giving better and better approximations to the actual value of the series in question. In particular,
the expression

|(actual value)− (k-th partial sum)|,

so absolute value of the difference between the actual value and a partial sum approximation, is
precisely telling us how good of an approximation the k-th partial sum is to the actual value. Our
goal is to be able to “control” how bad this “error’ term can be.

For an alternating series, the fact is that this error term can be bounded by one of the bn terms
itself. To be clear, the fact is that

󰀏󰀏󰀏(actual value of
󰁛

(−1)nbn)− (k-th partial sum)
󰀏󰀏󰀏 ≤ bk+1.
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So, the point is that the “error” in approximating the actual value of
󰁓

(−1)nbn with the partial
sum

−b1 + b2 − b3 + · · ·+ (−1)kbk

is no more than the value of bk+1. The smaller this “error” is, the better an approximation we
have. The intuition for this fact comes from the following. The actual value of an alternating series
is an infnite sum

b0 − b1 + b2 − b3 + · · ·− bk + bk+1 − bk+2 + · · ·

and the k-th partial sum is something like

b0 − b1 + b2 − b3 + · · ·− bk.

The difference between these is the portion of the infinite sum starting with the bk+1 term:

bk+1 − bk+2 + · · · ,

and these difference is smaller than bk+1 itself since this difference is bk+1 minus something smaller,
plus something smaller still, minus something even smaller, and so on. (Here we use the fact that
the bn are positive and decreasing towards zero.)

As mentioned previously, having such a bound on the “error” gives a way to determine how
good our approximations actually are. This is tough to come up with for series in general, although
we’ll see a way to proceed with Taylor series later on, where this idea will truly shine.

Example. Going back to a series we saw last time:

∞󰁛

n=1

(−1)n

n
,

in this case we get that the (absolute value of the) difference between the actual value (which we
claimed last time was − ln 2) and the value of the k-th partial sum is bounded by:

|(actual value)− (k-th partial sum)| ≤ 1

k + 1
.

For instance, looking at the 9-th partial sum gives:

󰀏󰀏󰀏󰀏(actual value)−
󰀕
−1 +

1

2
− 1

3
+ · · ·+ 1

8
− 1

9

󰀖󰀏󰀏󰀏󰀏 ≤
1

10
.

So, the error between the actual value of − ln 2 and the approximation given by

−1 +
1

2
− 1

3
+ · · ·− 1

9

is no more than 1
10 = 0.1. This partial sum is (if you work it out) roughly −0.7456, so the error

between this and the actual value is

|− ln 2− (−0.7456)| ≈ 0.005,

which is indeed less than 0.1.
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Another example. Consider the series from the Warm-Up:

󰁛

n=1

(−1)n
n

en

Say we want to approximate the actual value of this sum to within an error of 1
100 . The difference

between the k-th partial sum of this series and the actual value of the series is bounded by the
following:

|(k-th partial sum)− (actual value)| ≤ k + 1

ek+1

since k+1
ek+1 is the term which would occur next in the series after the final term k

ek
of the k-partial

sum. Thus in order to guarantee that our approximation using a partial sum is within 1
100 of the

actual sum, we should look for k satisfying

k + 1

ek+1
≤ 1

100
.

We can check that k = 6 satisfies this inequality, so that the k-partial sum is what we want. That
is, the sum

−1

e
+

2

e2
− 3

e3
+

4

e4
− 5

e5
+

6

e6

gives the actual value of this series to within an error of 1
100 .

Strategies for testing convergence. We’ve now seen multiple ways to see if a series converges.
It can seem daunting to keep all of these in mind, and also to get comfortable with deciding which
to use in a given scenario. But, this is something which comes more easily with practice and picking
up on certain patterns. (Indeed, pattern recognition is a good skill to develop in general, not just
for math courses.) We finish by giving a brief summary of strategies to use.

We’ll list the various convergence tests in the order in which they should be applied, from
simpler to more challenging. We’ll also highlight specific things to look for which might suggest
one test in particular is the right one to use. Here we go:

• n-th term test: As a first step, take 10-20 seconds to see if the n-th term test applies. If
limn→∞ an ∕= 0, then you are done—the series

󰁓
an diverges for sure. No use in going

through some elaborate test if this already works. For series where this is the way to go, it
should be quick to determine if it does indeed apply, so only spend 10-20 seconds max.

• geometric series, p-series test: If your series is a geometric series or one of the form
󰁓 1

np ,
then again it is quick to tell what happens. To be sure, for the geometric case, you should
see if you can write the terms in your series as constant(constant)n.

• alternating series test: If your series is alternating, then this is a good thing to try. (Not the
only thing: the ratio test might also be good.) Having a (−1)n term or something similar is
a tip that you might think about applying this test.

• ratio test: In most cases where one of the above does not apply, the ratio test should be
your first thought. This is especially true for series which involve factorials, or series terms
having n as the exponent which are not geometric series, which is the case when you have a
non-constant multiplied by something which has an exponent of n.
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I’m grouping these first four tests together as being more “direct”, in the sense that they don’t
require coming up with something else to compare a given series to, nor do they require having to
compute a whole separate integral. Each of these tests, when they apply, gives us the answer right
away without any additional work.

The final tests are ones which usually require more work since they are not as straightforward
as the above, but in certain cases they might be the right thing to use:

• limit comparison test: This is the next thing to try by default, since it is usually simpler to
work through than the final two tests. In particular, for series with fractions whose numerator
and denominators only involve powers of n, this should be your go-to-test.

• integral test: If nothing has worked so far, try the integral test next. In particular, if you can
see that the function f(x) describing the terms of your series

󰁓
f(n) is quick to integrate,

maybe try this first. But of course, be sure to check the hypothesis of the integral test to
make sure it applies: positive, continuous, decreasing function.

• direct comparison test: And finally, we try the direct comparison test. This is probably the
toughest test to apply, since it not only requires a series to compare to (as does the limit
comparison test), but it also requires coming up with some inequalities, which is usually more
work. However, for any series which involves sine or cosine, perhaps this is the test you might
think of applying before the others, since sine and cosine terms are usually simple to bound.

Lecture 11: Power Series

Warm-Up. Which test to use? ***TO BE FINISHED***

Series as functions. Let us go back to the basic geometric series:

1

1− x
=

∞󰁛

n=0

xn where |x| < 1.

We now focus on the idea that we can view the right side as a function by treating x as a variable:
plugging in a value of x into this series gives the value on the left side, so in other words gives the
same value as the function f(x) = 1

1−x . We say that the series
󰁓∞

n=0 x
n represents the function

1
1−x on the interval (−1, 1), which in this case is the interval characterizing the values x for which
the series converges, and hence for which the equality

1

1− x
=

∞󰁛

n=0

xn

is valid. Representing functions as series is the whole reason why we care about series in the first
place, since, as we’ll see, this will gives us new ways of studying functions, which will be especially
useful for functions which are otherwise difficult to understand.

Consider now the series ∞󰁛

n=0

3nxn

where again we treat x as a variable. By writing this as
󰁓∞

n=0(3x)
n, we see that this too is geometric

since we can obtain it from ∞󰁛

n=0

yn
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by setting y = 3x. (We are using y as the variable in this latter series to avoid confusing it with
the x in the previous series.) Making the substitution y = 3x in

1

1− y
=

∞󰁛

n=0

yn

results in
1

1− 3x
=

∞󰁛

n=0

3nxn

so we would say that the series on the right is a series representation of the function 1
1−3x . But

again we should be careful about clarifying the values of x for which this equality is actually valid.
Since this was derived from the geometric series

󰁓
yn by setting y = 3x, and this geometric series

only converges for |y| < 1, this derived series converges for |3x| < 1, or equivalently for |x| < 1
3 .

Thus we get that

1

1− 3x
=

∞󰁛

n=0

3nxn is valid for x in (−1
3 ,

1
3).

Similarly, by setting y = −x in the geometric series above we find that

1

1 + x
=

∞󰁛

n=0

(−x)n =

∞󰁛

n=0

(−1)nxn

is a valid series representation of the function 1
1+x on the interval (−1, 1). Looking ahead to the

types of things we will soon be doing, we could now ask about the derivative of 1
1+x : this derivative

is − 1
(1+x)2

, and so if we could in turn differentiate the series
󰁓∞

n=0(−1)nxn, we could obtain a

series representation of − 1
(1+x)2

:

− 1

(1 + x)2
= derivative of

∞󰁛

n=0

(−1)nxn.

Just as well, if we integrate 1
1+x to get ln |1 + x|, we could ask about doing the same thing to the

series representation of 1
1+x in order to obtain a power series representation of ln |1 + x|:

ln |1 + x| = integral of

∞󰁛

n=0

(−1)nxn.

We will discuss what it means to differentiate and integrate series soon enough.

Power series. All of the series we used above to representation certain functions are examples of
power series, which are a type of series involving powers of a variable x. To be clear, a power series
is a series of the form ∞󰁛

n=0

cn(x− a)n

where the cn are numbers, x is a variable, and a is a number we call the “center” of the series. (We
say that this is a power series centered at a.) The idea is that, because x is a variable, we view a
power series as defining a function depending on x, and that the functions defined by power series
often turn out to be functions we all know and love.
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A power series should be viewed as a type of “infinite” polynomial, since it looks like a polyno-
mial only with a possibly infinite number of terms:

∞󰁛

n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · · .

More precisely, the partial sums of this series are literal polynomials, and so the point is that we will
be able to approximate the function to which the power series converges by polynomial expressions.

Example 1. Consider the power series

∞󰁛

n=0

(3x− 1)n.

First, we should be clear about why this is actually a power series, since we defined a power series
to be one involving powers of x− a for some center a (with the coefficient of x being 1), but here
we have powers of 3x − 1, where the coefficient of x is 3. The point is that we can rewrite this
series to put it into the correct form:

∞󰁛

n=0

(3x− 1)n =

∞󰁛

n=0

󰀅
3
󰀃
x− 1

3

󰀄󰀆n
=

∞󰁛

n=0

3n
󰀃
x− 1

3

󰀄n
.

(To be clear, we wrote 3x−1 as 3(x− 1
3) by factoring out the 3.) This makes the power series form

clear, and we see that this is indeed a power series centered at 1
3 ; 3x−1 might seem to suggest that

the center is 1, but we do not know the center for sure until we have it in the correct x− a form.
Now, we can obtain this given series from the geometric series

1

1− y
=

∞󰁛

n=0

yn

by setting y = 3x− 1:

1

1− (3x− 1)
=

∞󰁛

n=0

(3x− 1)n.

This series will converge when |y| < 1, so when

|3x− 1| < 1.

Taking into account that this should be a power series centered at 1
3 , we write this inequality as

3
󰀏󰀏x− 1

3

󰀏󰀏 < 1, or
󰀏󰀏x− 1

3

󰀏󰀏 < 1
3 .

Thus the given series converges for x in (0, 23), and so we have that

1

2− 3x
=

∞󰁛

n=0

(3x− 1)n =

∞󰁛

n=0

3n
󰀃
x− 1

3

󰀄n

represents the function 1
2−3x as a power series centered at 1

3 on the interval (0, 23).
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Example 2. Of course, not all power series can be derived from a clever manipulation of a
geometric series. For instance, consider the power series

∞󰁛

n=0

xn

n!
.

We will soon see that this series actually converges for all x (we will use the ratio test to verify this),
and that it actually converges to the function ex! (That’s an exclamation mark, not a factorial.)

If we take this as given for now, then we can derive a whole bunch of other power series
representations. Take

ey =

∞󰁛

n=0

yn

n!

as our starting point, where again we use y as the variable to distinguish it from the x which will
appear after we make a substitution. Setting y = 2x gives

e2x =

∞󰁛

n=0

(2x)n

n!
=

∞󰁛

n=0

2n

n!
xn,

which is thus a power series representation of the function e2x. (The coefficients cn of this power
series are 2n

n! .) Instead if we set y = x+ 3 above we get

ex+3 =

∞󰁛

n=0

(x+ 3)n

n!

which express the function ex+3 as a power series centered at −3. (The center is −3 and not 3,
since we must write x+ 3 as x− (−3) in order to make it look like the x− a term required in the
power series format.) So, the upshot is that once we know a few power series representations, we
get a whole lot more by considering substitutions, or later derivatives and integrals.

Lecture 12: Interval of Convergence

Warm-Up 1. ***TO BE FINISHED***

Warm-Up 2. ***TO BE FINISHED***

Interval of convergence. So far we know that the power series
󰁓

xn converges for x in (−1, 1)
based on what we know about geometric serires, and that the series

󰁓 xn

n! converges for all x,
because I said so last time. But how do we determine the values of x for which a power series

∞󰁛

n=0

cn(x− a)n

converges in general? The key fact is that any power series converges for x in some interval around
its center a, which could have zero length, positive length, or infinite length. This interval is called
the interval of convergence of the power series, and half its length—i.e. the distance from the center
to either endpoint—is called its radius of convergence.

Find the interval and radius of convergence is an application of the ratio test, as the following
examples will make clear. It is on this interval that we can make sense of saying that the power
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series in question represents a function, since this interval characterizes the values of x we can
actually plug into that function and have the resulting value make sense.

Example 1. Consider the power series

∞󰁛

n=1

n(x− 2)n.

We will determine when this converges using the ratio test. If we set an = n(x− 2)n, the limit in
the ratio test becomes:

lim
n→∞

|an+1|
|an|

= lim
n→∞

(n+ 1)|x− 2|n+1

n|x− 2|n = lim
n→∞

(n+ 1)|x− 2|
n

= |x− 2| lim
n→∞

󰀕
1 +

1

n

󰀖
= |x− 2|.

Thus according to the ratio test, the given series converges for sure when this resulting limit value
is smaller than 1, so when |x − 2| < 1, and diverges for sure when |x − 2| > 1. The inequality
|x− 2| < 1 is the same as

−1 < x− 2 < 1, or equivalently 1 < x < 3.

Hence, the given power series converges at least for x in the interval (1, 3). The radius of conver-
gence, the distance from the center 2 of this series to the endpoints of this interval, in this case is 1.
Note that this interval can be obtained simply by subtracting and adding the center to the radius
in order to get the endpoints: (2− 1, 2 + 1) = (1, 3).

But, we cannot just yet say that the interval of convergence is (1, 3). Recall that the ratio test

is inconclusive when limn→∞
|an+1|
|an| = 1. In our case, this means that the ratio test is inconclusive

when |x − 2| = 1, so when x = 1 or x = 3. The point is that this method of finding the radius
and interval of convergence will say nothing about the endpoints of the resulting interval, and so
we have to see what happens at those endpoints separately. When x = 1 our given series becomes

∞󰁛

n=1

n(−1)n,

which diverges since limn→∞ n(−1)n ∕= 0, and when x = 3 our series is

∞󰁛

n=1

n,

which also diverges. This means that neither 1 nor 3 should be included in the interval of conver-
gence, so that the interval of convergence is indeed (1, 3).

In general, the ratio test will give us most of the interval of convergence (a−R, a+R), where a
is the center and R is the radius, but since the ratio test is inconclusive at x equals either endpoint,
we have to check what happens at these separately.

Example 2. We determine the interval of convergence of

∞󰁛

n=0

2nxn

n
.
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Using the ratio test with an = 2nxn

n , we get:

lim
n→∞

|an+1|
|an|

= lim
n→∞

2n+1|x|n+1

n+1
2n|x|n

n

= lim
n→∞

2|x|n
n+ 1

= 2|x| lim
n→∞

n

n+ 1
= 2|x|,

where we can find that the limit of n
n+1 is 1 by dividing numerator and denominator by n. Thus,

by the ratio test, our power series converges at least for x satisfying

2|x| < 1, or equivalently |x| < 1

2
.

Hence this series has radius of convergence 1
2 ; in general this comes from how large |x− center| can

be, so the goal is to turn the ratio test inequality into one of the form |x− center| < R, where R is
then the radius. The interval of convergence is thus at least (0− 1

2 , 0 +
1
2) = (−1

2 ,
1
2).

But now we see what happens at the endpoints. When x = 1 we get the series

󰁛

n=0

2n 1
2n

n
=

∞󰁛

n=0

1

n
,

which diverges by the p-series test, but when x = −1 we get

󰁛

n=0

2n(−1
2)

n

n
=

∞󰁛

n=0

(−1)n

n
,

which actually converges by the alternating series test. Thus, for the power series

∞󰁛

n=0

xn

n
,

x = −1 should be included in the interval of convergence, so the full interval of convergence is the
half-closed/half-open interval [−1, 1).

Example 3. Now we look at the series
∞󰁛

n=0

xn

n!
,

which we have previously claimed converges for all values of x. Setting an = xn

n! , the ratio test tells
us that this series will converge when

lim
n→∞

|an+1|
|an|

< 1.

In our case we thus consider:

lim
n→∞

|x|n+1

(n+ 1)!

n!

|x|n = lim
n→∞

|x|
n+ 1

= 0.

Because this is smaller than 1 no matter what x is, we thus conclude that series

∞󰁛

n=0

xn

n!
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does converges for all x. The interval of convergence is thus (−∞,∞), and we say that the radius
of convergence is ∞. In this case there are no endpoints to check.

Example 4. Next we determine the radius and interval of convergence of

∞󰁛

n=0

(2n+ 1)!(x− 1)n.

Here, lim |an+1|
|an| becomes:

lim
n→∞

(2(n+ 1) + 1)!|x− 1|n+1

(2n+ 1)!|x− 1|n = lim
n→∞

(2n+ 3)!

(2n+ 1)!
|x− 1| = lim

n→∞
(2n+ 3)(2n+ 2)|x− 1|.

Now we have to be careful: the (2n + 3)(2n + 2) portion goes to ∞, but whether we actually get
an infinite value for the limit will depend on whether the |x − 1| term is zero. Indeed, if x = 1,
|x− 1| = 0 and this limit is:

lim
n→∞

(2n+ 3)(2n+ 2)0 = lim
n→∞

0 = 0,

and since this is less than 1 the ratio test tells us that the given series does converge when x = 1.
However, if x ∕= 1, |x− 1| ∕= 0 and so in this case

lim
n→∞

(2n+ 3)(2n+ 2)|x− 1| = ∞,

and hence the series does not converge in this case.
Thus this series converges only when x = 1, so we say that the interval of convergence (which

isn’t really an interval in this case) consists of just the single point 1, and so the radius of convergence
is 0. (This makes sense since a single point has zero length, and half of zero is zero.)

Example 5. Finally, we determine the radius and interval of convergence of the power series

∞󰁛

n=2

(−1)n(x− 2)n

2n(n+ 1)
.

Note that this is a power series centered at 2. We compute:

lim
n→∞

|x− 2|n+1

2n+1(n+ 2)

2n(n+ 1)

|x− 2|n = lim
n→∞

|x− 2|
2

󰀕
n+ 1

n+ 2

󰀖
= lim

n→∞

|x− 2|
2

1 + 1
n

1 + 2
n

=
|x− 2|

2
.

By the ratio test this series converges when

|x− 2|
2

< 1, so when |x− 2| < 2.

The the radius of convergence is 2 and the interval of convergence is at least (2− 2, 2+ 2) = (0, 4).
Now we check for convergence at the endpoints. For x = 0 our series becomes

∞󰁛

n=2

(−1)n(−2)n

2n(n+ 1)
=

∞󰁛

n=2

1

n+ 1
,
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which diverges as we can see doing a limit comparison test with the harmonic series
󰁓∞

n=2
1
n . Thus

0 is not in the interval of convergence. For x = 4 this series becomes

∞󰁛

n=2

(−1)n2n

2n(n+ 1)
=

∞󰁛

n=2

(−1)n

n+ 1
,

which converges by the alternating series test. (Note that here I’m not working out the details of
the alternating series test, but this is something you should be able to do.) Thus 4 is in the interval
of convergence, so the interval of convergence of the given series is (0, 4].

Lecture 13: Series Manipulations

Warm-Up 1. We find the interval of convergence of the power series

∞󰁛

n=2

(−1)n+1(2x− 5)n

n22n+1
.

***TO BE FINISHED***
The various examples we’ve seen illustrate the different things which can happen: either the

radius of convergence is 0 in which case the series converges only at its center, or the radius
of convergence is infinite in which case the interval of convergence is (−∞,∞), or the radius
of convergence is some positive number R in which case the interval of convergence looks like
(a−R, a+R) (where a is the center) and possibly includes none, one, or both of the endpoints.

Warm-Up 2. We find the interval of convergence of the power series

∞󰁛

n=0

(−1)n
x2n

(2n!)
.

***TO BE FINISHED***

Series substitutions. We now come back to the idea of representing various functions as power
series. For instance, we can ask: what function does the power series

∞󰁛

n=0

(−1)nx2n

represent? This is something we can determine by manipulating the series

1

1− y
=

∞󰁛

n=0

yn

along the lines of some examples we saw before. In this case, setting y = −x2 in this series gives

∞󰁛

n=0

(−x2)n =

∞󰁛

n=0

(−1)x2n,

which is precisely the series we’re asking about. Since

1

1− y
=

∞󰁛

n=0

yn
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we thus get that

1

1− (−x2)
=

∞󰁛

n=0

(−1)nx2n,

so the power series we had at the beginning represents the function

1

1 + x2
.

Moreover, we can determine that this power series has interval of convergence (−1, 1)—either by
using the ratio test and checking endpoints, or by using the convergence for |y| < 1 of the geometric
series with y = −x2 from which this was derived—so the power series representation

1

1 + x2
=

∞󰁛

n=0

(−1)nx2n

is valid on the interval (−1, 1).
The overall idea in this example is what we are making a substitution into one series in order

to obtain another: substitute −x2 in place of x in 1
1−x =

󰁓∞
n=0 x

n. We just used y above in order
to make this substitution clear.

Example 1. As another example using substitution, again start with

1

1− y
=

∞󰁛

n=0

yn for |y| < 1.

Making the substitution y = 1− x gives

1

1− (1− x)
=

∞󰁛

n=0

(1− x)n for |1− x| < 1,

which we can write as
1

x
=

∞󰁛

n=0

(−1)n(x− 1)n for |x− 1| < 1.

This thus gives a representation of the function 1
x as a power series centered at 1, which is valid

on the interval (1− 1, 1 + 1) = (0, 2). Of course, this interval of convergence can also be found by
using the ratio test to find the radius of convergence, which is 1.

Example 2. Starting with

ex =

∞󰁛

n=0

xn

n!
,

which is an equality we still have to justify, substituting x2 in place of x gives

ex
2
=

∞󰁛

n=0

x2n

n!
.

Instead, substituting −x in place of x in the series for ex above gives

e−x =

∞󰁛

n=0

(−1)nxn

n!
.
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Both of these series representations turn out to converge for all x, since the series which are used
have interval of convergence (−∞,∞).

Now we can go further. For instance, taking the series representation for ex
2
above and multi-

plying through by x gives a series representation of xex
2
:

ex
2
=

∞󰁛

n=0

x2n

n!
⇝ xex

2
= x

∞󰁛

n=0

x2n

n!
=

∞󰁛

n=0

x2n+1

n!
,

which is valid for all x. If instead we want to determine the function represented by the series

∞󰁛

n=0

(−1)n
x3n+2

n!
,

we note that this can be written as

∞󰁛

n=0

(−x3)nx2

n!
= x2

∞󰁛

n=0

(−x3)n

n!
.

Since the final series is obtained by replace x by −x3 in ex =
󰁓

n=0
xn

n! , we find that our series
equals the function

x2e−x3
= x2

∞󰁛

n=0

(−x3)n

n!
=

∞󰁛

n=0

(−1)n
x3n+2

n!
.

Differentiating series. Manipulating a power series by making a substitution (such as y = −x2

or y = 1− x) like we did above is one way of manipulating one series in order to produce another.
Another way of manipulating a series comes from differentiation.

Write a power series as an infinite sum:

∞󰁛

n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · · .

We can differentiate this just as we’re used to, by differentiating each term one at a time:

󰀣 ∞󰁛

n=0

cn(x− a)n

󰀤′

= c1 + 2c2(x− a) + 3c3(x− a)2 + · · · .

This results in the formula:

󰀣 ∞󰁛

n=0

cn(x− a)n

󰀤′

=

∞󰁛

n=0

cnn(x− a)n−1,

where the n(x− a)n−1 piece comes from differentiating (x− a)n. Note that the n = 0 term in the
resulting series is 0 (because plugging in n = 0 into cnn(x − a)n−1 gives zero), so we can rewrite
the series to start at n = 1 (the first nonzero term) instead:

󰀣 ∞󰁛

n=0

cn(x− a)n

󰀤′

=

∞󰁛

n=1

cnn(x− a)n−1.
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This is just reflecting the fact that the constant c0 term in

c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

disappears after taking derivatives. This process is called term-by-term differentiation.

Example 4. Differentiating the standard geometric series

1

1− x
=

∞󰁛

n=0

xn

gives

d

dx

󰀕
1

1− x

󰀖
=

d

dx

󰀣 ∞󰁛

n=0

xn

󰀤

1

(1− x)2
=

∞󰁛

n=0

d

dx
(xn)

=

∞󰁛

n=1

nxn−1.

To be clear, we start the final series at n = 1 since the n = 0 term is zero anyway, so it is not worth
writing. Multiplying through by x would then give the following series representation:

x

(1− x)2
=

∞󰁛

n=1

nxn.

Example 5. Consider the function f(x) defined by the following series

f(x) =

∞󰁛

n=0

xn

n!
,

which is know is defined for all x. The term-by-term derivative is:

f ′(x) =
∞󰁛

n=1

nxn−1

n!
=

∞󰁛

n=1

xn−1

(n− 1)!
.

Now, the resulting series can be written to start at n = 0 instead of n = 1, which will have the
effect of increasing every n which appears within the sum by 1:

f ′(x) =
∞󰁛

n=1

xn−1

(n− 1)!
=

∞󰁛

n=0

xn

n!
.

To be clear, the series which starts at n = 1 has terms which look like:

x1−1

(1− 1)!
+

x2−1

(2− 1)!
+

x3−1

(3− 1)!
+ · · ·

while the series which starts at n = 0 looks like:

x0

0!
+

x1

1!
+

x2

2!
+ · · · ,
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which is the same thing. That is, reindexing does not actually change the value of sum, only how
it is written. In general, dropping the index from n = k to n = 0 corresponds to replacing n by
n+ k in the terms of the series.

And so the point is that the function f(x) =
󰁓∞

n=0
xn

n! equals its own derivative, which gives
evidence to the claim that this series equals ex, which we will come back to later.

Example 6. Finally, consider the series

∞󰁛

n=1

(−1)n2nx2n−1.

The key observation here is that this series is precisely the result of differentiating the series

∞󰁛

n=0

(−1)nx2n

we saw earlier. Indeed, differentiating term-by-term gives

󰀣 ∞󰁛

n=0

(−1)nx2n

󰀤′

=

∞󰁛

n=1

(−1)n2nx2n−1

since 2nx2n−1 is the derivative of x2n. Since

1

1 + x2
=

∞󰁛

n=0

(−1)nx2n,

the series we’re looking at in this example is should represent the function obtained by differentiating

1

1 + x2
.

In other words, taking derivatives of both sides of

1

1 + x2
=

∞󰁛

n=0

(−1)nx2n

gives 󰀕
1

1 + x2

󰀖′
=

∞󰁛

n=1

(−1)n2nx2n−1,

so the given series in this example represents the function

−2x

(1 + x2)2
=

∞󰁛

n=1

(−1)n2nx2n−1.

Furthermore, if we divide by the extra factor of 2 which appears, we get the representation

− x

(1 + x2)2
=

∞󰁛

n=1

(−1)nnx2n−1
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Lecture 14: More on Manipulations

Warm-Up 1. We determine the function which is represented by the series

∞󰁛

n=2

n(n− 1)xn.

The key observation is that this series is almost what we get if we take two derivatives of

∞󰁛

n=0

xn.

Indeed, taking one derivative gives
∞󰁛

n=1

nxn−1,

and taking another gives
∞󰁛

n=2

n(n− 1)xn−2.

(Note that here we’ve written this series to start at n = 2; we could have written it to start at
n = 0 instead only that the n = 0 term itself would be 0 because of the n coefficient, and the n = 1
term would also be zero because of the n− 1 coefficient. The first nonzero term is the n = 2 term,
which is why we write the series to start at this value.) Since the original series

󰁓
xn represented

the function 1
1−x , the series after we take two derivatives will represent

󰀕
1

1− x

󰀖′′
=

2

(1− x)2
.

Thus so far we have that
2

(1− x)2
=

∞󰁛

n=2

n(n− 1)xn−2.

The only difference between this series and the one we want is the power of x, but that can be
fixed by multiplying through by x2:

2x2

(1− x)2
= x2

∞󰁛

n=2

n(n− 1)xn−2 =

∞󰁛

n=2

n(n− 1)x2xn−2 =

∞󰁛

n=2

n(n− 1)xn.

Thus we conclude that the original series at the start of this Warm-Up is a series representation of
the function

2x2

(1− x)2
.

Warm-Up 2. ***TO BE FINISHED***

Integrating series. Similarly, we can integrate one power series in order to produce another.
Integrating

∞󰁛

n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·
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should give

󰁝 󰀣 ∞󰁛

n=0

cn(x− a)n

󰀤
dx = c0x+ c1

(x− a)2

2
+ c2

(x− a)3

3
+ c3

(x− a)4

4
+ · · · ,

so 󰁝 󰀣 ∞󰁛

n=0

cn(x− a)n

󰀤
dx =

∞󰁛

n=0

cn
(x− a)n+1

n+ 1
.

To be clear, the
(x− a)n+1

n+ 1

term comes from integrating (x− a)n. When considering indefinite integrals we should also throw
on a +C term at the end as usual. This process is called term-by-term integration.

Example. Consider the series
∞󰁛

n=1

(−1)nxn

n
.

Note that if we start with
1

1− y
=

∞󰁛

n=0

yn,

integrating both sides gives

− ln |1− y| =
∞󰁛

n=0

yn+1

n+ 1
+ C.

The point is that integration is the type of operation which can give additional n terms (in this
case n+ 1) in the denominator of a series expression. The unknown constant of integration C can
be found by plugging in y = 0 into both sides: this gives

− ln 1 =

∞󰁛

n=0

0 + C, or 0 = 0 + C.

Hence C = 0 so

− ln |1− y| =
∞󰁛

n=0

yn+1

n+ 1
.

Making the substitution y = −x then gives

− ln |1 + x| =
∞󰁛

n=0

(−1)n+1xn+1

n+ 1
.

Now, this is almost the series we want, only that the series we want starts at n = 1 and involves

xn

n
instead of

xn+1

n+ 1
.

However, note that we can rewrite the series

∞󰁛

n=0

(−1)n+1xn+1

n+ 1

57



to make it start at n = 1 instead. To make this clear, let us instead use m as the indexing variable:

∞󰁛

m=0

(−1)m+1xm+1

m+ 1
.

If we set n = m+ 1, we get a series starting at n = 1 (since n = 1 when m = 0) which looks like:

∞󰁛

m=0

(−1)m+1xm+1

m+ 1
=

∞󰁛

n=1

(−1)nxn

n
,

and this latter series is the one we want. We conclude that

− ln |1 + x| =
∞󰁛

n=1

(−1)nxn

n

is the function our given series represents.
As in the previous example, we can phrase this the other way around. Say we want to find the

series which represents
− ln |1 + x|.

We note that this function is obtained by integrating

1

1 + x
,

so that if we know how to represent this latter function as a series, we can integrate to find a
representation of the function we want. Since

1

1 + x
=

∞󰁛

n=0

(−1)nxn,

which comes from setting y = −x in the standard series expression for 1
1−y , we get after integrating

that:

ln |1 + x| =
∞󰁛

n=0

(−1)n
xn+1

n+ 1
+ C.

The unknown constant C can be found by setting x = 0 in this expression, so 0 = 0+C and hence
C = 0, and thus

ln |1 + x| =
∞󰁛

n=0

(−1)n
xn+1

n+ 1
.

We can reindex this series to start at n = 1 instead (this will have effect of replacing each n showing
up in the series expression with n− 1) to get

ln |1 + x| =
∞󰁛

n=1

(−1)n−1x
n

n
,

and finally multiplying through by −1 to get

− ln |1 + x| =
∞󰁛

n=1

−(−1)n−1x
n

n
=

∞󰁛

n=1

(−1)n
xn

n
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as a series expression for − ln |1 + x|. This series (if you work it out) has interval of convergence
(−1, 1], and since 1 is then in this interval, we get the equality

− ln 2 =

∞󰁛

n=1

(−1)n

n

after setting x = 1. This was a claim I made previously when discussing alternating series, and
now we can see why this is the correct value of this series.

Lecture 15: Taylor Series

Warm-Up 1. ***TO BE FINISHED***

Warm-Up 2. We find a series representation of the function

x ln |1− x3|.

To build up to this, we start by finding a series representation of

ln |1− x3|.

Since
1

1− y
=

∞󰁛

n=0

yn,

integrating both sides gives

− ln |1− y| =
∞󰁛

n=0

yn+1

n+ 1
+ C,

and plugging in y = 0 to get that C = 0 leaves us with

− ln |1− y| =
∞󰁛

n=0

yn+1

n+ 1
.

We can multiply through by −1 and rewrite the series on the right to start at n = 1 (and replacing
n by n− 1 accordingly) to get

ln |1− y| =
∞󰁛

n=1

−yn

n
.

Setting y = x3 gives

ln |1− x3| =
∞󰁛

n=1

−x3n

n
,

where we used the fact that (x3)n = x3n, and finally multiplying through by x gives

x ln |1− x3| =
∞󰁛

n=1

−xx3n

n
=

∞󰁛

n=1

−x3n+1

n

as the desired representation.
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Warm-Up 3. Finally we find a series representation for arctanx. The key fact we need is that
the derivative of this functions is 1

1+x2 :

(arctanx)′ =
1

1 + x2
.

Thus if we have a series representation of 1
1+x2 , integrating term-by-term will give a series repre-

sentation of arctanx. We’ve seen before that

1

1 + x2
=

∞󰁛

n=0

(−1)nx2n,

which comes from making the substitution y = −x2 in

1

1− y
=

∞󰁛

n=0

yn.

Integrating both sides of

1

1 + x2
=

∞󰁛

n=0

(−1)nx2n

gives

arctanx =

∞󰁛

n=0

(−1)n
x2n+1

2n+ 1
+ C.

Setting x = 0 gives 0 = 0 + C, so C = 0 and thus

arctanx =

∞󰁛

n=0

(−1)n
x2n+1

2n+ 1

is the desired representation.

Determining coefficients. We now come to the problem of trying to represent a function as a
series a bit more systematically, in a way which does not depend on having to express our function—
either via substitution, differentiation, or integration—in terms of another function whose power
series representation is already known.

Suppose we have already expressed f(x) as a power series centered at a:

f(x) =

∞󰁛

n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · · .

Setting x = a in this expression gives

f(a) = c0 + c10 + c20 + c30 + · · · = c0,

so we first conclude that the unknown constant term c0 must be f(a). Now, taking the derivative
of our series expression gives:

f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · .

Setting x = a gives
f ′(a) = c1 + 2c20 + 3c30 + · · · = c1,
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so the coefficient c1 of x− a in our series expression must be f ′(a). Taking another derivative gives

f ′′(x) = 2c2 + 2 · 3c3(x− a) + · · ·

and setting x = a gives

f ′′(a) = 2c2, so c2 =
f ′′(a)

2
.

Taking another derivative gives

f (3)(x) = 2 · 3c2 + stuff involving x− a

and setting x = a gives

f (3)(a) = 2 · 3c2, so c2 =
f (3)(a)

3!
.

In general, the n-th derivative of

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

looks like
f (n)(x) = n!cn + stuff involving x− a,

and setting x = a gives

f (n)(a) = n!cn + 0, so cn =
f (n)(a)

n!
.

Taylor series. The point of all this is to say that if we want to express f as a power series centered
at a:

f(x) =

∞󰁛

n=0

cn(x− a)n,

the coefficients needed must be given by cn = f (n)(a)
n! ; we have no choice! The resulting power series

∞󰁛

n=0

f (n)(a)

n!
(x− a)n

is called the Taylor series of f centered at a and is the only power series which could posibly equal
the function f(x) on its interval of convergence. So, representing a function as a power series really
comes down to finding its Taylor series.

Those Taylor series which are centered at 0 show up often enough that we give them the special
name of Maclaurin series; so, to be clear, the Maclaurin series of f is

∞󰁛

n=0

f (n)(0)

n!
xn.

Essentially, Maclaurin series are the most basic (and most important) types of Taylor series.

Example 1. We determine the Maclaurin series (i.e. Taylor series centered at 0) of ex, and then we
determine its Taylor series centered at −3. To compute either one we need to start by determining
the derivatives of ex, which is easy in this case since ex equals its own derivative:

f(x) = ex, f ′(x) = ex, f ′′(x) = ex, f (3)(x) = ex, and in general f (n)(x) = ex.
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Evaluating these at 0 gives
f (n)(0) = e0 = 1 for all n,

so the coefficient of xn in the Maclaurin series is

f (n)(0)

n!
=

1

n!
.

Hence the Maclaurin series of ex is

∞󰁛

n=0

f (n)(0)

n!
xn =

∞󰁛

n=0

xn

n!
,

which is the series expression for ex we mentioned previously. We saw back a few lectures ago that
this series has infinite radius and interval of convergence (using the ratio test), so we conclude that

ex =

∞󰁛

n=0

xn

n!
for all values of x.

In particular, setting x = 1 gives

e =

∞󰁛

n=0

1

n!
= 1 +

1

2!
+

1

3!
+

1

4!
+ · · · ,

which is an interesting way of expressing the number e. (In fact, as we’ll mention soon enough when
we talk about Taylor series approximations, this series is precisely how computers and calculators
come up with decimal expressions for e.)

Now, the Taylor series for ex centered at −3 can be computed similarly, only that now we
evaluate the derivatives we had above at −3. The coefficient of (x+3)n (which is (x− center)n) in
the Taylor series of ex centered at −3 is then

f (n)(−3)

n!
=

e−3

n!
,

so the Taylor series centered at −3 is

∞󰁛

n=0

f (n)(−3)

n!
(x+ 3)n =

∞󰁛

n=0

e−3

n!
(x+ 3)n.

This series also has infinite radius of convergence, so

ex =

∞󰁛

n=0

e−3

n!
(x+ 3)n(which holds for all x)

gives another way of representing ex as a series, only this time as a power series centered at −3
instead of 0. For instance, setting x = 1,

e =

∞󰁛

n=0

e−3

n!
4n

gives another way of expressing the number e as an infinite sum.
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To note one last thing about this example, here we computed the Taylor series of ex centered
at −3 directly using the definition of a Taylor series, but in this case we can also computed it using
the Maclaurin series of ex. Since ex can be written as

ex = e−3ex+3,

we can find a series representation for ex by taking one for ex+3 and then multiplying by e−3. Since

ey =

∞󰁛

n=0

yn

n!

based on the Maclaurin series we found above for ex, setting y = x+ 3 gives

ex+3 =

∞󰁛

n=0

(x+ 3)n

n!
,

so

ex = e−3ex+3 = e−3
∞󰁛

n=0

1

n!
(x+ 3)n =

∞󰁛

n=0

e−3

n!
(x+ 3)n,

which is precisely the Taylor series for ex centered at 3 we found before. This is meant to be yet
another example of the use of manipulation to turn one series into another.

Example 2. Consider the indefinite integral

󰁝
ex

2
dx.

We’ve mentioned many times in this course that this is not an integral which can be computed
directly, so up until now we’ve haven’t been able to say anything more about what this integral
actually is. However, the point is that now we do have a way of making sense of this integral, since
we can represent it as a series! Since

ey =

∞󰁛

n=0

yn

n!
,

setting y = x2 gives

ex
2
=

∞󰁛

n=0

x2n

n!
.

Integrating both sides gives 󰁝
ex

2
dx =

∞󰁛

n=0

x2n+1

n!(2n+ 1)
+ C,

which is our desired series representation.
Integrals like the one here and others which cannot be computed directly using the integration

techniques we spend the first portion of the course studying show up all the time in applications,
in fact these types of integrals probably show up more often than integrals which can be computed
directly. The point is that in these applications the best you can do with such integrals is find a way
to represent them as power series, which, as we’ll talk about later when discussing approximations,
is for most purposes good enough.
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Example 3. Finally, we compute the Maclaurin series of cosx. We first need derivatives:

f(x) = cosx, f ′(x) = − sinx, f ′′(x) = − cosx, f (3)(x) = sinx,

and after this we repeat these same derivatives: the fourth derivative is cosx, the fifth is − sinx,
and so on. Evaluating these are 0 gives

f (0)(0) = 1, f (1)(0) = 0, f (2)(0) = −1, f (3)(0) = 0,

after which we repeat these values. The Maclauring series of cosx thus looks like:

1 + 0x− 1

2!
x2 +

0

3!
x3 +

1

4!
x4 + · · · = 1− x2

2!
+

1

x4
4!− 1

6!
x6 + · · · .

Notice thus the coefficient of any odd power of x in the Maclaurin series is 0, since all of these
coefficients come from evaluating ± sinx at x = 0, and the coefficients of the even powers are all
±1 divided by an even factorial, since all of these come from evaluating ± cosx at x = 0.

When writing the Maclaurin series in a nice way it thus makes sense to write it to include only
the terms involving an even power of x, since the other terms will all be zero anyway. We thus
write the Maclaurin series of cosx as

∞󰁛

n=0

(−1)n
x2n

(2n)!
.

Compare this with the infinite sum

1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

we wrote out earlier: the point is that the (−1)n portion of our Maclaurin series expression describes

the alternating signs, and the x2n

(2n)! portion describes the fact that we only have even powers of x,
and such an even power of x is divided by the factorial of the even number describing that power
itself. This Maclaurin series of cosx is one you should have engrained in your minds and know by
heart.

Lecture 16: Taylor Polynomials

Warm-Up. We determine the Taylor series for f(x) = sinx centered at 0, or in other words its
Maclaurin series. The answer will be

sinx =

∞󰁛

n=0

(−1)n
x2n+1

(2n+ 1)!
,

which you should know by heart. ***TO BE FINISHED***

How to compute sin(1). So now we have the equality

sinx =

∞󰁛

n=0

(−1)n
x2n+1

(2n+ 1)!
,
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which holds for all x since this series (as you can determine) has infinite radius of convergence.
Setting x = 1 gives the equality

sin 1 =

∞󰁛

n=0

(−1)n

(2n+ 1)!
= 1− 1

3!
+

1

5!
− 1

7!
+ · · · .

Of course, this infinite sum is not possible to compute directly since we can’t sit down and lit-
erally add up infinitely many quantities. However, taking finite portions of this sum will give
approximations to sin 1:

sin 1 ≈ 1− 1

3!
+

1

5!

for instance. And this is the point: approximating values of functions using power series is the way
modern computations of concrete numerical values are actually carried out.

For instance, when I plug sin 1 into my calculator I get:

sin 1 ≈ 0.8414709848.

How did my calculator come up with this value? The answer is that whomever wrote my phone’s
calculator software programmed the Maclaurin series for sinx into the phone, and or at least it
programmed as many terms of this series as needed to give approximations good enough to include
all the decimal places my phone’s screen can actually show! In general, the value of sinx can be
approximated incredibly well by taking enough terms in the Maclaurin series of sinx:

sinx ≈ x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
.

The expression on the right is the type of thing my calculator has programmed into its memory,
and plugging in various values of x gives very good approximations to sinx.

Taylor polynomials. In general, when we have a function as expressed as power series centered
at a:

f(x) =

∞󰁛

n=0

f (n)(a)

n!
(x− a)n,

we can approximate f using the first however-many terms we want of this series, and the idea is
that taking more and more terms gives better and better approximations. The expression obtained
by taking the terms up to the n-th one (i.e. the term involving the n-th power of x − a) is called
the n-th degree Taylor polynomial of f centered at a:

f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

These polynomials form the basis for all modern numerical computations in TONS of applications.
For instance, recall that the Maclaurin series of ex is:

ex =

∞󰁛

n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · · .

The first degree Taylor polynomial centered at 0 gives the approximation

ex ≈ 1 + x,
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the second degree Taylor polynomial gives a better approximation

ex ≈ 1 + x+
x2

2!
,

the third degree gives the even better approximation

ex ≈ 1 + x+
x2

2!
+

x3

3!
,

and so on. Again, next time we’ll talk about how to determine just how good these approximations
actually are. For now, let me point out that the Wikipedia page for “Taylor series” has a nice
animation showing graphically that these polynomials indeed give better and better approximations:
the graph for ex is drawn first, then the graph of 1+x, then the graph of 1+x+ x2

2! , and so on, and
at each step you can actually see that the Taylor polynomial graphs are getting closer and closer
to the actual graph of ex. Check it out!

Example. We compute the 4-th degree Taylor polynomial of 1
3−x centered at 1. We have:

f(x) =
1

3− x
, f ′(x) =

1

(3− x)2
, f ′′(x) =

2

(3− x)3
, f (3)(x) =

2 · 3
(3− x)4

, f (4)(x) =
2 · 3 · 4
(3− x)5

.

Thus the required Taylor polynomial is

f(1) + f ′(1)(x− a) +
f ′′(1)

2
(x− 1)2 +

f (3)(1)

3!
(x− 1)3 +

f (4)(1)

4!
(x− 1)4

=
1

2
+

1

4
(x− 1) +

1

8
(x− 1)2 +

1

16
(x− 1)3 +

1

32
(x− 1)4.

Lecture 17: Taylor Remainders

Warm-Up 1. We find the 3-rd order Taylor polynomial of f(x) =
√
x centered at 9. We compute:

f ′(x) =
1

2
√
x
, f ′′(x) = − 1

4x3/2
, f ′′′(x) =

3

8x5/2
.

Evaluating at the center gives:

f ′(9) =
1

6
, f ′′(9) = − 1

4 · 27 = − 1

108
, f ′′′(9) =

3

8 · 35 =
3

1944
.

Thus the required Taylor polynomial is:

f(9) + f ′(9)(x− 9) +
f ′′(9)

2!
(x− 9)2 +

f ′′′(9)

3!
(x− 9)3

= 3 +
1

6
(x− 9)− 1

2 · 108(x− 9)2 +
3

6 · 1944(x− 9)3.

Warm-Up 2. ***TO BE FINISHED***

Errors and remainders. Recall the idea that the Taylor polynomials of a function provide
approximations to that function:

f(x) ≈ f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.
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Let us denote this Taylor polynomial by Tn(x). The error arising when using this polynomial to
approximate f is given by the difference

f(x)− Tn(x),

since this tells us precisely how far off the value Tn(x) is from the value f(x). (Actually, since
this difference can be positive or negative, we usually care more about the absolute value of this
difference |f(x)−Tn(x)|.) The difference f(x)−Tn(x) is also called the n-th order Taylor remainder.

The key fact which makes Taylor series incredibly worthwhile is that we can actually express this
remainder in terms of the function f(x) itself; namely, it is true that we can write this remainder
as

f(x)− Tn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some value of c between x and a. The point is that the error obtained when approximating a
function using a Taylor polynomial can be written using the next higher-order derivative of f and
the next higher-order power of x − a. So, if we use the 3-rd degree Taylor polynomial, the error
will involve terms of degree (or order) 4, if we use the 6-th degree Taylor polynomial the error will
use the 7th-order term, and so on. This is the key observation which allows us to get a handle on
how good of an approximation we have.

Example 1. The 3-rd, 4-th, and 5-th degree Taylor polynomials (centered at 0) of ex are:

ex ≈ 1 + x+
x2

2
+

x3

3!

ex ≈ 1 + x+
x2

2
+

x3

3!
+

x4

4!

ex ≈ 1 + x+
x2

2
+

x3

3!
+

x4

4!
+

x5

5!
.

Setting x = 1 in each gives:

e ≈ 1 + 1 +
1

2
+

1

3!
≈ 2.67

e ≈ 1 + 1 +
1

2
+

1

3!
+

1

4!
≈ 2.708

e ≈ 1 + 1 +
1

2
+

1

3!
+

1

4!
+

1

5!
≈ 2.7167.

The actual value of e is approximately e ≈ 2.71828, so we indeed see that the approximations given
by the Taylor polynomials get better and better as the degree of the polynomial increases.

Let us delve into the 5th degree approximation

ex ≈ 1 + x+
x2

2
+

x3

3!
+

x4

4!
+

x5

5!

a little more carefully. This 5-th degree approximation has an error term which can be written as

| ex − (5th degree approximation)󰁿 󰁾󰁽 󰂀
error

| =

󰀏󰀏󰀏󰀏󰀏
f (6)(c)

6!
x6

󰀏󰀏󰀏󰀏󰀏 =
ec

6!
|x|6
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for some value of c between 0 (the center) and x. Here we are using the fact that f (6)(x) = ex for
f(x) = ex in order to get the correct numerator. Since the unknown value of c falls between 0 and
x, ec < ex, we can bound this error by:

|error| = ec

6!
|x|6 ≤ ex

6!
|x|6.

To be clear, we are not saying that the error equals ex

6! |x|
6, only that it can be no greater than this

value. (The actual error involves the unknown value of c.) In particular, for x = 1, where we get
the approximation

e ≈ 1 + 1 +
1

2
+

1

3!
+

1

4!
+

1

5!
≈ 2.7167,

the error is bounded by:

|error| ≤ e1

6!
16 =

e

720
.

That is, the approximation 2.7167 should be within e
720 ≈ 0.00378 of the actual value of e; since

e ≈ 2.71828, we see that the error 2.71828 − 2.7167 = 0.00158 is indeed less than 0.00378 as
expected.

Example 2. Suppose we want to approximate
√
x near a = 9. We can use, say, the 2nd order

Taylor polynomial centered at 9, whose terms were computed as part of the Warm-Up:

√
x ≈ 3 +

1

6
(x− 9)− 1

216
(x− 9)2

To be sure, in the Warm-Up we actually computed the 3rd order Taylor polynomial, but truncating
that and stopping at the (x − 9)2 term gives the 2nd order polynomial above. The error in this
approximation can be written as

|error| =
󰀏󰀏󰀏󰀏
f ′′′(c)

3!
(x− 9)3

󰀏󰀏󰀏󰀏

for some c between x and 9, where f(x) =
√
x. Using the value f ′′′(x) = 3

8x5/2 found in the
Warm-Up, this gives:

|error| = 3

3! · 8 · |c|5/2
|x− 9|3.

Now, we will in particular approximate
√
10. Since 10 is relatively close to the center 9, we

expect the resulting approximation

√
10 ≈ 3 +

1

6
(10− 9)− 1

216
(10− 9)2 = 3 +

1

6
− 1

216

to not be so bad. The error is

|error| = 3

48c5/2
|10− 9|3 = 3

48c5/2

for some c between 9 and 10. Now, if we want bound this error to get rid of the unknown c value,
we will need to bound c5/2 from below since it occurs in the denominator the fraction above. Since
9 < c, we get 95/2 < c5/2, so

1

c5/2
<

1

95/2
=

1

35
.
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Again, we should be clear: we cannot the upper bound of 10 on c since c5/2 < 105/2 does NOT give
an upper on the reciprocal 1

c5/2
, which is what we need; for this, we need to use the lower bound 9

on c. Thus, we get:

|error| = 3

48c5/2
≤ 3

48 · 35 ≈ 0.000257.

That is, the difference between the actual value of
√
10 and the value we get using the approximation

√
10 ≈ 3 +

1

6
− 1

216

will be less than 0.000257. This is pretty small, so this approximation should be pretty good.
Indeed, this approximation roughly gives the value 3.162037, while

√
10 is actually roughly 3.162278,

and this difference is roughly

3.162278− 3.162027 = 0.000251,

which is indeed less than the estimated error 0.000257 we derived. If nothing else, having an error
this small 0.000251 < 1

103
implies at least 2 decimal places of accuracy, which is true; in fact, we

even get 3 decimal places of accuracy in this case.

Lecture 18: More Series Estimates

Warm-Up. Consider the following 4th degree Taylor approximation of cosx:

cosx ≈ 1− x2

2!
+

x4

4!
,

where the expression on the right is the 4-th degree Taylor polynomial centered at 0. Suppose we
use this polynomial to approximate cosx for values of x in the interval (−0.5, 0.5), or equivalently
values of x satisfying |x| ≤ 0.5. We determine how good of an approximation this is.

Since we approximate using the 4-th degree Taylor polynomial, the error should be given by a
term using the 5-th derivative of f(x) = cosx:

| cosx− (4th degree Taylor polynomial)| =

󰀏󰀏󰀏󰀏󰀏
f (5)(c)

5!
x5

󰀏󰀏󰀏󰀏󰀏

for some c between 0 and x. Since f(x) = cosx, f (5)(x) = − sin c, so
󰀏󰀏󰀏󰀏󰀏
f (5)(c)

5!
x5

󰀏󰀏󰀏󰀏󰀏 =
|− sin c|

120
|x|5.

Since |− sin c| ≤ 1 and we are considering x satisfying |x| ≤ 0.5, we get that the error is at most:

|error| ≤ 1

120
(0.5)5 ≈ 0.00026 ≤ 1

103
= 0.001.

Thus for |x| ≤ 0.5, cosx and

1− x2

2!
+

x4

4!

are within 0.001 of one another, which implies in particular that their values agree to at least 2
decimal places! As a check: plugging x = 0.25 into this Taylor approximation gives a value of

0.9689176,
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while the actual value of cos(0.25) is about

0.9688912,

so indeed these two values agree to at least 2 (in fact more) decimal places. Huzzah, math works!

Example 1. Consider the integral 󰁝 1

0
sin(x2) dx,

which cannot be computed explicitly. However, since

sin y =

∞󰁛

n=0

(−1)n
y2n+1

(2n+ 1)!
,

we have

sin(x2) =

∞󰁛

n=0

(−1)n
x4n+2

(2n+ 1)!
.

Thus 󰁝 1

0
sin(x2) dx =

∞󰁛

n=0

(−1)n
x4n+3

(2n+ 1)!(4n+ 3)

󰀏󰀏󰀏󰀏󰀏

1

0

=

∞󰁛

n=0

(−1)n

(2n+ 1)!(4n+ 3)
.

The second degree approximation (going up to n = 2) is

󰁝 1

0
sin(x2) dx ≈ 1

3
− 1

42
+

1

1320
≈ 0.31028.

Now, how good is this approximation? This requires estimating the error

|(actual integral value)− (second degree approximation)|.

We could do this using the Taylor remainder, but since the series we used to derive this approx-
imation is actually an alternating series, we can also use the alternating series estimate we spoke
about briefly when discussin alternating series. Recall that for an alternating series

󰁓
(−1)nbn, the

error obtained in approximating the actual value using the n-th partial sum is at most bn+1:

|(actual value)− (b0 − b1 + b2 + · · ·+ (−1)nbn)| ≤ bn+1.

In our case, since we used the n = 2 partial sum, we get that

|(actual integral value)− (second degree approximation)| ≤ 1

75600
,

where

bn =
1

(2n+ 1)!(4n+ 3)
, so b3 =

1

75600
.

Since
1

75600
<

1

105
,

this implies that the actual value of the integral

󰁝 1

0
sin(x2) dx
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and the approximation
0.31028

using the 2-nd order approximation should agree to at least 4 decimal places. Indeed, the actual
value of this integral (obtained from my calculator, which itself uses an even better approximation
than the one we’re using here) is about

0.310268,

and low-and-behold these two values do agree to 4 decimal places!

Example 2. Let us now approximate the value of the integral
󰁝 1

0
et

2
dt,

which cannot computed explicitly using standard techniques of integration. We start with:

et =

∞󰁛

n=0

tn

n!
⇝ et

2
=

∞󰁛

n=0

t2n

n!
.

Integrating gives:
󰁝 x

0
et

2
dt =

󰁝 x

0

∞󰁛

n=0

t2n

n!
dt =

∞󰁛

n=0

t2n+1

n!(2n+ 1)

󰀏󰀏󰀏󰀏󰀏

x

0

=

∞󰁛

n=0

x2n+1

n!(2n+ 1)
.

Now, based on this, we can approximate the function f(x) =
󰁕 x
0 et

2
dt using Taylor polynomials

of the form: 󰁝 x

0
et

2
dt ≈ x+

x3

3
+

x5

2 · 5 + · · ·+ x2n+1

n!(2n+ 1)
.

In particular, say, the 5th order approximation is
󰁝 x

0
et

2
dt ≈ x+

x3

3
+

x5

10
.

Evaluating at x = 1 gives 󰁝 1

0
et

2
dt ≈ 1 +

1

3
+

1

10
.

The error in this approximation is

|error| = |f (6)(c)|
6!

|1− 0|6

for some c between 0 and 1. (We need the 6th derivative term since the approximation we are using
came from the 5th order Taylor polynomial.) For f(x) =

󰁕 x
0 et

2
dt, we can (tediously) compute that

f (6)(x) = (120x+ 160x3 + 32x5)ex
2
, so f (6)(c) = (120c+ 160c3 + 32c5)ec

2
.

But in our case, c will be between 0 and 1, so we can bound all the c terms by 1 to get:

|f (6)(c)| ≤ (120 + 160 + 32)e = 312e.

Thus our error is

|error| = |f (6)(c)|
6!

≤ 312e

720
≈ 1.178.

So, the approximation 1 + 1
3 + 1

10 ≈ 1.4333 to the value of
󰁕 1
0 et

2
dt is maybe not-so-great in this

case, but it is only within 1.178 away from the actual value. (The actual value is something like
1.46265, so our approximation isn’t that bad afterall—it’s just that the specific way we’re looking
at for estimating the error overshoots by quite a bit.)
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Lecture 19: Complex Numbers

***TO BE FINISHED***

Lecture 20: Complex Exponentials

***TO BE FINISHED***

Lecture 21: Second-Order Differential Equations

Warm-Up. ***TO BE FINISHED***

Differential equations. We now shift gears towards studying differential equations. A differential
equation is an equation which characterizes a function in terms of how it relates to one or more
of its derivatives. One example we saw previously was y′ = y, which characterizes those functions
which equal its own derivative. We saw before how we could use series to find the functions which
do satisfy this equation, obtaining the fact that y has to look y = cex or a constant c. Of course,
there are simpler ways of seeing that functions of this form are the only ones which satisfy y′ = y,
but using series to determine such functions—possibly in more complicated cases—will be the final
goal of our course.

We will focus on second-order linear differential equations with constant coefficients, which are
equations of the form

ay′′ + by′ + cy = G(x)

where a, b, c are constants and G(x) is some function.

Lecture 22: More on Homogeneous Equations

Lecture 23: Nonhomogeneous Equations

Warm-Up. ***TO BE FINISHED***

Nonhomogeneous solutions. We now consider nonhomogeneous second-order linear differential
equations with constant coefficients:

ay′′ + by′ + cy = G(x)

where G(x) is nonzero. Such equations arise when there is some external force or other factor
“driving” the behavior of the function y, such as an external motor attached to a spring. (We’ll
talk about the motion of a spring in more detail later on.)

The key fact, and why we spent time talking about homogeneous equations first, is that all
solutions of a nonhomogeneous equation of this type are of the form:

y = (homogeneous solution yh) + (particular solution yp),

where the first term is a solution yh of the corresponding homogeneous equation with G(x) = 0
and the second term is a particular solution yp of the given nonhomogeneous equation. (We’ll say
something about why this works in a bit.) Thus, solving such a differential equation comes down
to two steps: first solve the corresponding homogeneous equation, and second find a particular
solution of the nonhomogeneous equation. Finding a particular solution in the second step will
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involve coming up with a good guess as to what a solution might look like, and then determining
when this guess is in fact valid.

Example 1. We find all solutions of

y′′ − y′ − 2y = x.

First, the corresponding homogeneous equation y′′ − y′ − 2y = 0 has general solution given by:

yh = c1e
−x + c2e

2x,

which comes from the fact that the characteristic equation r2 − r = 2 = 0 as roots r = −1, 2.
Now we look for a (all we need is one!) particular solution of the original nonhomogeneous

equation. Given the form of our equation, we should be looking for a function which involves x
(or powers of x) in either itself, its derivative, or its second derivative, and polynomials of degree
1 are simple functions with this property. So, we will guess that we can find a particular solution
the form

yp = A+Bx

with coefficients A and B to-be-determined. (The technique we are using is often called the method
of undetermined coefficients, since it comes down to computing some coefficients who values are
not known initially.) Again, to be clear, at this point this is a merely a guess for what a solution
might look like, but it is meant to be a reasonable choice for a guess.

The point is that now we can determine what A and B actually need to be in order for this
guess to actually work. To say that yp = A + Bx satisfies the given differential equation is to say
that y′′p − y′p − 2yp = x, which after computing y′′p = 0 and y′p = B becomes:

0󰁿󰁾󰁽󰂀
y′′p

− B󰁿󰁾󰁽󰂀
y′p

−2(A+Bx󰁿 󰁾󰁽 󰂀
yp

) = x.

This can be rewritten as
(−B − 2A)− 2Bx = x,

which after comparing like-terms on both sides gives the following requirements:

−B − 2A = 0

−2B = 1.

(The point is that the constants terms on both sides have to match up—where the constant term
on the right is 0—and the coefficients of x1 on both sides have to match up.) The second equation
gives B = −1

2 , and plugging this into the first gives

−(−1
2)− 2A = 0, so A = 1

4 .

Thus yp = 1
4 − 1

2x is our particular solution. The upshot is that by plugging our guess into the
differential equation we want it to satisfy, we can work out what the undetermined coefficients
actually have to be.

Thus, using the particular solution we found, we can conclude that all solutions of y′′−y′−2y = x
are given by:

y = yh + yp = c1e
−x + c2e

−2x +
1

4
− 1

2
x,
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where we have added the particular solution to the general solution of the homogeneous equation.

Example 2. Now we solve
y′′ − y′ − 2y = x2.

The corresponding homogeneous equation y′′ − y′ − 2y = 0 is the same as in the previous example,
where we found the general solution to be

yh = c1e
−x + c2e

2x.

So again what remains is to find a particular solution of the given nonhomogeneous equation.
With G(x) = x2 on the right, we should expect that our particular solution will be one which

gives powers of x when computing derivatives. So, we will take

yp = A+Bx+ Cx2

as a guess, where we go up to degree 2 since G(x) = x2 is of degree 2. Now we find the values of
A,B,C. In for our guess to actually work, we need y′′p − y′p − 2y′p to equal x2, which since y′′p = 2C
and yp = B + 2Cx, turns into the following equality:

2C − (B + 2Cx)− 2(A+Bx+ Cx2) = x2.

The overall constant term on the left side is 2C−B−2A, which has to match up with the constant
term of 0 on the right; the coefficient of x on the left is −2C − 2B, which has to match up with
the coefficient 0 of x n the right (we should interpret the missing x term on the right as 0x); and
the coefficient of x2 on the left is −2C, which has to match up with the coefficient 1 on the right.
Thus A,B,C must satisfy the following equations:

2C −B − 2A = 0

−2C − 2B = 0

−2C = 1.

The final equation gives C = −1
2 , then the second gives 1 − 2B = 0, so B = 1

2 , and then the first
gives −1− 1

2 − 2A = 0, so A = −3
4 . Thus our particular solution is

yp = −3

4
+

1

2
x− 1

2
x2,

and hence the general solution to our differential equation is

y = yh + yp = c1e
−x + c2e

2x − 3

4
+

1

2
x− 1

2
x2.

Why homogeneous plus particular? Finally we explain why, when solving a nonhomogeneous
differential equation, we know to expect solutions to look like

y = (homogeneous solution yh) + (particular solution yp).
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Lecture 24: More on Nonhomogeneous Equations

Warm-Up 1. ***TO BE FINISHED***

Warm-Up 2. Now we solve
y′′ − y′ = x2.

The homogeneous equation y′′ − y′ = 0 in this case has general solution

yh = c1 + c2e
x,

which comes from the roots r = 0, 1 of the characteristic equation r2 − r = 0. Given the form of
G(x) = x2, let us first take the following guess for a particular solution:

yp = A+Bx+ Cx2.

This guess will work if it satisfies the following equality:

(2C)− (B + 2Cx) = x2,

which comes from computing y′′p , y
′
p, and plugging them into y′′p−y′p. But now we run into a problem:

there is no way this equality can be achieved, since there is no x2 term on the left side. We did not
run into this problem in the previous example since in that case there was an undifferentiated y
term present in the differential equation, which introduced x2 into the left side. In this case, there
is no undifferentiated y in y′′ − y′, so there is nothing to introduce the required x2 term.

Thus we must make a different guess—one which will introduce x2 when computing y′′ − y′.
The simplest way to get this is to start with an x3 term instead of just x2 as the highest degree, so
we take

yp = Ax+Bx2 + Cx3

as our guess for a particular solution. Note that we omit a constant term from our guess since it
is unnecessary because y′′ − y′ will not make use of this constant anyway—it will differentiate to
zero. In order for this guess to be solution, we need:

(2B + 6Cx)− (A+ 2Bx+ 3Cx2) = x2,

which results in the following requirements:

2B −A = 0

6C − 2B = 0

−3C = 1.

Solving gives

C = −1

3
B =

1

3
C = −1

9
A = 2B = −2

9
,

so yp = −2
9x− 1

9x
2 − 1

3x
2 is a particular solution of our differential equation. The general solution

is thus:

y = yh + yp = c1 + c2e
x − 2

9
x− 1

9
x2 − 1

3
x2.

Exponential example. Now we consider

y′′ − y′ − 20y = e3x.
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The solution of the corresponding homogeneous equation, as in the first Warm-Up, is

yh = c1e
−4x + c2e

5x.

For a particular solution of the nonhomogeneous equation, we make a guess of

yp = Ae3x.

This comes from looking for functions which will produce e3x upon taking derivatives or second
derivatives, and multiples of e3x itself are such examples.

In order for this guess to work, we need y′′p − y′p − 20yp to equal e3x, which requires:

9Ae3x − 3Ae3x − 20Ae3x = e3x.

This reduces to −14Ae3x = e3x, so

−14A = 1, and thus A = − 1

14
.

Hence yp = − 1
14e

3x is a particular solution of our equation, so the general solution is

y = yh + yp = c1e
−4x + c2e

5x − 1

14
e3x.

Another exponential example. Now suppose we instead had

y′′ − y′ − 20y = e5x.

Again the homogeneous solution is yh = c1e
−4x + c2e

5x. But now making a guess for a particular
solution of yp = Ae5x will not work: since e5x itself appears as part of the homogeneous solution, this
guess for yp will satisfy the homogeneous equation y′′p−y′p−20yp = 0 instead of the nonhomogeneous
equation. In other words, there will be no e5x term leftover on the left-hand side to compare to the
e5x we want on the right side of the nonhomogeneous equation.

So, we must make a different guess, which in this case is

yp = Axe5x.

The idea is that, again we want functions whose derivatives involve e5x, and if multiples of e5x

alone are not good enough, then the next best thing is multiples of xe5x since these functions do
involve e5x as part of their derivatives. We compute:

y′p = Ae5x + 5Axe5x = A(1 + 5x)e5x and y′′p = 5Ae5x + 5A(1 + 5x)e5x = (10A+ 25x)e5x.

Thus in order for this guess to work, we need:

(10A+ 25x)e5x −A(1 + 5x)e5x − 20Axe5x = e5x,

which after dividing through by e5x and simplifying, turns into the requirement that

9A = 1, or A =
1

9
.

Hence yp =
1
9xe

5x is a particular solution of our equation, so the general solution is

y = yh + yp = c1e
−4x + c2e

5x +
1

9
xe5x.
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Trigonometric example. Finally let us a consider an example with trigonometric G(x), say

y′′ − y′ − 20y = 2 sin 3x.

The homogeneous solution is still yh = c1e
−4x + c2e

5x. For a particular solution, we need functions
which produce sin 3x after differentiating once or twice, so let us use

yp = A cos 3x+B sin 3x.

This gives
y′p = −3A sin 3x+ 3B cos 3x and y′′p = −9A cos 3x− 9B sin 3x.

Thus yp satisfies our nonhomogeneous equation when

(−9A cos 3x− 9B sin 3x)− (−3A sin 3x+ 3B cos 3x)− 20(A cos 3x+B sin 3x) = 2 sin 3x.

The overall coefficient of cos 3x is −29A− 3B, which must equal 0 since there is no cos 3x term on
the right side, and the overall coefficient of sin 3x on the left is −29B + 3A, which must match up
with the 2 on the right.

Hence we get the equations:

−29A− 3B = 0

3A− 29B = 1.

Solving these (there is some algebra with not-so-nice numbers here which we’ll omit) gives

A =
3

850
and B = − 29

850
.

Thus yp =
3

350 cos 3x− 29
850 sin 3x, so the general solution of our nonhomogeneous equation is

y = c1e
−4x + c2e

5x +
3

350
cos 3x− 29

850
sin 3x.

Lecture 25: Spring Motion

Warm-Up. ***TO BE FINISHED***

The motion of a spring. ***TO BE FINISHED***

Example. ***TO BE FINISHED***

Simple harmonic motion. ***TO BE FINISHED***

External driving. ***TO BE FINISHED***
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Lecture 26: Series Solutions

Warm-Up. ***TO BE FINISHED***

Series solutions. We now come to our final topic for the quarter, that of series solutions of
differential equations. We actually saw an example of this for the equation y′ = y a while back,
right before we started talking about complex numbers, where the point was that we are able to
determine that the solution y to this equation was of the form y = cex by working out what the
solution looks like as a series.

This exemplifies the general approach: express the to-be-determined solution as a series y =󰁓
cnx

n centered at 0, and determine, based on the fact that this series must satisfy the differential
equation in general, what the coefficients cn actually are and hence what the series must actually
look like. In some cases we will be able to determine the series in full explicitly, but at other times
the best we will be able to do is work out some specific Taylor polynomial approximation to the
sought-after solution.

Example 1. Consider the differential equation

y′′ − y = 0.

We know, using the characteristic equation, that the general is y = Ae−x + Bex where A,B are
arbitrary constants. But, let us now derive this using a series approach. The point here is not
that we have no other way of solving this particular equation, but rather that we will work out the
series approach in an example to which we already know the answer just to get a sense for how
this approach works in general. Next time we will apply this technique to equations we do not yet
know how to solve, such as some with non-constant coefficients.

Suppose we express y as a power series centered at 0:

y =

∞󰁛

n=0

cnx
n.

Then

y′ =
∞󰁛

n=1

ncnx
n−1 and y′′ =

∞󰁛

n=2

n(n− 1)cnx
n−2,

so y′′ − y, written as a series, looks like:

∞󰁛

n=2

n(n− 1)cnx
n−2 −

∞󰁛

n=0

cnx
n = (2c2 + 6c3x+ 12c4x

2 + · · · )− (c0 + c1x+ x2x
2 + · · · ).

We want to determine when this will equal 0, since this is the condition needed in order to satisfy
y′′ − y = 0. In order for the expression above to equal 0, the overall constant term has to be zero,
the overall coefficient of x has to be zero, the coefficient of x2 has to be zero, and so on. The overall
constant term is 2c2 − c0, the overall coefficient of x is 6c3 − c1, and so on—we get a bunch of
individual equations involving the unknown cn which all have to equal zero.

But we can do this more systematically as follows. Going back to the series expression above
for y′′ − y:

y′′ − y =

∞󰁛

n=2

n(n− 1)cnx
n−2 −

∞󰁛

n=0

cnx
n
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we want to rewrite it in a way which will make the overall coefficient of xn clear. The key is that
we can rewrite the first sum in terms of xn instead of xn−2 by reindexing:

y′′ − y =

∞󰁛

n=0

(n+ 2)(n+ 1)cn+2x
n −

∞󰁛

n=0

cnx
n =

∞󰁛

n=0

[(n+ 2)(n+ 1)cn+2 − cn]x
n.

In order for this to equal 0, we thus need the coefficient of every xn to be zero, which gives the
following requirement:

(n+ 2)(n+ 1)cn+2 − cn = 0 for all n ≥ 0.

Solving for cn+2 in terms of cn gives

cn+2 =
cn

(n+ 2)(n+ 1)
.

Now we get to work! The value of c0 will be undetermined, but then taking n = 0 in the
equation above gives

c2 =
c0
2
.

The value of c1 will be undetermined, but taking n = 1 above gives

c3 =
c1
3 · 2 .

Taking n = 2 gives

c4 =
c2
4 · 3 ,

but using the value we’ve already found for c2 gives:

c4 =
c2
4 · 3 =

c0
4 · 3 · 2 .

With n = 3 we get

c5 =
c3
5 · 4 ,

but using the value we already have for c3 yields

c5 =
c3
5 · 4 =

c1
5 · 4 · 3 · 2 .

And so on: in general, all the even-indexed coefficients can be expressed in terms of c0, and all the
odd-indexed coefficients can be expressed in terms of c1, and the values we get by following the
pattern above are

c2k =
c0

(2k)!
and c2k+1 =

c1
(2k + 1)!

.

Thus, our solution when written as a power series looks like:

y =

∞󰁛

n=0

cnx
n

=

∞󰁛

k=0

c2kx
2k +

∞󰁛

k=0

c2k+1x
2k+1

=

∞󰁛

k=0

c0
x2k

(2k)!
+

∞󰁛

k=0

c1
x2k+1

(2k + 1)!
.

79



To be clear, in the second line we rewrote our sum by breaking it up into the portion consisting of
even powers of x and the portion consisting of odd powers of x:

c0 + c1x+ c2x
2 + c3x

3 + · · · = (c0 + c2x
2 + · · · ) + (c1x+ c3x

3 + · · · ).

We did this because the expression we found for cn itself depends on whether n is even or odd. The
expression above hence gives the general solution to y′′ − y = 0.

But, as stated at the outset, we already know how to solve this equation to get

y = Ae−x +Bex

as the general solution, so how exactly does this match up with the solution we found via the series
approach? Notice that using ex =

󰁓 xn

n! and e−x =
󰁓

(−1)n xn

n! , we have:

ex + e−x = (1 + x+ x2

2 + x3

3! + · · · ) + (1− x+ x2

2 − x3

3! + · · · ) = 2(1 + x2

2! +
x4

4! + · · · ),

where all the odd powers cancel out and the even powers double up. Thus

ex + e−x

2
= 1 +

x2

2!
+

x4

4!
+ · · · =

∞󰁛

k=0

x2k

(2k)!
.

In a similar way, computing ex− e−x gives a sum where all the even powers cancel out and the odd
powers double up, which gives

ex − e−x

2
= x+

x3

3!
+

x5

5!
+ · · · =

∞󰁛

k=0

x2k+1

(2k + 1)!
.

So, the series solution we found above can be written as

y = c0

∞󰁛

k=0

x2k

(2k)!
+ c1

∞󰁛

k=0

x2k+1

(2k + 1)!
= c0

󰀕
ex + e−x

2

󰀖
+ c1

󰀕
ex − e−x

2

󰀖
,

which after regrouping like terms does match up with y = Ae−x +Bex. The functions

coshx =
ex + e−x

2
and sinh =

ex − e−x

2

which are used here are normally called hyperbolic cosine and sine respectively, since it turns out
they behave in ways similar to the usual cosine and sine functions. So, all we have found here is an
alternate way of expressing the solution of y′′ − y = 0, in terms so-called hyperbolic trig functions.
(Again, the point in this example wasn’t so much to find the solution using the series approach
since we know how to solve y′′−y = 0 in a simpler way; rather, the point was just to see an example
of the series approach in action.)

Example 2. Now consider the equation

y′′ − 2y′ + y = 0.

As in the last example, here we can find the solution using the characteristic equation, which gives

y = c1e
x + c2xe

x.
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But, nonetheless, we will see how to solve using the power series approach instead. Suppose we
express the to-be-determined solution again as a power series centered at 0:

y =

∞󰁛

n=0

cnx
n.

Then, using the expressions for y′ and y′′ we gave in the previous example, y′′ − 2y′ + y = 0 turns
into the following:

∞󰁛

n=2

n(n− 1)xn−2 − 2

∞󰁛

n=1

ncnx
n−1 +

∞󰁛

n=0

cnx
n = 0.

As before, to determine the overall coefficient of xn on the left side it will be useful to rewrite the
first two terms in terms of xn instead of xn−2 and xn−1 respectively by reindexing:

∞󰁛

n=0

(n+ 2)(n+ 1)cn+2x
n − 2

󰁛

n=0

(n+ 1)cn+1x
n +

∞󰁛

n=0

cnx
n = 0.

Thus, the overall coefficient of xn on the left side, which must be zero in order for this equality to
hold, is:

(n+ 2)(n+ 1)cn+2 − 2(n+ 1)cn+1 + cn = 0.

***TO BE FINISHED***

Lecture 27: More on Series Solutions

Warm-Up. We find the solution of
y′′ + 16y = 0

using the series approach. Suppose

y =

∞󰁛

n=0

cnx
n.

Then

y′′ + 16y =

∞󰁛

n=2

n(n− 1)cnx
n−2 + 16

∞󰁛

n=0

cnx
x,

which we can write as

y′′ + 16y =

∞󰁛

n=0

(n+ 2)(n+ 1)cn+2x
n + 16

∞󰁛

n=0

cnx
n.

Thus in order for this to equal 0, we need

(n+ 2)(n+ 1)cn+2 + 16cn = 0 for all n ≥ 0.

The goal is now to determine what the cn actually are, to the extent which is possible. When
n = 0 the recursive equation above becomes:

2c2 + 16c0 = 0, which gives c2 =
−42

2
c0.
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(The reason for writing the coefficient at the end as −42

2 will become clear in a bit.) When n = 1
we get:

3 · 2c3 + 16c1 = 0, so c3 =
−42

3 · 2c1.

When n = 2 we get

4 · 3c4 + 16c2 = 0, so c4 =
−42

4 · 3c2 =
(−1)244

4 · 3 · 2 c0,

where we replaced c2 by the value c2 =
−42

2 c0 we derived for it before. When n = 3 we get

5 · 4c5 + 16c3 = 0, so c5 =
−42

5 · 4c3 =
(−1)244

5 · 4 · 3 c1.

And so on: all the even-indexed coefficients can eventually be written in terms of c0, and all the
odd-indexed ones in terms of c1. The next few terms look like

c6 =
−42

6 · 5c4 =
(−1)346

6!
c0 c7 =

−42

7 · 6c5 =
(−1)346

7!
c1,

and the pattern continues in general: for any n, we have

c2n =
(−1)n42n

(2n)!
c0 and c2n+1 =

(−1)n42n

(2n+ 1)!
c1.

Thus, if we separate the series defining y into the portion consisting of the even powers of x plus
the portion consisting of the odd powers of x, we find that our solution looks like:

y =

∞󰁛

n=0

cnx
n =

∞󰁛

k=0

c2kx
2k +

∞󰁛

k=0

c2k+1x
2k+1 =

∞󰁛

k=0

(−1)k42k

(2k)!
c0x

2k +

∞󰁛

k=0

(−1)k42k

(2k + 1)!
c1x

2k+1.

Let us rewrite the final sum by increasing the power of 4 by one and in turn dividing by an extra
power of 4:

y =

∞󰁛

k=0

c0(−1)k
42kx2k

(2k)!
+

󰁛

k=0

c1(−1)k
42k+1x2k+1

4(2k + 1)!

= c0

∞󰁛

k=0

(−1)k
(4x)2k

(2k)!
+

c1
4

∞󰁛

k=0

(−1)k
(4x)2k+1

(2k + 1)!
.

The point is that now we can recognize the resulting series as those defining cos 4x and sin 4x
respectively! Thus, we can write this solution as

y = c0 cos 4x+
c1
4
sin 4x,

which is precisely the solution we expect the equation y′′ + 16y = 0 to have using roots of the
characteristic equation. (Since c1 is an arbitrary constant, c1

4 is constant as well, so we could just
rename this whole thing to be “c1” and get the form y = c0 cos 4x + c1 sin 4x of the solution we
usually use in the characteristic equation method.) So, we see that we can derive this same general
solution using power series instead.

Non-constant coefficient example. Now we consider the equation

y′′ − 2xy′ + 4y = 0.
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This is NOT an equation we know how to solve yet; the characteristic equation approach is not
applicable since this has a non-constant coefficient. Thus, all we have available is the power series
approach. So, suppose

y =

∞󰁛

n=0

cnx
n

is a solution. Our goal, as usual, is figure out what this series must actually like in order for it to
satisfy the differential equation we want.

The equality y′′ − 2xy′ + 4y = 0 becomes

∞󰁛

n=2

n(n− 1)cnx
n−2 − 2x

∞󰁛

n=1

ncnx
n−1 + 4

∞󰁛

n=0

cnx
n = 0.

The second term will already involve xn after we multiply through by the x in front, so this term
does not have to be reindexed. The first term does need reindexing, so overall we get:

∞󰁛

n=0

(n+ 2)(n+ 1)cn+2x
n − 2

∞󰁛

n=1

ncnx
n + 4

∞󰁛

n=0

cnx
n = 0.

The middle sum thus does not have a constant term since the first term when n = 1 involves x to
the first power, so the overall constant term on the left side is

2c2 + 4c0

coming from the first and third sums. This must equal 0, so we get c2 = −2c0. For n ≥ 1, the
overall coefficient of xn on the left in the series expression above, which must equal zero, involves
contributions from each sum, so we get:

(n+ 2)(n+ 1)cn+2 − 2ncn + 4cn = 0 for n ≥ 1.

Expressing cn+2 in terms of cn gives:

cn+2 =
2n− 4

(n+ 2)(n+ 1)
cn.

Now we compute some coefficients explicitly. For n = 1 we get

c3 =
−2

3 · 2c1.

For n = 2 we get

c4 =
0

4 · 3c2 = 0.

Setting n = 3 gives:

c5 =
2

5 · 4c3 =
−2 · 2

5 · 4 · 3 · 2c1,

n = 4 gives:

c6 =
4

6 · 7c4 = 0

and n = 5 gives:

c7 =
6

7 · 6c5 =
−2 · 2 · 6

7!
c1.
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In general, all even-indexed terms beyond c4 will be zero since these can all be eventually expressed
in terms of c4 itself, and the odd-indexed terms are all expressible in terms of c1 and look like:

c2n+1 =
−2 · 2 · 6 · · · (2n− 4)

(2n+ 1)!
c1.

Thus, the solution y looks like:

y =

∞󰁛

n=0

cnx
n

=

∞󰁛

k=0

c2kx
2k +

∞󰁛

k=0

c2k+1x
2k+1

= c0 + c2x
2 +

∞󰁛

k=0

−2 · 2 · 6 · · · (2n− 4)

(2n+ 1)!
c1x

2k+1

= c0(1− 2x2) + c1

∞󰁛

k=0

−2 · 2 · 6 · · · (2n− 4)

(2n+ 1)!
x2k+1.

In this case it is not easy to simplify the remaining sum in order to get a more easily-recognizable
function, but the point is that we still have an explicit series representation of the solution. In
particular, note that taking c0 = 1, c1 = 0 gives y = 1 − 2x2 as one solution, and we can indeed
verify that this does satisfy y′′ − 2xy′ + 4y = 0.

Another example. Finally, consider the following differential equation with initial conditions:

y′′ + y′ − x2y = 0, y(0) = 1, y′(0) = 1.

We want to determine the 3-rd Taylor approximation to the solution, centered at 0. The point is
that, as in the previous example, the solution will not be so straightforward to determine as an
explicit series, but we can certainly work out whichever Taylor polynomial we want explicitly.

Suppose we write y as

y =

∞󰁛

n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + · · · .

We want to determine the partial sum which goes up to the x3 term. Right away, the fact that the
solution we want is meant to satisfy y(0) = 1 and y′(0) = 1 gives us two coefficients we want:

y(0) = c0 + c10 + c20 + · · · = c0 = 1

and
y′(0) = c1 + 2c20 + 3c30 + · · · = c1 = 1,

so the Taylor polynomial we want so far looks like:

y ≈ 1 + x+ c2x
2 + c3x

3.

To determine c2, c3 we use the differential equation y is meant to satisfy. This equation gives the
following requirement:

∞󰁛

n=2

n(n− 1)cnx
n−2 +

∞󰁛

n=1

ncnx
n−1 − x2

∞󰁛

n=0

cnx
n = 0,
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which when written as a sum looks like:

(2c2 + 6c3x+ 12c4x
2 + · · · ) + (c1 + 2c2x+ 3c3x

2 + · · · )− (c0x
2 + c1x

3 + c2x
4 + · · · ) = 0.

Comparing constant terms on both sides gives:

2c2 + c1 = 0, so c2 = −1

2
c1 = −1

2
.

Comparing x1 terms gives:

6c3 + 2c2 = 0, so c3 = −1

3
c2 =

1

6
.

This is enough to determine the 3-rd Taylor polynomial of the solution, which is:

y ≈ 1 + x+ c2x
2 + c3x

3 = 1 + x− 1

2
x2 +

1

6
x3.

This is not the actual solution we want, but it is an approximation to the solution.
If we wanted a better approximation, we could next find the value of c4 in order to get the 4-th

order Taylor polynomial. The value of c4 can be found by considering the x2 terms in the equality

(2c2 + 6c3x+ 12c4x
2 + · · · ) + (c1 + 2c2x+ 3c3x

2 + · · · )− (c0x
2 + c1x

3 + c2x
4 + · · · ) = 0.

We get:

12c4 + 3c3 − c0 = 0, so c4 =
c0
12

− c3
4

=
1

12
− 1

24
=

1

24
,

so the 4-th order Taylor approximation to the solution we want is:

y ≈ 1 + x− 1

2
x2 +

1

6
x3 +

1

24
x4.

We could even get a sense of how good this approximation is by working on some bounds on the
error, but we won’t do that here, and instead will call it a day. Thanks for reading!
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