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Lecture 1: Introduction

This is a course in multivariable differential calculus. Our basic goal is extend the concepts you
saw before in single-variable calculus, such as the notions of derivative, linear approximations, and
optimization, to the setting of functions of more than one variable. Why do we care about functions
of more than one variable, meaning functions which take more than one input? The answer is simply
because most real-world phenomena do indeed depend on more than one thing. Whether it be the
price of a share of stock in some company, or the windchill one experiences standing on a mountain,
various quantities we care about cannot be accurately described by one variable alone.

We will see that much of multivariable calculus closely mimics single-variable calculus, only
with more variables of which to keep track. However, we also see new phenomena arising in the
multivariable setting, which somehow get at the core of what calculus is all about, which were
hidden under the rug in the single-variable setting. The interpretations and uses of calculus cannot
be truly appreciated in all their glory until we see what they look like in higher-dimensions.

Topics for the quarter. Briefly, here are some basic notions we will eventually come to study:
• limits: multivariable limits share some similarities with the single-variable limits you’ve seen

before, but also some important differences, owing to the fact that moving one dimension
higher (from the two dimensions of the xy-plane to the three dimensions of the world in
which we live) gives more directions of which to keep track;

• derivatives: multivariable derivatives are computed using precisely the same tools as for
computing single-variable derivatives, and their basic geometric interpretations will be the
same, but moving into higher dimensions gives a whole range of new uses that were not
present before;

• gradients: the notion of a “gradient vector” is one of the most important ones in multivari-
able calculus, and has no real analog in the single-variable calculus; more precisely, “one-
dimensional gradients” are too simplistic and uninteresting to introduce at all; and

• optimization: finding extrema (i.e., maximums and minimums) of multivariable functions is
one of the most important applications of multivariable calculus, just as it was for single-
variable calculus. In addition to techniques that look familiar, we will see new techniques
that, again, only really appear in the multivariable setting.

In fact, the topics listed above will take up the second half of this course. So, what, exactly, takes
up the first half? The answer is geometry, which plays a much more important role now than it
did in single-variable calculus. But before elaborating, let us consider a first basic example.

Partial derivatives. In a previous course you would have seen a function such as f(x) = x2, which
takes in one input x and outputs one number x2. The derivative, which gives the instantaneous
rate of change of f at any given input, is f ′(x) = 2x. But now, we will consider a function such as
f(x, y) = x2y, which is an example of a function of two variables since it takes two numbers x and
y as inputs. Evaluating at say x = 1, y = 2 results in the output f(1, 2) = 12 · 2 = 2, or evaluating
at x = −2, y = 3 gives f(−2, 3) = (−2)2 · 3 = 12.

What should the “derivative” of f(x, y) = x2y be? The basic fact is that in this case we now
have two derivatives we can compute: one with respect to x and one with respect to y. These
derivatives are called partial derivatives and are denoted by

∂f

∂x
and

∂f

∂y

respectively. (Note the similarity with the notion df
dx for single-variable derivatives. The ∂ in the

notion instead of d is used to signify that this is a “partial” derivative taken with respect to only
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one variable or the other.) To compute such a partial derivative, we do the same thing as what
we did with single-variable functions, only that we think of the other variable as being a constant.
For example, to compute the “partial derivative of f with respect to x”, we think of y as being
a constant, so that x2y is a x2 times a “constant”, and we then take the derivative of x2 as your
normally would; we get 2xy. Similarly, to compute the “partial derivative of f with respect to y,
we think of x as being constant—which in turns means that x2 is a “constant”, so that x2y is a
“constant” times y—and take a usual derivative with respect to y, to get x2. To summarize, the
partial derivatives of f(x, y) = x2y are

∂f

∂x
= 2xy and

∂f

∂y
= x2.

And thus, we will see that computing such partial derivatives uses just the same differentiation
techniques—power rule, product rule, quotient rule, chain rule—that you saw for single-variable
functions; nothing more, nothing less. The new concepts for us will come from using partial
derivatives to compute other quantities of interest, and from understanding their interpretations.

Higher-dimensional slopes. Geometrically, in the single-variable case, derivatives computed
slopes of tangent lines to graphs of curves. The graph of a function y = f(x) of one variable is a
curve in the xy-plane, and the derivative f ′(a) at a point x = a gives the slope of the graph (or
tangent line) at that point. To begin to get a sense of what partial derivatives mean geometrically,
we first have to understand what the graph of a function of, say, two variables is. In the single-
variable case we deal with the xy-plane because we need two coordinates of everything: one for
the input x, and one for the output y = f(x). But for something like f(x, y) = x2y, we need
three coordinates to keep track of everything: two for the inputs x and y, and one for the output
z = f(x, y). This forces us to work in three-dimensional space.

We will talk about three-dimensional space in a bit, but for now we point out the graph a
function of two variables f(x, y) is actually a surface, analogously to how in one dimensional lower
the graph of a function of one variable is a curve. This graph might look something like

It turns out that the partial derivatives of f(x, y) can indeed be interpreted geometrically as slopes,
only that we now have to specify the direction in which we consider the slope. In the picture above,
we might imagine varying only the x coordinate of our input (x, y), and we will see the partial
derivative ∂f

∂x computes the slope in this “x-direction. Similarly, for the partial derivative ∂f
∂y , we

imagine changing only the value of y in the input (x, y), and this partial derivative computes the
slope of the graph in the “y-direction”. The upshot is that derivatives in the higher-dimensional
setting do compute the same types of geometric information as in the single-variable case, with the
added wrinkle that direction matters.

Geometry of space. The discussion above was only meant to be a brief introduction to the
calculus topic we will eventually study, so it is not expected that you be familiar with the ideas
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(such as partial derivatives and “slopes in a certain direction”) we mentioned. The key takeaway
is that this discussion should make clear the point that multivariable derivatives are intimately
connected with geometry, so that is why we will spend roughly the first half of this course studying
three-dimensional geometry.

To begin with, we describe three-dimensional space using points with three coordinates (x, y, z).
We draw the three corresponding axes as in the picture above. We should view the x-axis as coming
“out” from the page towards us. Thus, the x-coordinate of a point (x, y, z) tells us how far we move
in this direction away from the page (negative values of x means that we move away through back
side away from us), the y-coordinate tells us how far we move horizontally (left is negative, right
is positive), and the z-coordinate tells us the “height” at which we are, where positive z means we
move “up” and negative z means “down”. A point like (1, 2, 3) would then be drawn as

Notice here that we draw this in a way which maintains perspective. Importantly, we draw the
right edge moving away from the y-axis so that is parallel to the x-axis, and the edge on top
moving from (1, 2, 3) back directly towards the z-axis (maintaining height) as being parallel to the
segment connecting the origin (0, 0, 0) to the point (x, y, 0) in the xy-plane. (The xy-plane is the
plane containing the x- and y-axes, or in other words the collection of points whose z-coordinate
is exactly zero. This visually is the horizontal plane at the “bottom” of three-dimensional space.
The yz-plane would be the plane on the “back” where the x-coordinate of points is zero, and the
xz-plane is the plane on the “left” where the y-coordinate is zero.)

We use the notation R3 to denote three-dimensional space, where R denotes the real number
line and the superscript 3 corresponds to the fact that we are considering three axes/coordinates.
(Analogously, the xy-plane from single-variable calculus consists of the points that make up what
we would call R2.) So, we would say that (1, 2, 3), for example, is a point in R3.

Equations in space. Now let us consider regions in R3 defined by different equations. For
example, we first want to describe (or better yet, draw!) the collection of points (x, y, z) satisfying
x2 + y2 = 1. In two dimensions, this describes a circle of radius 1 centered at (0, 0), but what does
this same equation describe in three-dimensional space?

Well, if nothing else we still have the same unit circle as before, draw in the xy-plane, since a
point (x, y, 0) in this xy-plane that satisfied the unit circle equation still satisfies this new equation:
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(The equation itself is the same, after all, and all that is different is the introduction of a new
variable.) But, this alone does not describe all points satisfying x2 + y2 = 1. Indeed, if we take
any point in this circle and change its z-coordinate—or visually, if we “move” it up or down—the
points we get we still satisfy x2 + y2 = 1 since we are not changing the values of x or y at all. We
thus have a “copy” of this same circle occurring at height 1, one at height 2, one at height −1 and
so on. Thus x2 + y2 = 1 actually describes a surface, namely the surface obtained by taking the
circle in the xy-plane as a starting point and then sliding it up and down in the z-direction:

The upshot is that x2 + y2 = 1 describes a cylinder of radius 1 in R3.
Next, what about the region characterized by the equation y = x2 in R3? Again, what we mean

here is the collection of points (x, y, z) whose coordinate satisfy y = x2. In two-dimensions, y = x2

describes a parabola in the xy-plane, so that is our starting point here as well:

But just as before, y = x2 places no restriction on what the value of z can be, so taking any point
on this parabola and changing its z-coordinate still results in points satisfying y = x2. Thus, y = x2

again describes a surface, namely the surface obtained by taking the parabola y = x2 and sliding
it up and down in the z-direction:
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Now consider the surface defined by z = y2. This does not as written describe something in the
xy-plane, but by analogy we should really first consider what this describes in the yz-plane instead.
Here, it again gives a parabola. (The point is that whether we consider y = x2 in the xy-plane, or
z = y2 in the yz-plane, does not matter: the basic shape of the resulting curve is the same, and all
that changes is the names we are giving to the variables.) In this case, modifying the x-coordinate
of a point on this parabola still gives a valid point satisfying z = y2. So, if we take the parabola
and move it “back and forth” along the x-direction coming “out” of the page, we sweep out the
full surface described by z = y2, with no restriction on x:

The general idea that these examples demonstrate is the same, at least for equations that omit
one of the variables: the corresponding collection of points satisfying that equation is a surface,
which we can visualize by first taking the curve described by that equation in the appropriate plane,
and then moving this curve along the direction of the missing variable to get the entire surface.

Spheres. Visualizing and understanding surfaces is something we will continue to get much more
experience with as we go, but for now let us mention one standard examples. To start, we first
note the formula for three-dimensional distance: the distance from (x, y, z) to (a, b, c) in R3 is√

(x− a)2 + (y − b)2 + (z − c)2.

This formula is exactly analogous to the formula for two dimensional distance:

distance from (x, y) to (a, b) is
√

(x− a)2 + (y − b)2,

only with one more term under the square root making use of the third coordinate. In the end,
these formulas are consequences of the Pythagorean theorem.
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With this, we can then derive the formula of a sphere. The sphere of radius R centered at
(a, b, c) in R3 is the collection of points (x, y, z) whose distance to (a, b, c) is exactly R. Using our
distance formula, this mean that√

(x− a)2 + (y − b)2 + (z − c)2 = R.

A points (x, y, z) is on this sphere when its coordinates satisfy this equation. But, you ordinarily
would not see the equation of a sphere written like this. Instead, we can rewrite this equation by
squaring both sides to get

(x− a)2 + (y − b)2 + (z − c)2 = R2,

which is the standard form of the equation of a sphere:

Note that if we instead consider the inequality

(x− a)2 + (y − b)2 + (z − c)2 ≤ R2,

we are then considering points whose distance to (a, b, c) is at most R, but possibly less than R.
This gives the region enclosed by the sphere, which looks like a solid ball. (To be clear, a sphere is
not solid and only consists of the outer “shell” of the solid ball.)

Lecture 2: Vectors

Warm-Up 1. We find an equation that characterizes points (x, y, z) whose distance to (1, 2, 1) is
the same as its distance to (2, 1, 1). The distance from (x, y, z) to (1, 2, 1) is given by√

(x− 1)2 + (y − 2)2 + (z − 1)2

and the distance from (x, y, z) to (1, 2, 1) is√
(x− 2)2 + (y − 1)2 + (z − 1)2.

The equation we want says that this two distances should be the same, so (x, y, z) should satisfy√
(x− 1)2 + (y − 2)2 + (z − 1)2 =

√
(x− 2)2 + (y − 1)2 + (z − 1)2.

This is one form of the desired equation, but actually we can simplify this a lot by doing some
algebra. Our real goal is to visualize precisely what points (x, y, z) we’re looking at, or in other
words see what region (surface, in fact) this equation describes. First we can square both sides to
get rid of the square root:

(x− 1)2 + (y − 2)2 + (z − 1)2 = (x− 2)2 + (y − 1)2 + (z − 1)2.
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The (z − 1)2 term common to both sides cancels out, and then we can expand all the squares to
get

x2 − 2x+ 1 + y2 − 4y + 4 = x2 − 4x+ 4 + y2 − 2y + 1.

More algebra gives
2x = 2y, and finally x = y.

The conclusion is that the points (x, y, z) with distances to (1, 2, 1) and to (2, 1, 1) are the same are
precisely those which satisfy x = y.

To visualize what the equation x = y describes, we begin by first drawing the line we know it
describes in the xy-plane:

(Note how the xy-plane is oriented here: the positive x-direction is coming out towards us, and the
positive y-direction moves towards the right. The line we drew above is in the first quadrant of the
usual xy-plane.) But now we recognize that x = y places no restriction on z, so taking this line
and moving it up and down in the z-direction traces out the surface in question, which is a plane:

Here we are only drawing the portion of this plane coming out towards us; there is another half
coming out the back side as well. The points on this plane are then the ones whose distances to
(1, 2, 1) and (2, 1, 1) are equal. Indeed, this is the three-dimensional version of the two-dimensional
observation that the points (x, y) in the xy-plane whose distances to (1, 2) and (2, 1) are the same
is the line y = x:
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As a follow-up, we can ask what the inequality x ≥ y describes. Now we want points whose
x-coordinate is at least as large as its y-coordinate. Visually, this corresponds to taking the region
on one side of the plane above, and we can determine which region we need by simply testing a
point: the point

has x-coordinate larger than its y-coordinate, so x ≥ y describes the region to the “left” (as viewed
from the perspective drawn above) of the plane x = y.

Warm-Up 2. We find the point satisfying the equation

x2 − 4x+ y2 − 6y + z2 = −12

that is closest to the xz-plane. The point here is to first determine what type of surface this
equation describes, and then to use a picture of this surface to find the desired closest point. In
fact, this is the equation of a sphere. To make it look like the standard sphere equation

(x− a)2 + (y − b)2 + (z − c)2 = R2,

we must “complete the square”, which is the technique of writing something like x2 − 4x in terms
of a single quantity square plus or minus a constant. In particular, we need x2 − 4x to arise from
the (x− a)2 term:

x2 − 4x = (x− a)2 ± something,

and for this we need to use (x− 2)2 since this is what will give the −4x term. But (x− 2)2 gives a
4 that does not show up in our original equation, so we must compensate for this by subtracting 4:

x2 − 4x = (x− 2)2 − 4.
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We do the same thing for the y terms, and in theory the z terms, although in this case z2 has
already had its square completed since we can write it as (z− 0)2; we would only need to complete
the square for z if we had an additional z to the first power term occurring in our equation.

After completing the square, we get that our original equation can be written as

(x− 2)2 − 4 + (y − 3)2 − 9 + z2 = −12,

which in turn we can write as
(x− 2)2 + (y − 3)2 + z2 = 1.

Thus, the given equation describes a sphere of radius 1 centered at (2, 3, 0). We draw this sphere
as follows:

Recall that our goal is to find the point on this sphere that is closest to the xz-plane. The xz-plane
is here drawn on the left (it is the plane containing the x- and z-axes), which we imagine as being
strictly vertical and coming out directly at us. Visually then, we can see that the point on the
sphere closest to the this plane should be the “leftmost” point on the sphere. This point occurs on
the equator of the sphere, which is the circle in the xy-plane given by (x−2)2 + (y−3)2 = 1. (This
comes from setting z = 0 in the sphere equation, since z = 0 is what characterizes the xy-plane.)
The point on this circle closest to the xz-plane has x-coordinate, and thus has y-coordinate 1. (This
y-coordinate comes from setting z = 0 and x = 2 in the sphere equation to get (y − 3)2 = 1; this
gives y = 4 or y = 2, and y = 2 is the leftmost point.) Thus the point satisfying

x2 − 4x+ y2 − 6y + z2 = −12

that is closest to the xz-plane is the point (2, 2, 0):
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As a follow-up, we can ask about the points satisfying the inequality

x2 − 4x+ y2 − 6y + z2 ≤ −12.

After completing the square as above, this becomes

(x− 2)2 + (y − 3)2 + z2 ≤ 1,

which thus describes the solid ball enclosed by the sphere from before. As another example, we
can ask about the points satisfying

x2 − 4x+ y2 − 6y + z2 = −12 and y = 3.

Here we are looking at points on the sphere that have in particular y-coordinate 3. This is the
intersection of the sphere with the vertical plane at y = 3 (this plane is parallel to the xz-plane),
and so this intersection looks like a circle:

(This is a “line of longitude” on the sphere.) If instead we asked about the points satisfying

x2 − 4x+ y2 − 6y + z2 ≤ −12 and y = 3,

we would get the disk enclosed by this circle.

Vectors. As we further develop our understanding of three-dimensional space and how to visualize
objects within it, it will be important to be able to describe directions of interest. In the two-
dimensional case, we can often use slopes to specify directions, but the notion of “slope” is more
subtle in three-dimensions since it depends on the way in which we are drawing space, and it depends
on the pair of coordinates we pick: do we mean “slope” with respect to y and x, or “slope” with
respect to z and x, etc.? Instead, we will indicate directions in general (even in two-dimensions)
using the notion of a vector.

A vector is simply something that has a specified direction and a specified magnitude/length.
We visualize vectors as arrows:
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Apart from being used to indicate directions, practically vectors are often use to indicate some
type of “force”, or perhaps “velocity”. Imagine, for example, that the xy-plane above describes
the surface of a lake, and each vector drawn indicates the direction in which water flows at that
location, and where we interpret the length of the vector as the “strength” (or magnitude) of the
flow of water; a longer vector means a stronger flow. The same concepts work in three-dimensions,
where we interpret three-dimensional vectors again as arrows:

Now, one basic point we keep in mind when working with vectors is that all that matters when
describing a given vector is its direction and its magnitude, and not the starting point of the arrow
we draw. For example, all vectors drawn below are meant to the same

since each arrow drawn has the same length and the same “direction”. (Notation wise, we typically
indicate vectors using arrows above whatever letter or symbol we are using, as in ~u. In typed
writing, it is also common to use bold letters u to indicate vectors.) We can a certain arrow and
translate it around so that the point at which it begins changes, but if maintain the same direction
and magnitude throughout, we are not changing the vector itself.

Algebraic description. Even we can draw vectors as arrows wherever, it will still be important
to be able to describe vectors using coordinates so that we can later use them in equations. We use
the notation (say in two-dimensions for now, but the analogous story applies in three-dimensions
as well) 〈a, b〉 to denote a vector, namely the vector drawn to start at the origin (0, 0) and end at
the point (a, b):
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To be clear, whenever we use coordinates (or “components”) to describe a vector, we always we
mean the vector beginning at the origin and ending at the point whose coordinates are given.
Of course we can draw this same vector elsewhere by moving it around to change the point at
which it begins, but we should always imagine it drawn at the origin when wanting to describes its
coordinates. The reason for using angled brackets as in 〈a, b〉 as opposed to parentheses as in (a, b)
is to emphasize the fact that we are talking about a vector, and not simply a point.

For example, we consider the vector which starts at P = (1, 2) and ends at Q = (3, 1), which

we would denote as
−−→
PQ:

To describe this vector algebraically in terms of components, we must shift it so that it begins at
the origin instead. To do this we should subtract the coordinates of P from all points involved:
subtracting 1 from the x-coordinate of P and 2 from the y-coordinate of P moves P to O = (0, 0)
(O denotes the origin), so we should do the same to the coordinates of Q. We get

−−→
PQ = 〈3− 1, 1− 2〉 = 〈2,−1〉 .

The vector beginning at the origin and ending at the point (2,−1) is indeed the same as the vector
going from P to Q, again only shifted so that it begins at (0, 0) instead:

Scalar multiplication. Now, say we want to describe the vector beginning at P and pointing
towards Q above, only that we want it to have length 10 overall? The vector we computed above
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−−→
PQ = 〈2,−1〉 does point in the direction we want, but it has length

|
−−→
PQ| =

√
(2)2 + (−1)2 =

√
5

instead of 10. (We use vertical bars |u| to denote the magnitude/length of a vector u. The length
just comes from the usual distance formula, in this example the distance from (2,−1) to (0, 0)).
So, the goal is to somehow modify this vector so that it has the correct length, without changing
its direction.

To do this we use the vector operation known as scalar multiplication. (The word “scalar” just
means the same thing as “number”. The name comes from using numbers to “scale” the length of
vectors.) Scalar multiplication takes a vector, say algebraically written as u = 〈a, b〉, and multiplies
it by a number c, by which we mean to multiply each coordinate by that number:

cu = c 〈a, b〉 = 〈ca, cb〉 .

Geometrically, this has the effect of scaling the length of u, at least if c is positive:

the length of cu is c times the times of u.

Thus, for example, 2u is the vector in the same direction as u only with twice the length, and 3u
points in the same direction as u but has three times the length. Multiplying by a negative number
has the same effect, only with the added effect of “flipping” the direction of the vector around:

So, −u has the same length as u but points directly in the opposite direction, −2u has twice the
length and points in this opposite direction, and so on.

Going back to our previous example, our goal is to find a vector pointing in the direction from
P = (1, 2) towards Q = (3, 1), and of length 10. The first step is to find the vector of length 1
pointing in this direction, or what we call the unit vector in this direction. For this we simply

scale u =
−−→
PQ = 〈2,−1〉 (I’m using u to denote this vector instead of

−−→
PQ simply for the sake of

simpler notation) by the reciprocal of its length, since multiplying the length |u| =
√

5 by u by
1/|u| = 1/

√
5 will result in something of length

√
5/
√

5 = 1 overall. (In other words, dividing a
nonzero vector by its length always results in a vector of length 1.) So, in our case,

u

|u|
=

1√
5
〈2,−1〉 =

〈
2√
5
,− 1√

5

〉
is the unit vector pointing in the direction from P towards Q. Finally, to get something of length
10, we can simply scale by 10 to get

10
u

|u|
=

10√
5
〈2,−1〉 =

〈
20√

5
,− 10√

5

〉
as our desired vector:
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Vector addition. In addition to scalar multiplication of a vector by a number, there is another
basic algebraic operation we will use, that of addition of vectors. Algebraically, this is straight-
forward: given, for example, u = 〈3, 1〉 and v = 〈1, 2〉, the sum u + v is obtained by adding
corresponding coordinates, which gives

u + v = 〈3, 1〉+ 〈1, 2〉 = 〈3 + 1, 1 + 2〉 = 〈4, 3〉 .

The same applies to vectors in three dimensions.
But, the great thing is that this also has a straightforward geometric interpretation. If we draw

u = 〈3, 1〉 and v = 〈1, 2〉 as arrows, and visualize them as the sides of a parallelogram, then u + v
is precisely the vector that describes the main diagonal this parallelogram! Alternatively, we can
shift v so that it begins at the point where u ends, so that u and v are then two sides of a triangle,
and u + v is the vector that completes this triangle

These geometric interpretations of vector addition will be crucial to understand many of their uses.

Lecture 3: Dot Product

Warm-Up. Given the triangle with vertices P = (1, 1, 1), Q = (2,−1, 2), and R = (−1, 3, 4), we
find—meaning describe algebraically—the vector of length 3 pointing from P towards the midpoint
of the segment QR:

The goal here is to understand how to use vector algebra to first describe the desired midpoint
explicitly, and then to modify the length of the vector from P to this midpoint in order to have the
desired length of 3. Spoiler alert: the coordinates of the midpoint are simply the averages of the
coordinates of the points in question, but we seek to understand why this is true using vectors.

The desired midpoint lies on the line segment between Q and R, and this line segment (with

starting point R and final point Q) is given by the vector
−−→
RQ. We want to move halfway along this

vector to reach the midpoint, so we want to move along the vector 1
2

−−→
RQ starting at R. However, if

we want to determine the coordinates of this midpoint, we need to describe the vector which begins
at the origin and ends at this point:
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The point is that simply taking 1
2

−−→
RQ does not work, since the coordinates of 1

2

−−→
RQ correspond to

the endpoint of this vector as it were drawn starting at the origin instead of starting at R. To get
the correct vector, we must take the sum

−−→
OR+

1

2

−−→
RQ

since this sum is what describes the vector obtained by first moving along
−−→
OR to get from O to R,

and then moving halfway along
−−→
RQ to get to the desired midpoint. We have

−−→
RQ = 〈2− (−1),−1− 3, 2− 4〉 = 〈3,−4,−2〉 ,

so
−−→
OR+

1

2

−−→
RQ = 〈−1, 3, 4〉+

1

2
〈3,−4,−2〉 =

〈
1
2 , 1, 3

〉
.

The midpoint of segment RQ is thus (1
2 , 1, 3).

Now we can write down the vector that goes from P to this midpoint: it is

u =
〈

1
2 , 1, 3

〉
− 〈1, 1, 1〉 =

〈
−1

2 , 0, 2
〉
.

This vector has length |u| =
√

1
4 + 0 + 4 =

√
17/4 =

√
17/2, which is larger than 3, so it is not the

vector we want. To modify the length, we first divide u by its length to get a unit vector in the
desired direction:

1

|u|
u =

2√
17

〈
−1

2 , 0, 2
〉
,

and then we scale by 3 to make the length 3 instead of 1:

3

|u|
u =

6√
17

〈
−1

2 , 0, 2
〉

=

〈
− 3√

17
, 0,

12√
17

〉
.

This is hence the vector of length 3 pointing from P towards the midpoint of segment RQ.

i, j,k notation. Let us take a brief aside to introduce another common notation for vectors, namely
〈a, b, c〉 = a i + b j + ck. Here, i denotes 〈1, 0, 0〉, j denotes 〈0, 1, 0〉, and k denotes 〈0, 0, 1〉, and
writing a vector as a sum of multiples just emphasizes the geometry: for a i + b j + ck, we move
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a in the “i-drection”, b in the “j-direction, and c in the “k-direction”. Similarly, we can express
two-dimensional vectors in this way using i = 〈1, 0〉 and j = 〈0, 1〉.

The dot product. The notion of the dot product of two vectors will be an essential tool going
forward. Given vectors u = 〈u1, u2, u3〉 = u1 i + u2 j + u3 k and v = 〈v1, v2, v3〉 = v1 i + v2 j + v3 k,
their dot product, denoted u · v (pronounced “u dot v”), is the number given by taking the sum of
products of their corresponding components:

u · v = u1v1 + u2v2 + u3v3.

In two dimensions the analogous definition applies, only with no u3v3 term. For a first basic
example, we have

〈1, 2, 3〉 · 〈−2, 4, 1〉 = 1(−2) + 2(4) + 3(1) = −2 + 8 + 3 = 9.

The dot products of a vectors is a type of “multiplication” of vectors, and it is important to note
that the result of the dot product is always a number, and not a vector.

Now, why do we care about the number given by the dot product? What geometric information
is it giving? The answer is the following:

u · v = |u||v| cos θ,

where θ is the angle between u and v drawn as arrows starting at the same point. (We always
take the angle to be between 0 and π.) The upshot is that the value of the dot product is directly
related geometrically to the position of the vectors in relation to one another, as measured by the
angle between them, and to their lengths. We will not justify this geometric formula in this course,
but if you’re interested in learning more, it comes from the “law of cosines” in trigonometry.

For the example above, with u = 〈1, 2, 3〉 and v = 〈−2, 4, 1〉, we have

9 = |u||v| cos θ =
√

14
√

21 cos θ, so cos θ =
9√

14
√

21
.

From this, using the arccos function and a calculator, we can directly determine the angle between
u and v, which in this case is arccos(9/

√
14 · 21) ≈ 1.0182 radians, or about 58.34◦.

Positive vs negative. In the example above we saw that the angle between u = 〈1, 2, 3〉 and
v = 〈−2, 4, 1〉 was between 0 and π

2 radians (π2 is larger than 1.0182), so that this is an acute angle.
But actually, this is something we can determine without computing the angle explicitly, solely
from the fact that the dot product of u and v is positive. Indeed, in

u · v = |u||v| cos θ,

the two length terms on the right are never negative, so the sign of the number u · v is the same
as the sign of cos θ; that is, u · v is positive if and only if cos θ is positive, and u · v is negative
if and only if cos θ is negative. But cos θ is positive when 0 ≤ θ < π

2 , and cos θ is negative when
π
2 < θ ≤ π, so the upshot is that

Dot products are positive when the two vectors make up an acute angle (less than 90◦),
and dot products are negative when the two vectors make up an obtuse (greater than
90◦ angle).
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Thus, the sign of the dot product completely tells us whether the two vectors point in a “simi-
lar” direction or in somewhat “opposite” directions. (We will see this come up when discussing
“projections” in a bit.)

Orthogonality. What about when the dot product between two vectors is zero? In this case the
geometric formula for the dot product reads

0 = |u|||v| cos θ.

For nonzero vectors the two length terms on the right are nonzero, so the dot product is zero if and
only if cos θ = 0, which happens only when θ = π

2 . The upshot is that the dot product between
two vectors is zero precisely when they are orthogonal to one another, which is just another way
of saying perpendicular to one another. Thus, the dot product gives a purely algebraic way to
determine whether or not vectors are orthogonal.

For example, 〈2, 1〉 · 〈−1, 2〉 = −2 + 2 = 0, so 〈2, 1〉 and 〈−1, 2〉 are indeed perpendicular to each
other. This makes sense visually:

The “slope” of the vector 〈2, 1〉 is 1
2 , and the “slope” of 〈−1, 2〉 is 2

−1 = −2; since these slopes are
negative reciprocals of each other, 〈2, 1〉 and 〈−1, 2〉 are indeed perpendicular/orthogonal.

This observation about zero dot product is more useful in three dimensions when whether or
not things are orthogonal is tougher to determine based on a picture alone. For example, the dot
product of 〈1, 2, 1〉 and 〈−1, 2,−3〉 is

〈1, 2, 1〉 · 〈−1, 2,−3〉 = −1 + 4− 3 = 0,

so 〈1, 2, 1〉 and 〈−1, 2,−3〉 are orthogonal, which is not easy to see based on a three-dimensional
picture alone.

Vector projections. One important use of dot products comes in computing vector projections.
(Also called orthogonal projections.) Given vectors u and v, the goal is to describe the multiple of
u that is “closest” to v in the sense of the following picture:
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The vector we want is thus the one with the property that the line segment connecting its endpoint
to the endpoint of v is orthogonal to u itself. This vector is called the vector (or orthogonal)
projection of v onto u; we denote it by proju v and is explicitly given by

proju v =
(u · v

u · u

)
u.

To be clear here, dot products give numbers, so the fraction u·v
u·u is a number, and it is this particular

multiple of u which gives the projection. We will not derive the formula for the projection here, but
it comes from determine exactly which multiple au of u results in v − au being orthogonal to u.
(The vector v− au is the one pointing from the endpoint of au to the endpoint of v. It completes
the right triangle in the first projection picture we gave above.) Note that it does not matter if u
is shorter or points in the opposite direction, the projection is perfectly well-defined either way:

Let us compute, for example, the projection of v = 〈1, 3〉 onto u = 〈4, 4〉. This is

proju v =
(u · v

u · u

)
u =

(
4 + 12

16 + 16

)
〈4, 4〉 =

16

32
〈4, 4〉 = 〈2, 2〉 .

Visually we have

As another example, the projection of 2j onto v = 〈−1,−1〉 is

projv 2j =

(
〈0, 2〉 · v

v · v

)
v =

(
−2

2

)
〈−1,−1〉 = 〈1, 1〉 .

In this case, note that the vector 〈−1,−1〉 we projected onto is in the opposite direction of the
projection 〈1, 1〉, which reflects the fact that 2j and 〈−1,−1〉 meet an angle greater than π

2 from
each other:
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The fact that v got flipped around comes from the fact that the dot product 2hj · v = −2 in the
numerator of the projection formula is negative, which, from earlier, also reflects the fact that the
angle between these vectors is greater than π

2 .

Lecture 4: Cross Product

Warm-Up 1. Take a circle, and two points A and B on opposite ends of the diameter. Now take
any other point on C on the circle, and consider the angle at C formed by the segments AC and
BC. We use properties of vectors to verify that this angle is always a right angle, regardless of
which point C we pick:

This a more conceptual problem than previous ones we’ve seen, and is meant to highlight algebraic
properties of the dot product that mimic properties with which we’re already familiar when it comes
to ordinary multiplication of numbers. We include the center O of the circle, and label vectors as
follows:

To be clear: the vector
−→
OA is −u because it has the same length as u =

−−→
OB (both of these lengths

correspond to the radius of the circle) but points in opposite direction; the vector connecting the
endpoint of v to the endpoint of u is u − v (start minus end); and the vector connecting the
endpoint of v to the endpoint of −u is −u− v.

In this notation, what we need to verify is that u− v is orthogonal to −u− v, since the angle
between these vectors is precisely the angle at C we want. To verify this, we must compute the dot
product

(u− v) · (−u− v)

of these vectors and see that it is zero. First, we use the fact that dot product satisfies a “distribu-
tive” property, meaning that in the expression above we can simply “multiply everything out” as
you normally would for something like (a+ b)(c+ d). We get four terms:

(u− v) · (−u− v) = −u · u− u · v + v · u + v · v.
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The second term came from u in the first parentheses dot −v in the second, and the third from −v
in the first parenthses dot −u in the second. (The two negatives here combine to be v · u instead
of −v · u. The same is true for −v from the first parentheses dot −v from the second to get vv̇
as the fourth term.) Next, we use the fact that dot product is “commutative”, which means that
order in which dot two vectors does not matter: u ·v is the same as v ·u. This results in the second
and third terms above, −u · v + v · u, cancelling each other out. So, we are left with

(u− v) · (−u− v) = −u · u + v · v.

The final property we use is that taking a vector dot itself has a nice geometry interpretation:
apply u · v = |u||v| cos θ when v is the same as u gives u · u = |u||u|cos0, since the angle between
u and u itself is zero. But cos 0 = 1, so

u · u = |u|2.

Thus, the dot product of a vector with itself always gives the length of that vector squared, so

(u− v) · (−u− v) = −|u|2 + |v|2.

However, |u| and |v| are the same since both of these lengths are the radius of the circle we are
considering, so |u|2 is the same as |v|2, and hence

(u− v) · (−u− v) = −|u|2 + |v|2 = 0.

Since the dot product of these vectors is zero, u− v and −u− v are orthogonal to each other, so
the angle at C is a right angle as we claimed.

Warm-Up 2. We find the point on the line y = 4x in the xy-plane that is closest to (2,−1). In
fact, this is simply a problem about computing a vector projection. Indeed, here is the picture of
what we want:

The closest point we want is precisely the endpoint of the projection of 〈2,−1〉 onto any vector
which lies on the line y = 4x. For example, the vector 〈1, 4〉 lies on this line (since its y-coordinate
is indeed 4 times its x-coordinate), so the projection of 〈2,−1〉 onto 〈1, 4〉 should give us the point
we need:

21



Note that this projection points in the direction opposite 〈1, 4〉, so we expect to get a negative
coefficient in the vector projection formula, which, as stated last time, reflects the fact that the
angle between 〈2,−1〉 and 〈1, 4〉 is greater than π

2 .
The projection of v = 〈2,−1〉 onto u = 〈1, 4〉 is

proju v =
(u · v

u · u

)
u =

(
2− 4

1 + 16

)
〈1, 4〉 = − 2

17
〈1, 4〉 =

〈
− 2

17 ,−
8
17

〉
.

The point on the line y = 4x that is closest to (2,−1) is thus (−2/17,−8/17). Note that picking a
different vector on y = 4x instead of 〈1, 4〉 leads to the same projection: if we use u = 〈−2,−8〉 as
the vector on the line instead (it’s coordinates still satisfy y = 4x), the projection of v = 〈2,−1〉
onto u is

proju v =
(u · v

u · u

)
u =

(
−4 + 8

4 + 64

)
〈−2,−8〉 =

4

68
〈−2,−8〉 =

〈
− 2

17 ,−
8
17

〉
,

which gives the same answer as before.

The cross product. Taking the dot product of two vectors is in some sense a way to “multiply”
them together. But while this type of “multiplication” results in a number as a result, we now look
at one final vector operation, which is another type of “multiplication”, only this time resulting in
a vector. Rather than giving a general definition, it is simplest to jump straight into an example
to illustrate the desired computation.

Take u = 2i − 3 j − k = 〈2,−3,−1〉 and v = i + 2 j − 2 k = 〈1, 2,−2〉. The cross product of u
and v, denoted by u × v (pronounced “u cross v”) is the vector computed in the following way.
We setup of the following expression:

u× v =

∣∣∣∣∣∣
i j k
2 −3 −1
1 2 −2

∣∣∣∣∣∣ .
This is an example of what’s called a “3 by 3 determinant”, but it will not be important to know
what “determinant” means in this course; we will simply view this notation as a way to help us
compute cross product. (Determinants are things you would learn more about in a course in linear
algebra, such as MATH 240.) The key point to remember is that the coefficients of i, j,k in the
cross product come from the numbers in the array above that are not in the same column as that
vector: the coefficient of i comes from the numbers in the second and third columns; the coefficient
of j from the numbers in the first and third columns; and the coefficient of k from the numbers in
the first and second columns. At first this computation will seem to come out of nowhere, but we
will come to the geometric interpretation of all this afterwards. In the notation above, the second
row is made up of the components of u (the first vector in our cross product u× v notation), and
the third row comes from the components of the second vector v. Also note that cross products
only make sense for three-dimensional vectors, although given a two-dimensional vector like 〈2, 3〉,
by introducing a z-coordinate of zero 〈2, 3, 0〉, we can still compute cross products of vectors in the
xy-plane viewed as sitting inside of R3.

For the coefficient of i we use the numbers in the second and third columns, second and third
rows: ∣∣∣∣∣∣

i j k
2 −3 −1
1 2 −2

∣∣∣∣∣∣ .
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We multiply the “diagonal” entries −3 and −2, and subtract the product of the “off-diagonal”
entries 2 and −1. The coefficient of i in the cross product is thus

(−3)(−2)− (2)(−1) = 6 + 2 = 8.

For the coefficient of j we do the same thing, only now using the numbers in the first and third
columns, second and third rows: ∣∣∣∣∣∣

i j k
2 −3 −1
1 2 −2

∣∣∣∣∣∣ .
We take the diagonal product 2(−2) and the off-diagonal product 1(−1), and subtract:

2(−2)− 1(−1) = −4 + 1 = −3.

This is almost the coefficient of j, but for this coefficient (and this coefficient only) we change the
sign, so that the coefficient of j in the cross product is 3 and not −3. (The reason why the same
changes has to do with how determinants work in general, but this is not something we will focus
on. For our purposes, just have it ingrained in your minds that the j-coefficient changes sign.

Finally, the coefficient of k uses the numbers in the first and second columns, second and third
rows: ∣∣∣∣∣∣

i j k
2 −3 −1
1 2 −2

∣∣∣∣∣∣ .
We get 2(2)− 1(−3) = 4 + 3 = 7 (no sign change here) as the coefficient of k. Altogether then, the
cross product of u = 〈2,−3,−1〉 and v = 〈1, 2,−3〉 is

u× v =

∣∣∣∣∣∣
i j k
2 −3 −1
1 2 −2

∣∣∣∣∣∣ = (6− (−2)) i −︸︷︷︸
sign change

(−4− (−1)) j + (4− (−3)) k = 〈8, 3, 7〉 .

After trying this in a few examples, this computation should become fairly quick to carry out.

Geometric meaning. The question remains: Why would anyone think of doing such a random-
looking computation? What is the point behind it? The answer comes the following observation:
in the example with

u = 〈2,−3,−1〉 , v = 〈1, 2,−2〉 , u× v = 〈8, 3, 7〉

above, we note that

(u× v) · u = 〈8, 3, 7〉 · 〈2,−3,−1〉 = 16− 9− 7 = 0, and

(u× v) · v = 〈8, 3, 7〉 · 〈1, 2,−2〉 = 8 + 6− 14 = 0.

From this we thus conclude that the cross product u× v is in fact perpendicular to both u and v!
For our purposes, this is the main reason why we care about the cross product: it always gives a
vector perpendicular to both vectors with which we began.

In fact, the cross product of two vectors encodes much geometric information, which we sum-
marize here:

• u× v is always orthogonal to both u and v (as we said above);
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• the direction in which u × v points is determined by the “right-hand rule”: curling the
fingers of your right hand from u towards v results in your thumb pointing in the direction
of u× v;
• the length of u×v is |u|||v| sin θ, where θ is the angle between u and v, which is precisely

the area of the parallelogram that has u and v as edges.
These properties fully characterize the cross product u×v of u and v, and it is somewhat a miracle
of nature that the crazy-looking computation we described before results in something that has all
of these properties. The reasons for why this is again have to do with the notion of a “determinant”,
but we will say no more about this in this course. Visually, given u and v, the first property tells
us the “line” along which u × v will point since there is only one line that will be orthogonal to
both u and v; then, the direction we want along this line is determined by the right-hand rule; and
finally, the length that we should go in this direction is determined by the area of the appropriate
parallelogram:

Note that flipping the order in which we compute the cross product, say v × u instead of u × v,
simply has the effect of multiplying the cross product by −1:

v × u = −u× v,

thereby changing its direction. This comes from the right-hand rule, where your thumb points in
the opposite direction if you curl your fingers from v towards u instead of from u towards v.

Example. For our purposes, the most important use of the cross product will be to produce a
vector that is orthogonal to two given ones. But the other geometric properties can be useful too.
For example, let us compute the area of the triangle in R3 with vertices

P = (1, 1, 1), Q = (2,−1, 0), R = (−1, 3, 2).

The point is that we can view this triangle as half of a parallelogram, and then use a cross product
to compute the area of this parallelogram:

In this case, the edges of the parallelogram are given by

−−→
PQ = 〈2,−1, 0〉 − 〈1, 1, 1〉 = 〈1,−2,−1〉 and

−→
PR = 〈−1, 3, 2〉 − 〈1, 1, 1〉 = 〈−2, 2, 1〉 .

The cross product of these is

−−→
PQ×

−→
PR =

∣∣∣∣∣∣
i j k
1 −2 −1
−2 2 1

∣∣∣∣∣∣ = (−2− (−2)) i− (1− (−2)(−1)) j + (2− (−2)(−2)) k = 〈0, 1,−2〉 .
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(Note again the extra sign change in the j term.) The area of the parallelogram with edges
−−→
PQ

and
−→
PR is

|
−−→
PQ×

−→
PR| = | 〈0, 1,−2〉 | =

√
02 + 12 + (−2)2 =

√
5,

and so the area of the triangle in question is

1

2
|
−−→
PQ×

−→
PR| =

√
5

2
.

In fact, instead of using
−−→
PQ and

−→
PR as edges of the parallelogram, we could have used any

pairs of vectors giving the sides of the triangle, say
−−→
QP and

−−→
QR, or

−→
RP and

−−→
RQ instead. You can

check (which you should do for the sake of practice!) that

1

2
|
−−→
QP ×

−−→
QR| and

1

2
|
−→
RP ×

−−→
RQ|

both give
√

5
2 as well. (In other words, we can view the given triangle as half of three different

possible parallelograms, but all should give the same area.)

Another example. Now we want to find a vector of length 2 that is orthogonal to both u = 〈2, 1, 2〉
and v = 〈−1, 1, 1〉. The method is clear: first find some vector orthogonal to both u and v, then
modify its length as needed. A possible vector orthogonal to both u and v is given by the cross
product of the two:

u× v =

∣∣∣∣∣∣
i j k
2 1 2
−1 1 1

∣∣∣∣∣∣ = 〈1− 2,−(2− (−2)), 2− (−1)〉 = 〈−1,−4, 3〉 .

Then to modify the length, we first get a unit vector in this direction:

u× v

|u× v|
=

1√
1 + 16 + 9

〈−1,−4, 3〉 =
〈
− 1√

26
,− 4√

26
, 3√

26

〉
,

and then scale by 2:

2
u× v

|u× v|
= 2
〈
− 1√

26
,− 4√

26
, 3√

26

〉
=
〈
− 2√

26
,− 8√

26
, 6√

26

〉
.

You can verify if you’d like that this resulting vector does indeed have length 2 and is indeed
orthogonal to both u = 〈2, 1, 2〉 and v = 〈−1, 1, 1〉.

Lecture 5: Lines

Warm-Up. We use a cross product to find the distance from the point (2, 3) to the line y = −2x
in the xy-plane. We have not seen this type of computation before, so the goal is to not only find
the distance but also to understand exactly how we can approach something like this. To be clear
distance is visually the following:
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By definition, by the “distance” from a point to a line we meant the shortest distance we can
obtain from that point to any point on the line, or in other words, the distance from the given
point to the point on the line to which it is closest. In the picture above, the line segment whose
length is the desired distance is a perpendicular to the line in question. This use of “closest” and
“perpendicular” might remind you of the Warm-Up example from last time, where we used dot
products and vector projections to find the point on a line closest to a given point, and indeed the
approach from last time gives one way of approaching this new distance problem: we find the point
on y = −2x closest to (2, 3) using a projection, and find the distance between the point we find
and (2, 3). In this approach, we take v = 〈1,−2〉 as a vector lying along this line (y- coordinate is
−2 times the x-coordinate), and project u = 〈2, 3〉 onto it:

projv u =
(u · v

v · v

)
v =

(
2− 6

1 + 4

)
〈1,−2〉 =

〈
−4

5 ,
8
5

〉
.

Thus (−4/5, 8/5) is the point on y = −2x that it closest to (2, 3), so the distance from (2, 3) to
this line is the distance between these two points:

distance =
√

(2− (−4/5))2 + (3− 8/5)2 =
√

196
25 + 49

25 =
√

245
5 .

But our aim in this Warm-Up is to find this distance using a cross product instead. The key
is the interpretation of the length of the cross product in terms of area. Consider the following
picture:

Here we have a parallelogram with edges v = 〈−3, 6〉 (lying along the line y = −2x) and u = 〈2, 3〉.
The desired distance, going perpendicularly from (2, 3) to v = 〈−3, 6〉, is precisely the height of this
parallelogram. (A “height” of a parallelogram is just the perpendicular distance from one corner
to the line passing through the opposite edge.) The area of parallelogram is precisely such a height
times the length of the “base” (the edge opposite the corder from which we compute the height),
which in this case is the vector v, so we can express the height as

height =
area

length of base
.

We can use a cross product to find the area, so thus this formula will give us a way to find the
height, which is the desired distance.

The only wrinkle is that we are dealing with two-dimensional vectors v = 〈−3, 6〉 and u = 〈2, 3〉,
but the notion of “cross product” only applies to three=dimensional vectors. But this is simple to
fix: we simply view our chosen vectors as vectors in the xy-plane in three-dimensions instead by
including a z-component of zero; i.e. we use v = 〈−3, 6, 0〉 and u = 〈2, 3, 0〉 instead. The cross
product of these is

u× v =

∣∣∣∣∣∣
i j k
2 3 0
−3 6 0

∣∣∣∣∣∣ = 〈0− 0,−(0− 0), 12− (−9)〉 = 〈0, 0, 21〉 .

Note that it makes sense that the cross-product has zero x and y components, so that it points only
in the z-direction: u×v should be perpendicular to u and v, and since u and v lie in the xy-plane,
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the perpendicular direction is indeed the z-direction. Moreover, the fact that we get a positive
z-component and not negative is a reflection of the right-hand rule: curling u towards v with your
right hand will have your thumb pointing in the positive z-direction, which is the direction coming
out “at” us in the original two-dimensional picture.

The distance from (2, 3) to the line y = −2x, or in other words the height of the parallelogram
with edges u = 〈2, 3, 0〉 and v = 〈−3, 6, 0〉, is thus

height =
area

length of base
=
|u× v|
|v|

=

√
02 + 02 + 212

√
9 + 36 + 0

=
21√
45
.

In fact, this the same as the answer
√

245/5 we found using the projection approach, which you
can see after you simplify the square roots a bit.

Lines. Our goal now is to use the material on vectors we’ve developed so far to describe certain
geometric objects of interest, namely lines and planes. We start for now with lines. In two-
dimensions, a line is given by an equation like y = mx + b. However, something like this cannot
describe a line in three-dimensions, and indeed we’ve already seen examples (like y = x on the
second day of class) where equations of this form describe planes in R3: namely, y = mx+ b is the
plane obtained by taking the line y = mx + b in the xy-plane and sliding it in the z-direction to
sweep out a plane.

So we need to look elsewhere if we want to describe lines. The answer comes from the following
picture:

Here, we want to describe the line passing through a given point P and moving in the direction
of a given vector v. It turns out that this is the only data we need: to describe a line, we need a

point on the line and a direction vector for the line. In the picture above, a =
−−→
OP is the position

vector of the point P (i.e., the vector drawn at the origin to end at P ), and the point is that we can
obtain other points on this line by adding to a multiples of v; for example, a + v as drawn ends at
a point on the line, so does a+2v, and so does a−v. (Here we are using the triangle interpretation
of vector addition.) In general, the endpoints of the vectors a + tv, where t is a parameter that
varies, trace out the desired line. We call

r(t) = a + tv

the vector equation of the line in the direction of v and passing through P , the endpoint of a =
−−→
OP .

Here is a first example. We want to describe the line pass through the points (1, 2, 3) and
(0, 2,−4), and to do so we need a point on the line and vector which gives the direction of the
desired line. We are given two points, so we pick one to use as P in the notation above, say
P = (1, 2, 3). For a direction vector, we take the vector going from one given point to the next, so

v = 〈0, 2,−4〉 − 〈1, 2, 3〉 = 〈−1, 0,−7〉 .
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With a =
−−→
OP = 〈1, 2, 3〉, we get that the line passing through (1, 2, 3) and (0, 2,−4) has vector

equation
r(t) = a + tv = 〈1, 2, 3〉+ t 〈−1, 0,−7〉 = 〈1− t, 2, 3− 7t〉 .

Again, the interpretation of this is that as t varies, the endpoints of this vector r(t) trace out the
desired line. Note that other valid vector equations are possible: perhaps we might have used
P = (0, 2,−4) as our chosen point on the line, or v = −3 〈−1, 0,−7〉 = 〈3, 0, 21〉 as a direction
vector. Such choices will give a different equation, but will nonetheless describe the same line.

Parametric equations. Vector equations give a first way of describing lines, but in practice it
is often useful to have parametric equations instead. Parametric equations are equations for the
x, y, and z coordinates of points on the line, that depend on a parameter: as the parameter varies,
the point changes and the line is traced out. We extract these from the x, y, and z components of
the vector equation. For example, for the passing through (1, 2, 3) and (0, 2,−4), which has vector
equation

r(t) = 〈1− t, 2, 3− 7t〉 ,

we get the parametric equations

x = 1− t, y = 2, z = 3− 7t.

Again, these equations give valid x, y, z coordinates for all points on the line, with different points
occurring for different values of the parameter t.

To get the entire line we must allow all values of t, so we might right

x = 1− t, y = 2, z = 3− 7t, −∞ < t <∞

to indicate this. If we place restrictions on what values of t we allow, we only describe certain
portions of the line. For example,

x = 1− t, y = 2, z = 3− 7t, t > 0

gives only half of the line, or in other words a ray, namely the one that starts at (1, 2, 3) and passes
through (0, 2,−4) but includes no points on the “other side” of (1, 2, 3). The parametric equations

x = 1− t, y = 2, z = 3− 7t, 0 ≤ t ≤ 1

describe only a line segment, namely the one going between (1, 2, 3) and (0, 2,−4) and no further.
(Note that at t = 0 we are at the point (x, y, z) = (1− 0, 2, 3− 7(0)) = (1, 2, 3), while at t = 1 we
are at (x, y, z) = (1− 1, 2, 3− 7(1)) = (0, 2,−4).)

Another example. Suppose we are given lines with parametric equations
x = 1 + 4t

y = 2− t
z = 1 + t

and


x = 1− 2t

y = 2 + 3t

z = 1− t.

To be clear, we are considering one line L1 given by the first set of parametric equations, and
a second line L2 given by the second set. We want to find (by which we mean find parametric
equations for) the line that is perpendicular to both L1 and L2 and which passes through their
point of intersection:
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As always, to find these parametric equations we need a point on the desired line and a vector that
gives the direction of the desired line. The point we need is the point where L1 and L2 intersect,
and in this case this is simple to find: (1, 2, 1) is the point of intersection. Indeed, note that (1, 2, 1)
is the point on L1 occurring when t = 0, and that it is also the point on L2 given by t = 0. (Note
that the constant terms in the parametric equations always give a point on the line.) Since (1, 2, 1)
lies on both lines, it must be the point where they intersect. (Finding points of intersection will not
always be this simple; we will see a more general approach to finding such points as a Warm-Up
next time.)

We have our point so now we need our direction vector. This direction vector should be
perpendicular to both lines, so in particular it should be perpendicular to the direction vectors of
these two lines. This says that the cross product of these two direction vectors should thus point in
the perpendicular direction we want. (See the picture above.) Finding direction vectors for a line
when given its parametric equations is also simple: we simply use the coefficients of the parameter.
So, since L1 has parametric equations

x = 1 + 4t, y = 2− t, z = 1 + t,

it has direction vector v1 = 〈4,−1, 1〉 (i.e., the coefficients of t), and L2 has direction vector
v2 = 〈−2, 3,−1〉. This works because of where these coefficients come from in our original vector
equation: in r(t) = a + tv, the numbers which show up as the coefficients of t are precisely the
entries of the direction vector v.

The line we want thus has direction vector

v1 × v2 =

∣∣∣∣∣∣
i j k
4 −1 1
−2 3 −1

∣∣∣∣∣∣ = 〈1− 3,−(−4− (−2)), 12− 2〉 = 〈−2, 2, 10〉 .

With these direction and point (1, 2, 1) on the line we get

r(t) = 〈1, 2, 1〉+ t 〈−2, 2, 10〉 = 〈1− 2t, 2 + 2t, 1 + 10t〉

as a vector equation for the desired line, and parametric equations

x = 1− 2t, y = 2 + 2t, z = 1 + 10t.

Distance from point to line. For a final computation, we find the distance from the point
(5,−1, 0) to the line we just found with parametric equations

x = 1− 2t, y = 2 + 2t, z = 1 + 10t.

The “distance” we want is analogous to the one we described in the Warm-Up: it is the distance
from (5,−1, 0) to the point on the line to which it is closest, or equivalently the “perpendicular”
distance from (5,−1, 0) to the line:
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This can be found using a vector projection approach as in the first approach to the Warm-Up, but
here we’ll instead use the cross product approach.

The idea is the same: view the desired distance as the height of an appropriate parallelogram.
Take two points P and Q on the line, say for example P = (1, 2, 1) for t = 0 and Q = (3, 0,−9) for
t = −1; it does not matter which points we pick, they will all give the same distance in the end.

Set R = (5,−1, 0), and use the parallelogram with edges
−→
PR and

−−→
PQ in the picture above. The

distance we want is then

distance/height =
area

length of base
=
|
−→
PR×

−−→
PQ|

|
−−→
PQ|

.

In our case we have −→
PR = 〈5,−1, 0〉 − 〈1, 2, 1〉 = 〈4,−3,−1〉

and −−→
PQ = 〈3, 0,−9〉 − 〈1, 2, 1〉 = 〈2,−2,−10〉 ,

so

−→
PR×

−−→
PQ =

∣∣∣∣∣∣
i j k
4 −3 −1
2 −2 −10

∣∣∣∣∣∣ = 〈30− 2,−(−40− (−2)),−8− (−6)〉 = 〈28, 38,−2〉 .

Thus the distance from (5,−1, 0) to the line with parametric equations

x = 1− 2t, y = 2 + 2t, z = 1 + 10t

is
|
−→
PR×

−−→
PQ|

|
−−→
PQ|

=

√
282 + 382 + 4√
4 + 4 + 100

=

√
2232√
108

.

Lecture 6: Planes

Warm-Up. We find the distance from the point (5, 1, 1) to the line that is perpendicular to the
lines with parametric equations

x = 1 + 2t

y = 2− t
z = 3 + t

and


x = 5− 3t

y = 5− t
z = −2 + 2t

and passes through their point of intersection. The first step is to find the line that is perpendicular
to the two given lines and passes through their point of intersection, since we will need to use points
on this line in our distance formula. We did something like this last time, but in that case there
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was something that made this simpler: plugging in t = 0 into the given parametric equations
immediately gave us the point at which the lines intersected. In our new example, for t = 0 we get
the point (1, 2, 3) on the first line and (5, 5,−2) on the second, so we do not get the intersection
point from this alone.

Instead, we must do some additional work. The point at which the given lines intersect will be
for which the (x, y, z) coordinates along the first line agree with those along the second line. A first
instinct might be to setup the equations

1 + 2t = 5− 3t

2− t = 5− t
3 + t = −2 + 2t

obtained by setting x coordinates equal to each other, y coordinates equal to each other, and z
coordinates equal, but this does not work: there is no value for t that satisfies the equations above.
The reason why this does not work is that this assumes the common intersection point occurs at
the same value of the parameter t for both lines, but there is no reason why this should be true;
perhaps there is some value t1 of the parameter that gives the intersection point on the first line,
but then a different value t2 of the parameter that gives this same point along the second line. So
instead we setup and solve the equations

1 + 2t1 = 5− 3t2

2− t1 = 5− t2
3 + t1 = −2 + 2t2.

Again, this says that we get the same (x, y, z) coordinates along both lines, but allows for the
possibility that they occur at different t for each line.

From the second equation we can express t1 in terms of t2 as

t1 = 2− 5 + t2 = −3 + t2.

Substituting this into the first equation gives

1 + 2(−3 + t2) = 5− 3t2, or − 5 + 2t2 = 5− 3t2.

This gives t2 = 2, and from this we get. t1 = −3 + t2 = −3 + 2 = −1. This says that t1 = −1 and
t2 = 2 gives at least the same x and y coordinates (since these are the equations we used to derive
these values) on the two lines. To verify that these give a point of intersection we must check that
they also give the same z coordinate: we get

3 + t1 = 3 + (−1) = 2 and − 2 + 2t2 = −2 + 2(2) = 2

on the first and second lines respectively, so since these agree we do indeed have a point of inter-
section occurring at t1 = −1 on the first line and t2 = 2 on the second. Plugging in either t1 = −1
in the first line or t2 = 2 into the second gives (−1, 3, 2) as the point of intersection.

The direction vector of the perpendicular line is found just like last time, by taking the cross
product of the direction vectors of the two lines. The first line has direction vector 〈2,−1, 1〉
(coefficients of t), and the second has direction vector 〈−3,−1, 2〉, so the perpendicular line has
direction vector

〈2,−1, 1〉 × 〈−3,−1, 2〉 =

∣∣∣∣∣∣
i j k
2 −1 1
−3 −1 2

∣∣∣∣∣∣ = 〈−1,−7,−5〉 .
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The line which is perpendicular to the two given lines and passes through their point of intersection
thus has vector equation

r(t) = 〈−1, 3, 2〉+ t 〈−1,−7− 5〉 = 〈−1− t, 3− 7t, 2− 5t〉

and parametric equations
x = −1− t, y = 3− 7t, z = 2− 5t.

Now we get to our original problem, which was to find the distance from (5, 1, 1) to this line we
just found. For this we take the points P = (−1, 3, 2) for t = 0 and Q = (−2,−4,−3) for t = 1 on
the line, and set R = (5, 1, 1). The distance from R to the line is the height of the parallelogram

with edges
−→
PR and

−−→
PQ, with

−−→
PQ as the base, so

distance/height =
area

length of base
=
|
−−→
PQ×

−→
PR|

|
−−→
PQ|

.

We have
−−→
PQ = 〈−1,−7,−5〉 and

−→
PR = 〈6,−2,−1〉, so

−−→
PQ×

−→
PR =

∣∣∣∣∣∣
i j k
−1 −7 −5
6 −2 −1

∣∣∣∣∣∣ = 〈−3,−31, 44〉 .

Thus the desired distance is

| 〈−3,−31, 44〉 |
| 〈−1,−7,−5〉 |

=

√
32 + 312 + 442

√
1 + 49 + 25

=

√
2906

75
.

Planes. Now that we’ve seen how to describes lines in R3, we move to the next simplest type of
geometric objects, planes. To describe a plane we need two pieces of data: a point P0 on the plane,
and a vector n that is orthogonal to the plane we want. We call such a vector a normal vector
to the plane. Given these, in order to characterize the other points P on this plane, we use the
following picture:

In order for P to be on the plane, the vector
−−→
P0P should be on the plane as well. But this means

that is would have to be orthogonal to the normal vector n, so the conclusion is that P is on the
plane we want precisely when

n ·
−−→
P0P = 0.

In the picture above, the point Q is not on the plane containing P0 and normal to n precisely

because the vector
−−→
P0Q is not orthogonal to n.

If we denote by r0 =
−−→
OP0 the position vector of the point P0, and by r =

−−→
OP = 〈x, y, z〉 the

position the vector of the point P = (x, y, z) we want to characterize as being on the plane, then
−−→
P0P is r− r0, so (x, y, z) is on this plane when

n · (r− r0) = 0.
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We call this the vector equation of the desired plane, from which we can extract an equation in
terms of x, y, z, as we’ll see.

Example. We find an equation of the plane containing the points (1, 0, 0), (0, 2, 0), and (0, 0, 3).
We need two things: a point on the plane, and a vector normal to the plane. For a point on the
plane we simply pick one of the three we’re already given; let’ say P0 = (0, 2, 0). For a normal
vector, we need something perpendicular to, say, the triangle with vertices the given points since
this triangle itself should lie on our plane:

Thus, we can get a normal vector by taking the cross product of the vectors forming two of the
edges of this triangle, since this cross product will indeed be perpendicular to the triangle. Let us
use

u = 〈1, 0, 0〉 − 〈0, 0, 3〉 = 〈1, 0,−3〉 and v = 〈0, 2, 0〉 − 〈0, 0, 3〉 = 〈0, 2,−3〉
as edges, and so

n = u× v =

∣∣∣∣∣∣
i j k
1 0 −3
0 2 −3

∣∣∣∣∣∣ = 〈6, 3, 2〉

as a normal vector.
With r0 = 〈0, 2, 0〉 and r = 〈x, y, z〉, where (x, y, z) is the arbitrary point on the plane we seek

to characterize, the vector equation of this plane is

〈6, 3, 2〉︸ ︷︷ ︸
n

· 〈x− 0, y − 2, z − 0〉︸ ︷︷ ︸
r−r0

= 0.

If we compute this dot product, we get

6(x− 0) + 3(y − 2) + 2(z − 0) = 0, or more simply 6x+ 3(y − 2) + 2z = 0.

This is the standard equation of the plane, which can be in turn simplified to 6x + 3y + 2z = 6.
One takeaway is that planes are, as we’ve alluded to before, describes by linear equations, meaning
equations where x, y, z occur to at most a first power only.

Reading off the normal. We finish by noting the following. Say we had the plane with equation

4x− 6y + 3z = 11.

Then we can immediately write down a normal vector to this plane, namely n = 〈4,−6, 3〉. The
point is that the coefficients of the variables x, y, z are precisely the entires in this normal vector.
This works because, if we go back to the vector equation of a plane

n · (r− r0) = 0
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with r = 〈x, y, z〉, it is indeed the entries of n that appears as coefficients of x, y, z in the standard
equation. Namely, if n = 〈a, b, c〉 is the normal vector and r0 = 〈x0, y0, z0〉 describes point P0 =
(x0, y0, z0) we already know to be on the plane, then the vector equation above becomes

〈a, b, c〉 · 〈x− x0, y − y0, z − z0〉 = 0,

which is
a(x− x0) + b(y − y0) + c(z − z0) = 0.

After simplifying further the coefficients of x, y, z are a, b, c, the entries of the normal vector.

Lecture 7: Quadric Surfaces

Warm-Up 1. We find the distance from the point (−3, 1, 5) to the plane containing the lines with
parametric equations 

x = 1 + 2t

y = 2− t
z = 3 + t

and


x = 5− 3t

y = 5 + t

z = −2 + 2t

.

We have not spoken about distances to planes yet, but before we get to that we have to know what
plane we’re dealing with exactly. Here is the picture we keep in mind:

These lines intersect, and indeed we found their point of intersection last time.
To find the plane containing these lines, we need two things: a point on the plane, and a normal

vector. For a point on the plane we can take the point of intersection we found last time, but
actually this is overkill: all we need is some point on the plane, and there are simpler to points
to find than this intersection point. (Recall that finding this intersection point last time involved
a fair amount of algebra.) Instead, we simply note that (1, 2, 3) is on the first line in question
(attained at t = 0), and hence is also on the plane containing this line and the second line. To be
clear, there are many points on the plane we can use, but we just use the one we can find with as
minimal work possible.

For a normal vector, we note that any normal vector must be perpendicular to both given lines
on the plane, and so must be perpendicular to their direction vectors as in the picture above. Thus
we use the cross product of these direction vectors as a normal vector:

n = 〈2,−1, 1〉 × 〈−3, 1, 2〉 =

∣∣∣∣∣∣
i j k
2 −1 1
−3 1 2

∣∣∣∣∣∣ = 〈−3,−7,−1〉 .

The vector equation of the plane containing (1, 2, 3) with normal vector 〈−3,−7− 1〉 is then

〈−3,−7,−1〉 · 〈x− 1, y − 2, z − 3〉 = 0,

which gives
−3(x− 1)− 7(y − 2)− (z − 3) = 0
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as the standard equation. (This could, of course, be simplified further if desired.)
Now, to find the distance from S = (−3, 1, 5) to this plane, we use the following picture:

The distance we want is obtained from dropping a perpendicular segment from S to the plane. We

pick any point P on the plane, say P = (1, 2, 3), and consider the projection of
−→
PS onto the normal

vector n; the upshot is that the length of this projection is precisely the distance we want from S
to the plane. In our case, we have

−→
PS = 〈−3, 1, 5〉 − 〈1, 2, 3〉 = 〈−4,−1, 2〉 and n = 〈−3,−7,−1〉 ,

so the projection is

projn
−→
PS =

(−→
PS · n
n · n

)
n =

12 + 7− 2

9 + 49 + 1
〈−3,−7,−1〉 =

17

59
〈−3,−7,−1〉 .

The distance from S = (−3, 1, 5) to our plan is thus∣∣∣projn
−→
PS
∣∣∣ =

∣∣∣∣17

59
〈−3,−7,−1〉

∣∣∣∣ =
17

59
| 〈−3,−7− 1〉 | = 17

59

√
9 + 49 + 1 =

17√
59
.

(The second-to-last expression is perfectly fine as an answer; it does not have to be simplified.)
We should note that the book gives the distance from S to the plane as the formula∣∣∣−→PS · n∣∣∣

|n|
.

This is precisely the same thing we computed since it is the length of the projection of
−→
PS onto n:∣∣∣projn

−→
PS
∣∣∣ =

∣∣∣∣∣
(−→
PS · n
n · n

)
n

∣∣∣∣∣ =
|
−→
PS · n|
|n|2

|n| = |
−→
PS · n|
|n|

.

For me, it is simpler to compute the projection as a vector and then its length, as opposed to having
to memorize yet another formula as in the book.

Warm-Up 2. We find parametric equations for the line in which the planes with equations

−3x+ 2y − z = 1 and 2x− y − 2z = −8

intersect. Here is a picture:
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As always, to describe a line we need a point on the line and a direction vector for the line. A
point on the line of intersection will be some (x, y, z) that satisfies the equations of both planes
simultaneously. Since we only need one such point, let us look for one that happens to have y-
coordinate 0. The point is that this simplifies our plane equations so that we are left only needing
to find x, z satisfying

−3x− z = 1 and 2x− 2z = −8.

(Of course, taking y = 0 is not the only option, and we could have just as easily set x = 0 and
solved for y, z, or set z = 0 and solved for x, y instead. Again, all we need is some point on the
line of intersection.) We the simplified equations above, the first gives z = −3x− 1, and then the
second gives

2x− 2(−3x− 1) = −8, or 8x+ 2 = −8.

Hence x = −10/8 = −5/4. This in turn gives z = −3(−5/4) − 1 = 11/4, so (−5/4, 0, 11/4) is a
point on the line of intersection between the given planes.

Now we need a direction vector for this line. Here the point is that since this direction vector in
particular lies on the first plane, it must be orthogonal to the normal vector n1 = 〈−3, 2,−1〉 to this
plane, and since the desired direction vector lies on the second plane, it must also be orthogonal to
the normal vector n2 = 〈2,−1,−2〉 to this plane. Hence our direction vector must be orthogonal
to both n1 and n2, so we can take n1 × n2 as a valid direction vector:

〈−3, 2,−1〉 × 〈2,−1,−2〉 =

∣∣∣∣∣∣
i j k
−3 2 −1
2 −1 −2

∣∣∣∣∣∣ = 〈−5,−8,−1〉 .

Thus we get

x = −5

4
− 5t, y = −8t, z =

11

4
− t

as parametric equations for the line of intersection.

Cylinders. We’ve seen how to describe planes, and now we move to describing other types of
surfaces. We start with the types of surfaces we saw back on the first day, namely ones described
by equations which only involve two variables. For example, we saw back then that

x2 + y2 = 1

is the equation of a standard cylinder of radius 1 centered along the z-axis. To visualize this
cylinder, we start with the curve described by x2 + y2 = 1 in the xy-plane, which is a circle, and
then slide it in the z-direction to sweep out the cylinder. We also saw the surface z = y2 on the
first day, where we take start with the curve z = y2 (a parabola) in the yz-plane, and slide it in
the x-direction to sweep out the desired surface.

This same idea applies to all surfaces with equations which omit a variable. For example, the
surface with equation z = ex is visualized by taking the curve z = ex in the xz-plane, and then
sliding it in the y-direction:
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We will use the term cylinder to refer to all of these types of surfaces, even though they do
not necessarily look like “cylinders” in the usual sense of the word. So, cylinders are described
by equations with one variable missing, and are visualized/drawn by taking the curve the given
equation describes in an appropriate plane, and then sliding that curve in the direction of the
missing variable.

Quadric surfaces. After planes and cylinders, the next simplest types of surfaces to consider are
known as quadric surfaces. Planes are described with equations with x, y, z occurring to only a
first power, and quadric surfaces are where we now allow second powers. As a first example, we
consider the quadric surface with equation

x2 + y2 = z2.

Our goal is to understand what this surface looks like. To be clear, the surface consists of all points
(x, y, z) in R3 whose coordinates satisfy the given equation.

To visualize the 3-dimensional surface, we first consider certain 2-dimensional portions of it,
namely the 2-dimensional curves obtained by intersecting the surface with some plane. These are
called cross-sections of the surface. So, to start, we first consider the cross-section of this surface
at z = 1, which is the curve obtained by intersecting x2 + y2 = z2 with the horizontal plane z = 1.
The explicit equation for this cross-section is found by setting z = 1 in the surface equation, which
gives

x2 + y2 = 1.

This is the equation of a circle of radius 1 centered at (0, 0) in the xy-plane. This is the portion
of surface x2 + y2 = z2 we see occurring at a “height” of z = 1, and the idea is that if we can
determine enough of these cross-sections at different “heights”, we can use them to piece the entire
surface together.

The cross-section of this surface at z = 2 has equation

x2 + y2 = 22 = 4.

This is a circle of radius 2 centered as (0, 0), so it is larger than the circle we had at z = 1. The
cross section at z = −1 has equation

x2 + y2 = (−1)2 = 1,

so it too is a unit circle just like the cross section at z = 1. The cross-section at z = −2 is the same
as that at z = 2, and in general the cross-section at z = k is

x2 + y2 = k2.
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For k 6= 0, this is a circle centered at (0, 0), which gets larger as k increases in the positive direction
or decreases in the negative direction. For k = 0, we have x2 + y2 = 0, which is only satisfied by
x = 0, y = 0, so this cross-section is a single point. Altogether then, we get the following picture of
cross-sections:

To visualize the full surface from these 2-dimensional cross-sections, we draw these cross-sections
in R3 at the appropriate heights z, so we get the origin at z = 0, a unit circle at z = ±1, a circle
of radius 2 at z = ±2, and so on:

These curves are the intersections of our desired surface with different horizontal planes, and by
imagine what the “sweep” out as the value of z changes, we get the following picture:

Thus, x2 +y2 = z2 is the equation of what’s called a double cone, where “double” means that we get
a cone in both the positive direction of z in the negative direction as well. The important takeaway
is knowing the cross-sections alone is enough to get a pretty good picture of the full surface.

Conic sections. There are other cross-sections we can consider for the double cone x2 + y2 = z2

apart from those occurring at a constant value of z. Instead, for example, we can consider cross-
sections at y = k, which give the intersections of the double cone with vertical planes at a point
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along the y-axis. For y = 1, for instance, we get a cross-section with equation

x2 + 1 = z2, which can be written as z2 − x2 = 1.

This is the equation of a hyperbola:

The fact that this hyperbola opens up vertically instead of horizontally comes from determining
which axis it can and cannot cross: here, for x = 0 we get z2 = 1 and hence z = ±1, which give
intersections with the z-axis, but for z = 0 we get −x2 = 1, which has no solutions, meaning that
this hyperbola will not cross the x-axis.

We can visualize this specific cross-section on the actual double cone by cutting through it with
the plane at y = 1:

In general, the types of curves we get as cross-sections of quadric surfaces will be ellipses (of which
circles are examples), hyperbolas, and parabolas. These are known as conic sections, but a full
discussion of conic sections will not be so important for us. We will recall the basic facts we need,
such as how to find where they intersect an axis, as we work through more examples of quadric
surfaces next time.

Lecture 8: More on Surfaces

Warm-Up. We sketch the cross-sections of the quadric surface

z = 2x2 + 3y2

at z = 0, 1, 2,−1, and then use them to sketch the full surface. The cross-section at z = 0 has
equation

0 = 2x2 + 3y2,

39



and the only point satisfying this is x = 0, y = 0, so this cross-section is a single point. The
cross-section at z = 1 has equation

1 = 2x2 + 3y2.

This is the equation of an ellipse, namely one that crosses the x-axis at x = ±1
√

2 (found by setting
y = 0), and the y-axis at y = ±1/

√
3, which is found by setting x = 0. This cross-section thus

looks like

The cross-section at z = 2 has equation 2 = 2x2 + 3y2, which is also an ellipse, this time with
x-intercepts at x = ±1 and y-intercepts at y = ±

√
2/3:

The cross-section at z = −1 has equation −1 = 2x2 + 3y2, and this has no solutions since the
right side cannot be negative. We thus say that this cross-section is empty, which means that there
is no portion of the 3-dimensional surface z = 2x2 + 3y2 occurring at a “height” of z = −1, or
in other words this surface does not intersect the plane z = −1. In general, the quadric surface
z = −2x2 + 3y2 always has empty cross-sections at negative values of z = k, so no portion of the
surface is below the xy-plane in R3. (This is a key difference between this surface and the double
cone z2 = x2 + y2 from last time.) For positive z = k, we get ellipses k = 2x2 + 3y2 which become
larger as k increases:

To visualize the full surface we then place these cross-sections at the appropriate values of z in
R3, and imagine the surface they trace out:
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This surface is called a paraboloid, and is a 3-dimensional analog of a parabola. (More formally, it
is an elliptic paraboloid, where “elliptic” emphasizes the ellipses that occur as cross-sections.)

Now, we should highlight the following, which points out a key difference between paraboloids
and cones. Consider instead the quadric surface z = x2 + y2, which is still a paraboloid, but only
with z cross-sections as circles. (At least, circles for positive z.) But we saw last time that the
double cone z2 = x2 + y2 also has cross-sections z = k as circles, so how exactly do we distinguish
between cones and paraboloids if they have similar cross-sections? (Let’s ignore the behavior for
negative z here.) The point is that, even though cross-sections at z = k > 0 for both are circles,
the way in which the circles get larger as z = k increases differs:

For the cone, the rate at which the radius of a cross-section increases is the same as the rate at
which the z = k value increases, so that moving from the cross-section at z = 1 to z = 2 to z = 3
results in the same change in radius. For the paraboloid, however, height z = k changes more
quickly as the radius changes: to move from radius 1 to 2 we jump from z = 1 to z = 4, and then
to move to radius 3 causes as jump to z = 9. This is what causes the shape of the paraboloid to
“slope upwards” more quickly than for the cone:

So, it is not just the fact that cross-sections are circles that is important in these examples, the
way in which these circles change is also important.

Going back to the elliptic paraboloid z = 2x2 + 3y2, what about the cross-sections at x = k
instead? Here we imagine intersecting the surface with a vertical plane x = k, and the resulting
cross-section has equation

z = 2k2 + 3y2.
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The only variables here are z and y (k is a constant), and in the yz-plane this is the equation of a
parabola with z-intercept at z = 2k2 when y = 0:

These parabolas thus move upwards as x = k gets either more positive or more negative. On the
full paraboloid in R3, we can visualize these x cross-sections as follows:

Indeed, as x moves in the positive direction, say, the parabola cross-section moves up.

Saddles. Now we look at the quadric surface with equation

z = 2x2 − 3y2.

This is a similar equation to the paraboloid we just considered, only with the sign of the y2 term
changed. We take some cross-sections. At z = 1. we get

1 = 2x2 − 3y2,

which is a hyperbola crossing the x-axis (since y can be zero) at x = ±1
√

2, but not the y-axis
since x cannot be zero. At z = 2 we again get a hyperbola

2 = 2x2 − 3y2,

only now crossing the x-axis at x = ±1.
At z = 0 we get 0 = 2x2 − 3y2, which can be written as

2x2 = 3y2.
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Taking square roots gives 2x = ±3y, so this cross-section consists of the pair of lines y = 2
3x and

y = −2
3x. For z = −1 we get

−1 = 2x2 − 3y2, which we rewrite as 1 = −2x2 + 3y2.

This too is a hyperbola, only now crossing the y-axis (at y = ±1/
√

3) but not the x-axis since now
x can be zero but y cannot. For other negative z we also get hyperbolas that cross the y-axis and
not the x-axis. These different cross-sections thus look like

The resulting surface is not easy to draw at all, and takes some practice to get it looking
somewhat right. It is called a hyperbolic paraboloid, and resembles the surface of a saddle:

The name comes from getting hyperbolas for cross-sections in one direction (or a pair of lines),
but parabolas for cross-sections in other directions; in this case for cross-sections at y = k, for
example, we get z = 2x2 − 3k2, which is a parabola opening in the positive z-direction, while for
cross-sections at x = k we get z = 2k2−y2, which is a parabola opening in the negative z-direction.
With the aid of a computer we get a better picture:

where we have drawn the hyperbolas (and pair of lines) occurring as cross-sections at certain fixed
z. The picture on the right is a slightly rotated version of the first picture, which views the surface
from a slightly different perspective. Note that the origin is at the bottom of a “valley” (first
picture) in the x-direction, specifically at the bottom of the parabola z = 2x2 at the cross-section
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y = 0, but at the top of a “peak” (second picture) in the y-direction, specifically at the top of the
parabola z = −3y2 at the cross-section x = 0.

Hyperboloids. Consider now the quadric surface with equation

x2 + y2 − z2 = 1.

The cross-section at z = 0 is a circle x2 +y2 = 1; the cross-sections at z = ±1 are circles x2 +y2 = 2;
the cross-sections at z = ±2 are circles x2 + y2 = 4; and in general the cross-section at z = k is
always a circle x2 + y2 = 1 + k2. (This is always a circle since the right side 1 + k2 is always
positive.) We thus have the following cross-sections:

The smallest circle occurs at z = 0, so the resulting surface is thinnest on the xy-plane. With
circles cross-sections increasing in size z = k gets more positive or more negative, we have a picture
like:

This surface is called a hyperboloid of one-sheet.
To see an example of a cross-section for a different variable, we take the cross-section at y = 3,

which has equation x2 + 9− z2 = 1, or x2− z2 = −8, or −x2 + z2 = 8. This is a hyperbola opening
in the z-direction, which can visualize on the one-sheeted hyperboloid as follows:
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More hyperboloids. The term hyperboloid of “one sheet” above suggests there might be hyper-
boloids with more “sheets”. Indeed, an example is given by the quadric surface with equation

−x2 − y2 + z2 = 1.

At z = 2 is the cross section is the circle −x2 − y2 + 4 = 1, or 3 = x2 + y2, but at z = 1 the cross
section is −x2 − y2 = 0, which describes a single point (0, 0). In general, the cross-section at z = k
has equation

−x2 − y2 + k2 = 1, or k2 − 1 = x2 + y2.

This almost looks like the equation of a circle, except for the fact that the left side k2 − 1 can
be negative! (This was avoided in the one-sheeted hyperboloid example where we ended up with
k2 +1 = x2 +y2.) If k2−1 is positive, we definitely get a circle, but when k2−1 = 0, so for k = ±1,
we get single points.

Moreover, when k2 − 1 < 0, there are no points satisfying

k2 − 1 = x2 + y2

since the left side is negative but the right side is non-negative. Thus in this case we have an empty
cross-section; in particular, k2 − 1 < 0 when −1 < k < 1, so the upshot is that no portion of our
surface in R3 occurs strictly between k = −1 and k = 1. The 3-dimensional picture these give is
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and the resulting surface is called a hyperboloid of two sheets

Modifications. The equation
x2 − y2 − z2 = 1

is still a two-sheeted hyperboloid, only now centered along the x-axis. Indeed, the circles/points/empty
cross-sections that characterized the previous example, which was centered along the z-axis, now
occur at different values of x = k:

k2 − y2 − z2 = 1, or equivalently k2 − 1 = y2 + z2.

This gives circles for k < −1 or k > 1 (i.e. when k2 − 1 > 0); single points at k = ±1; and nothing
(i.e. empty cross-sections) for −1 < k < 1, so the picture is

The point is that once we have one basic shape down, can get similar things centered along different
axes by switching some of the variables.

Similarly, x2 − y2 + z2 = 1 is a one-sheeted hyperboloid centered along the y-axis, since y = k
gives x2 + z2 = 1 + k2, which is always a circle:

Compare this equation to the previous one-sheeted hyperboloid x2 + y2 − z2 = 1 we saw: here y
and z are switched, which is why what was centered along the z-axis before is now centered along
the y-axis.

Finally we consider the quadric surface with equation

x2 − 2x− y2 + 4y + z2 = 4.

This is still one of our basic shapes, only with the “origin” shifted. To put this into a more
recognizable form, we complete the square in the x and y terms (z is fine) to get

(x− 1)2 − 1− (y − 2)2 + 4 + z2 = 4, or (x− 1)2 − (y − 2)4 + z2 = 1.
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Whereas x2 − y2 + z2 = 1 before was centered at (0, 0, 0), this new surface retains the same basic
shape but it is centered at (1, 2, 0):

Lecture 9: Polar Coordinates

Warm-Up. Given a number k, we identify and sketch the surface with equation

x2 − 2y2 + 3z2 = k.

The type of surface we get will depend on whether k is positive, negative, or zero. If k = 0, our
equation is

x2 − 2y2 + 3z2 = 0, which can be written as x2 + 3z2 = 2y2.

This is the equation of a double-cone centered along the y-axis. Indeed, the cross sections at y = 0
is a single point, while other cross sections at y 6= 0 are ellipses, so our surface looks like

For k 6= 0, let us rewrite our surface equation as

x2 + 3z2 = k + 2y2.

If k > 0, the right side is always positive, so this gives ellipses as cross-sections for any k. The
smallest ellipse is at y = 0, and the ellipses get larger as y → +∞ or y → −∞, so this gives a
hyperboloid of one sheet centered along the y-axis:
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If k < 0, the right side of
x2 + 3z2 = k + 2y2

can be positive, negative, or zero depending on which cross-section at y we take. When k+2y2 < 0
we get empty cross-sections since no points satisfy

x2 + 3z2 = negative;

when k + 2y2 = 0 we get single points as cross-sections; and for k + 2y2 > 0 we get ellipses as
cross-sections. This gives a hyperboloid of two sheets centered along the y-axis as our surface:

The intercepts with the y-axis here come from the values of y at which k + 2y2 = 0, so y =
±
√
−k/2. (Recall that in this case k < 0, so −k/2 is indeed a positive number so that we can take

its square root.)

Polar coordinates. All of our lives up until this point, when dealing with the xy-plane we
have used rectangular (also called Cartesian) coordinates. These are just your standard (x, y)
coordinates, where the name comes from viewing (x, y) as the corner of a rectangle whose other
vertices are (0, 0), (x, 0), and (0, y). But depending solely on Cartesian coordinates is often too
restrictive, and many geometric objects of interest can be more easily understood if we modify the
coordinates we use.

One common choice of alternative coordinates are polar coordinates, defined by the following
picture:

So, r is the distance from the point (x, y) to the origin and θ is the angle you have to tilt away from
the positive x-axis in order to point in the direction of (x, y), where positive angles correspond
to counterclockwise rotations and negative angles to clockwise ones. A negative value of r is
interpreted as describing a point in the direction opposite to θ; for instance, θ = π

2 points us in the
positive y-direction and r = −1 then gives the point (0,−1) on the negative y-axis.

By looking at the right triangle given in the picture, we get the following relations between
polar coordinates (r, θ) and rectangular/Cartesian coordinates (x, y):

r2 = x2 + y2, tan θ = y
x , x = r cos θ, y = r sin θ.

48



We can use these to convert from polar to Cartesian coordinates, or from Cartesian to polar.

Example 1. We sketch the curve with polar equation r = cos θ, meaning the curve consisting
of all points in R2 whose polar coordinates satisfy r = cos θ. For instance, when θ = π

2 we get
r = cos π2 = 0 so the origin (the only point with r value 0) is on this curve; when θ = 0 we get
r = cos 0 = 1 so the point (x, y) = (1, 0) (which is at a distance r = 1 in the positive x-axis θ = 0
direction) is on this curve.

Let us create a table of a few points on this curve for some different values of θ:

θ r = cos θ x = r cos θ y = r sin θ

0 1 1 0
π
4

√
2

2
1
2

1
2

π
2 0 0 0

3π
4 −

√
2

2
1
2 −1

2

π −1 1 0

Plotting the resulting points (x, y) gives

We can also make sense of these values geometrically: in the θ = π/4 direction we should be at a
distance of r =

√
2/2 away from the origin; in the θ = 3π/4 direction we should be at a distance

of r = −
√

2/2 away from the origin, but since this is negative we actually move into the fourth
quadrant opposite the θ = 3π/4 direction; and in the θ = π direction we are at a distance of r = −1
away from the origin, which actually points us in the direction of the positive x-axis and puts us
back at the point (1, 0) we started at:

By connecting these points we can guess that our curve looks something like
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It is no accident that this picture appears to be that of a circle, as we can confirm definitively by
finding the Cartesian equation of the curve. From our conversions

x2 + y2 = r2, tan θ = y
x we get

√
x2 + y2 = r, θ = arctan( yx)

so
r = cos θ becomes

√
x2 + y2 = cos(arctan y

x).

This is a Cartesian equation for this curve, but perhaps not a very helpful one since it is does
not make clear why our curve is actually a circle. Instead, we find a better Cartesian equation by
multiplying the polar equation by r to get

r2 = r cos θ,

and then converting to rectangular coordinates to get

x2 + y2 = x.

After completing the square, this becomes (x − 1
2)2 + y2 = 1

4 , which describes a circle of radius 1
2

centered at (1
2 , 0), precisely what our picture suggests. (There is one subtlety here, in that when

we multiplied r = cos θ by r to get r2 = r cos θ we made it so that the r = 0 would always satisfy
the resulting equation, so that the origin would be on the resulting curve even if it was not on the
original curve. For example, if instead we had the curve with polar equation r = 10 + cos θ, then
the origin is not on this curve since r can never be zero here because cos θ is always greater than
or equal to −1. However, after multiplying by r we get r2 = 10r + r cos θ, and r = 0 does satisfy
this new equation. Essentially, multiplying by r gives rise a potentially extra point on the curve
that might not have been present originally. The upshot is to only multiply by r in this way when
trying to find Cartesian equations, but not for determining which points are actually on the curve.)

Example 2. We find a polar equation for the line y = 2. Since y = r cos θ in polar coordinates,
our line has equation r cos θ = 2, or

r =
2

cos θ
.

(Note that cos θ = 0 would give y = r(0) = 0, and so not the line y = 2, which is why can assume
cos θ 6= 0 in this fraction.)

Lecture 10: Parametric Curves

Warm-Up. We find rectangular/Cartesian equations for the curves with the following polar equa-
tions and sketch the curves for 0 ≤ θ ≤ π:

(a) r = 2 sin θ (b) r = 1− 2 cos θ.

50



For (a), we find a Cartesian equation by first multiplying through by r to get r2 = 2r sin θ, and
then using r2 = x2 + y2 and y = r sin θ to get

r = 2 sin θ  x2 + y2 = 2y.

After rearranging and completing the square, this becomes

x2 + y2 − 2y = 0 x2 + (y − 1)2 = 1,

so r = 2 sin θ is a circle of radiu s 1 centered at (0, 1) on the y-axis. Thus the curve looks like

We can obtain this picture even without converting to Cartesian coordinates by keeping track
of the behavior of r as θ changes. At θ = 0 we have r = 2 sin(0) = 0, which places us at the origin.
Then, as θ increases from 0 to π

2 in the first quadrant, r = 2 sin θ increases from 0 to 2, so we get:

(Note that r is measuring distance to the origin, so these distances are the ones which are increasing
from 0 when pointing in the positive x-direction to 2 when pointing in the positive y-direction.)
Then as θ moves from π

2 to π in the second quadrant, r = 2 sin θ decreases from 2 back down to 0,
so we get

and we’re back at the origin at the end.
For the curve in (b), we can find a Cartesian equation by again multiplying by r and using some

conversions:
r = 1− 2 cos θ  r2 = r − 2r cos θ  x2 + y2 =

√
x2 + y2 − 2x.

This particular Cartesian equation however is not going to help in sketching the curve since it is not
a “standard” equation like that of a circle. Instead, we will rely on determining the behavior of r
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as θ varies directly from r = 1− 2 cos θ. At θ = 0 we get r = 1− 2 cos(0) = 1− 2 = −1. Now, θ = 0
points us towards the positive x-direction, but with the negative value of r = −1 the point we get
occurs in the opposite direction, so at a distance of 1 from the origin in the negative x-direction.
Hence we get the point (−1, 0) on the x-axis as our starting point at θ = 0. As θ increases from 0
to π

/ 3, r moves from r = −1 up to r = 0, so at θ = π/3 we are at the origin. But these values of r

between −1 and 0 are negative, which means that for 0 ≤ θ ≤ π
/ 3 in the first quadrant we actually

get points in the third (i.e. opposite) quadrant, so the curve for 0 ≤ θ ≤ π
3 looks like

As θ increases from π
3 up to π

2 (sweeping out the rest of the first quadrant), r = 1 − 2 cos θ
increases from 0 to 1, so we get

Finally, as θ moves from π
2 to π in the second quadrant, r = 1 − 2 cos θ increases from 1 to

1− 2 cos(π) = 3, so we get

and finish at the point (−3, 0), which is at a distance of r = 3 from the origin in the negative x
(i.e., θ = π) direction. The setup only asked to sketch the curve for 0 ≤ θπ, but if you kept going
for π ≤ θ ≤ 2π you would end up with
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as the full curve.

Curves. We have seen how to describes lines in R3, and now we want to describe more general
types of curves in 2- or 3-dimensions. Recall that for lines the end result was a set of parametric
equations, where we specify different equations for the x, y, and z coordinates of points on the line
all in terms of a common parameter. For example,

x = 1 + 2t, y = −2− t, z = 3 + 4t

gives the line passing through (1,−2, 3) and parallel to the vector 〈2,−1, 4〉. As t varies, the point
(x, y, z) varies, tracing out the line in question.

We use the same idea to describe other curves, only with parametric equations that can in-
volve non-linear functions in terms of a parameter t. Take for example the curve with parametric
equations

x = cos t, y = sin t, 0 ≤ t ≤ 2π.

We claim that these describe the unit circle in R2 centered at the origin. Indeed, first notice that
the coordinates x = cos t and y = sin t satisfy

x2 + y2 = cos2 t+ sin2 t = 1

for all t, so the point (x, y) = (cos t, sin t) is always on this unit circle. At t = 0, we are starting at
the point (x, y) = (cos 0, sin 0) = (1, 0), and at t = π

2 we are at (x, y) = (cos π2 , sin
π
2 ) = (0, 1). Thus

the circle is being traced out by these changing (x, y) coordinates in a counterclockwise direction
as t varies:

We can get other behaviors in terms of how the circle should be traced out by making modifi-
cations to the parametric equations above. For example, with

x = cos t, y = − sin t,

which still satisfy x2 + y2 = 1, we get the circle traced out clockwise: at t = 0 we start at
(x, y) = (1, 0), and at t = π

2 we are at (x, y) = (0,−1) on the negative y-axis, so we move clockwise
as t increases. With

x = sin t, y = cos t,

we still get a circle (x2 + y2 = 1 is still true), only we start tracing out at the circle at (x, y) =
(sin 0, cos 0) = (0, 1) at t = 0:
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Example. We find parametric equations for the circle with equation

(x− 1)2 + (y − 2)2 = 4.

The equations x = cos t, y = sin t we had before were for a circle centered at the origin of radius 1,
so the goal is to modify these to make center be (1, 2) and the radius 2 instead. The center can be
shifted by adding 1 to the x-coordinate and 2 to the y-coordinate:

x = cos t+ 1, y = sin t+ 1.

But this does not have the right radius: with these equations we get x− 1 = cos t and y− 2 = sin t,
so

(x− 1)2 + (y − 2)2 = cos2 t+ sin2 t = 1.

Instead, we must scale the cosine and sine terms by 2 in order to get the correct radius: with

x = 2 cos t+ 1, y = 2 sin t+ 2

we have
(x− 1)2 + (y − 2)2 = (2 cos t)2 + (2 sin t)2 = 4(cos2 t+ sin2 t) = 4

as desired, so x = 2 cos t+ 1, y = 2 sin t+ 2 are valid parametric equations for this circle.

3D example. We sketch the curve in R3 with parametric equations

x = cos t, y = sin t, z = t 0 ≤ t ≤ 4π.

First, note that the x and y equations are describing circular motion, just as before. But now we
must incorporate the behavior of z as well. As x, y move in a circular pattern around the z-axis,
the z-coordinate z = t increases as we go, so (x, y, z) moves along a circular type of curve that
moves up at the same time:

This is called a helix. The bounds 0 ≤ t ≤ 4π on the parameter t in this case describe two
revolutions of the helix, since x = cos t, y = sin t will complete two revolutions around the z-axis
over this range of values of t.

To get a clearer picture, note that the x and y equations for points on this curve satisfy

x2 + y2 = cos2 t+ sin2 t = 1,

so all points (x, y, z) on this curve satisfy the equation x2 + y2 = 1, which is the equation of a
cylinder. Thus, our curve should be one that lies completely on this cylinder, moving up as it
wraps around:

54



Other examples. Now we consider the curve with parametric equations

x = t cos t, y = t sin t, z = t 0 ≤ t ≤ 4π.

The presence of cos t and sin t again suggests some circular motion in the x- and y-directions, only
the extra coefficient of t makes it so that the radius changes as we go. These x and y equations
satisfy

x2 + y2 = t2 cos2 t+ t2 sin2 t = t2(cos2 t+ sin2 t) = t2,

so in the x- and y-directions we get “circular” motion which moves further away from the z-axis as
we go. Another way of saying this is that in R2, the parametric equations

x = t cos t, y = t sin t

describe a spiral :

Indeed, as we spiral around the origin, we move further away from the origin at the same time.
Going back to our 3-dimensional curve, as the curve “spirals” around the z-axis the value of

z = t increases, so again we move upward as the spiraling occurs. To get a more concrete picture,
we note that x2 + y2 = t2, which is the same as x2 + y2 = z2 in our case since z = t. Thus, our
curve lies on the (double) cone with equation x2 + y2 = z2:
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If instead we considered the curve with parametric equations

x = t cos t, y = t sin t, z = t2,

we would have coordinates that satisfy

x2 + y2 = t2 = z,

so that in this case our curve lies on the paraboloid z = x2 + y2:

Intersections. We find parametric equations for the intersection of the surface x = y2 with the
surface z = y3. The key thing to note here is that once we know y, the values of x and z are
completely determined since they must satisfy

x = y2 and z = y3

in order to have (x, y, z) lie on both given surfaces. Thus, if we take y = t to be the parameter
itself, we must have x = y2 = t2 and z = y3 = t3, so that

x = t2, y = t, z = t3

is a possible set of parametric equations for this intersection. If we want to get the full intersection,
we should use −∞ < t <∞ with no restrictions on the values of t.
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Lecture 11: Tangent Vectors

Warm-Up 1. We find parametric equations the curve where the surfaces with equations y = ex

and z = x2 intersect. First let us get a sense for what this intersection looks like. The surface
y = ex is obtained by taking the curve y = ex in the xy-plane and sliding it up and down to change
the value of z:

The surface z = x2 is obtained by taking the parabola z = x2 in the xz-plane and sliding it in the
y-direction:

The curve in question is where these overlap, so it looks something like:

Now, once we specify the value x the values of y and z are completely determined by the
requirements that x, y, z satisfy y = ex and z = x2. Thus we can take x = t, and then y = et and
z = t2, so that

x = t, y = et, z = t2, −∞ < t <∞
is a set of parametric equations for this intersection. This is not on the only set though (parametric
equations are never unique), and with the initial choice of x = t3 for example we would get

x = t3, y = et
3
, z = (t3)2 = t6, −∞ < t <∞
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as another valid set of parametric equations for this curve. However, note that with something like
x = cos t and then

x = cos t, y = ecos t, z = cos2 t,

we only get the portion of the intersection which consists of points with x-coordinate between −1
and 1 since x = cos t is restricted to these values alone.

Warm-Up 2. We describe the curve in R3 with parametric equations

x = 1− sin θ, y = cos θ, z = sin θ for 0 ≤ θ ≤ 2π.

First we note that the y- and z-coordinates satisfy y2 + z2 = 1, which means that our curve lies on
the cylinder y2 + z2 = 1. Moreover, the x- and z-coordinates satisfy x = 1 − z, so our curve also
lies on the plane x = 1− z. Thus this curve is precisely the intersection of these two surfaces:

Note if nothing else that x = 1− sin θ only takes values between 0 and 2 (because sine only takes
values between −1 and 1), so the entire curve should lie between these values of x, which the picture
above confirms.

Vector functions. We can encode the parametric equations of a curve, such as the

x = 1− sin θ, y = cos θ, z = sin θ

example above, as the components of a vector

r(θ) = 〈1− sin θ, cos θ, sin θ〉

depending on θ, or whatever we happen to call the parameter in other examples. This is an example
of what’s called a vector-valued function since its values (i.e., outputs) are vectors. As the parameter
varies, the vectors we get vary, and if we drawn them starting at the origin, their endpoints are the
points that trace out the curve in question.

For example, take the unit circle with parametric equations x = cos t, sin t, or equivalently
parametrized by the vector-valued function

r(t) = 〈cos t, sin t〉 .

At different t we get
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We call r(t) the position vector of a point on this curve because it literally point (when drawn to
start at the origin) at the position of a point on the curve.

Limits of vector functions. We can take limits of vector-valued functions just as we can with
single-variable functions. For example, for the helix position vector

r(t) = 〈1− sin t, cos t, sin t〉

let us consider
lim
t→π

6

r(t).

The value of this limit should be a vector, namely the vector that the vector r(t) approaches as
t approaches π

6 . This is straightforward to compute, since to say that one vector is approaching
another vector just means that the components of the first approach the components of the second,
so that we just have to take the limit of each component of r(t):

lim
t→π

6

r(t) = lim
t→π

6

〈1− sin t, cos t, sin t〉

=

〈
lim
t→π

6

(1− sin t), lim
t→π

6

cos t, lim
t→π

6

sin t

〉
=
〈
1− sin π

6 , cos π6 , sin
π
6

〉
=
〈

1
2 ,
√

3
2 ,

1
2

〉
.

Note that the reason why when computing the limit of each component we can simply evaluate at
the point we are approaching is because each component is a continuous function.

Derivatives and tangent vectors. Taking derivatives of vector-valued functions is also straightforward—
we just take the derivative of each component:

r(t) = 〈1− sin t, cos t, sin t〉 r′(t) = 〈− cos t,− sin t, cos t〉 .

But this derivative has an important geometric meaning in that it describes tangent vectors along
the curve. Indeed, the derivative of a vector-valued function r(t) is officially defined via the same
type of limit as what defines the single-variable derivative:

r′(t) = lim
h→0

r(t+ h)− r(t)

h
.

The numerator r(t+ h)− r(t) of the expression of which we are taking the limit describes a vector
starting at the point with position vector r(t) on the curve and ending at the point with position
vector r(t+ h):
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As h→ 0, the position vector r(t+ h) moves closer to r(t), so that the vector r(t+h)−r(t)
h becomes

closer and closer to being tangent to the curve, and hence in the limit it does become tangent.
Take for example the function r(t) = 〈cos t, sin t〉 parametrizing a unit circle. We have

r′(t) = 〈− sin t, cos t〉 ,

so that, say, r′(0) = 〈0, 1〉 is tangent to the circle at the point (1, 0) with position vector r(0) = 〈1, 0〉,
r′(π4 ) =

〈
−
√

2/2,
√

2/2
〉

is tangent at position vector r(π4 ) =
〈√

2/2,
√

2/2
〉
, and r′(π2 ) = 〈−1, 0〉 is

tangent at (0, 1):

Example. We find parametric equations for the tangent line to the curve with vector function

r(t) = 〈1− sin t, cos t, sin t〉

at the point (1 −
√

2
2 ,
√

2
2 ,
√

2
2 ). Recall that to describe a line we need a point on the line and a

direction vector for the line. For the point we take (1−
√

2
2 ,
√

2
2 ,
√

2
2 ) as this is the point at which we

want the tangent line, and for the direction vector we simply take the tangent vector at this point.

The point (1−
√

2
2 ,
√

2
2 ,
√

2
2 ) is the point occurring at t = π

4 . We have

r′(t) = 〈− cos t,− sin t, cos t〉 , so r′(π4 ) =
〈
−
√

2
2 ,−

√
2

2 ,
√

2
2

〉
is tangent to the curve at (1−

√
2

2 ,
√

2
2 ,
√

2
2 ). Thus with point (1−

√
2

2 ,
√

2
2 ,
√

2
2 ) and direction vector〈

−
√

2
2 ,−

√
2

2 ,
√

2
2

〉
, the desired tangent line has parametric equations

x = 1−
√

2
2 −

√
2

2 t, y =
√

2
2 −

√
2

2 t, z =
√

2
2 +

√
2

2 t.

Here is the curve and this specific tangent line:
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Another example. We find parametric equations for the tangent line to the curve with polar
equation r = θ at the point corresponding to θ = 9π

4 . First we need parametric equations for (x, y)
points on this polar curve. We know that x = r cos θ, y = r sin θ, and here we are considering points
where the value of r is just r = θ, meaning that

x = r cos θ = θ cos θ, y = r sin θ = θ sin θ

are the (x, y) coordinates of points on this curve. These describe a spiral since, as θ increases, our
points have distance r = θ to the origin that increases as well.

The value θ = 9π
4 thus gives the point (x, y) = (9π

4 cos(9π
4 ), 9π

4 sin(9π
4 )) = (9

√
2π

8 , 9
√

2π
8 ) as the

point at which we want the tangent line. With r(θ) = 〈θ cos θ, θ sin θ〉, tangent vectors are given by

r′(θ) = 〈cos θ − θ sin θ, sin θ + θ cos θ〉 ,

so the tangent vector at (9
√

2π
8 , 9

√
2π

8 ) is

r′(9π
4 ) =

〈
cos(9π

4 )− 9π
4 sin(9π

4 ), sin(9π
4 ) + 9π

4 cos(9π
4 )
〉

=
〈√

2
2 −

9
√

2π
8 ,

√
2

2 + 9
√

2π
8

〉
.

Hence, the tangent line at the desired point has parametric equations

x = 9
√

2π
8 + (

√
2

2 −
9
√

2π
8 )t, y = 9

√
2π

8 + (
√

2
2 + 9

√
2π

8 )t.

Lecture 12: Integrals and Motion

Warm-Up 1. We find the tangent line to the curve given by

r(t) =
〈
e2t − 1, t3, e2t

〉
at the point where the curve intersects the surface y = (x + 1)2 − z2 + 27. Points on the curve in
question have coordinates

x = e2t − 1, y = t3, z = e2t,

so the curve intersects the given surface when these coordinates satisfy the equation of that surface:

y = (x+ 1)2 − z2 + 27 t3 = (e2t − 1 + 1)2 − (e2t)2 + 27 t3 = 27 t = 3.

(Note that the surface in question is a hyperbolic paraboloid, i.e. a saddle.) At t = 3 we get
position r(3) =

〈
e6 − 1, 27, e6

〉
, so we want the tangent line to the given curve at (e6 − 1, 27, e6).

We have
r′(t) =

〈
2e2t, 3t2, 2e2t

〉
, so r′(3) =

〈
2e6, 27, 2e6

〉
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is tangent to the curve at the desired point. Hence we get

x = e6 − 1 + 2e6t, y = 27 + 27t, z = e6 − 2e6t

as parametric equations for the desired tangent line.

Warm-Up 2. Suppose a curve in R3 is parametrized by some r(t) with the property that r(t) and
r′(t) orthogonal at all points. We justify the fact that this curves lies completely on a sphere:

Note that spheres (or circles in the 2-dimensional case!) do have the property that tangent vectors
are always orthogonal to position vectors, so the point here is that only spheres (or circles) has
this property. Our purpose for considering this problem is to illustrate that the “product rule” has
analogues for vector-valued functions as well. In particular, if r1(t) and r2(t) are two vector-valued
functions, then r1(t) · r2(t) is a scalar-valued function depending on t (for input t we get as output
the number that is the result of the given dot product), and the derivative of this scalar-valued
function is

d

dt
(r1(t) · r2(t)) = r′1(t) · r2(t) + r1(t) · r′2(t).

This indeed looks like the usual product rule, only with dot products of vectors instead of products
of numbers. (A similar “product rule” holds for the cross product r1(t)× r2(t), but there’ll be no
need to consider this in our course.)

Back to the problem at hand. We take the derivative of r(t) · r(t) using the product rule:

d

dt
(r(t) · r(t)) = r′(t) · r(t) + r(t) · r′(t) = 2r(t) · r′(t).

Our assumption says that r(t) and r′(t) are orthogonal, so the final dot product above is zero:

d

dt
(r(t) · r(t)) = 2r(t) · r′(t) = 0 for all t.

But this means that the scalar-valued function r(t) · r(t) must be constant! This function gives the
length of r(t) squared, and if this length squared is constant the length |r(t)| must be constant as
well. Hence for all t, |r(t)| is the same number, which means that the curve parametrized by r(t)
does indeed lie on a sphere, namely the sphere whose radius is this exact constant.

Integrals of vector functions. As with limits and derivatives, we can compute integrals of vector
functions by taking the integral of each component. For example, if

r(t) =
〈
cos t, t2, et

〉
,

then ∫ 2

0
r(t) dt =

∫ 2

0

〈
cos t, t2, et

〉
dt
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=
〈
sin t, 1

3 t
3, et

〉 ∣∣∣2
0

=
〈
sin 2, 8

3 , e
2
〉
−
〈
sin 0, 0, e0

〉
=
〈
sin 2, 8

3 , e
2 − 1

〉
.

We will not try to interpret such a thing as any type of “area”, in this course at least.

Motion and acceleration. Integrals of vector-valued functions for us will only be used when
discussing motion. The setup is that we have, say, a particle (or something else) moving along
some curve parametrized by r(t), so that r(t) gives the position vector of the particle at time t.
The derivative r′(t) (i.e., tangent vector) is then interpreted as the velocity v(t) of the particle
at time t, and the length of velocity |v(t)| = |r′(t)| gives the speed at time t. The derivative of
velocity, or equivalently the second derivative of position, gives the acceleration a(t) at time t:

r(t) = position, v(t) = r′(t) = velocity, a(t) = v′(t) = r′′(t) = acceleration.

Assume for example that a rocket moves through space with accelaration

a(t) =
〈
1 + t, e2t, 1

t2

〉
and that at time 1 it is at (1, 2, 3) with position vector r(1) = 〈1, 2, 3〉 and velocity v(1) = 〈−1, 0, 4〉.
We want to determine at which position it will be at any time t > 1. To find this general position
we must integrate velocity, and to find the general velocity we must integrate acceleration. So, we
have

v(t) =

∫
a(t) dt =

∫ 〈
1 + t, e2t, 1

t2

〉
dt =

〈
t+ 1

2 t
2 + c1,

1
2e

2t + c2,−1
t + c3

〉
,

where c1, c2, c3 are usual constants of integration, one for each component since they could be
different! To find the values of these constants we use the given velocity v(1) = 〈−1, 0, 4〉 at time
1. We need

v(1) =
〈
1 + 1

2 + c1,
1
2e

2 + c2,−1 + c3

〉
to agree with v(1) = 〈−1, 0, 4〉 ,

and this requires c1 = −5
2 , c2 = −1

2e
2, c3 = 5. Thus the general velocity of the rocket is

v(t) =
〈
t+ 1

2 t
2 − 5

2 ,
1
2e

2t − 1
2e

2,−1
t + 5

〉
.

Next we have

r(t) =

∫
v(t) dt

=

∫ 〈
t+ 1

2 t
2 − 5

2 ,
1
2e

2t − 1
2e

2,−1
t + 5

〉
dt

=
〈

1
2 t

2 + 1
6 t

3 − 5
2 t+ d1,

1
4e

2t − 1
2e

2t+ d2,− ln t+ 5t+ d3

〉
,

with again some to-be-determined constants of integration d1, d2, d3. We are given that the position
at time 1 is r(1) = 〈1, 2, 3〉, so we need

r(1) =
〈

1
2 + 1

6 −
5
2 + d1,

1
4e

2 − 1
2e

2 + d2,− ln 1 + 5 + d3

〉
to equal 〈1, 2, 3〉 ,

so d1 = 17
6 , d2 = 2 + 1

4e
2, d3 = −2. Thus the position vector is

r(t) =
〈

1
2 t

2 + 1
6 t

3 − 5
2 t+ 17

6 ,
1
4e

2t − 1
2e

2t+ 2 + 1
4e

2,− ln t+ 5t− 2
〉
,
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so at time t the rocket is at the point (1
2 t

2 + 1
6 t

3 − 5
2 t+ 17

6 ,
1
4e

2t − 1
2e

2t+ 2 + 1
4e

2,− ln t+ 5t− 2).

Projectile motion. Suppose we throw a ball from a height of 5 meters at an angle of 45◦ above
the horizontal with an initial speed of 2 meters per second. If the only force which affects the
motion of the ball is gravity, we determine the path the ball will follow:

The starting point is that the acceleration of the ball due only to the effect of gravity is

a(t) = −g j

where g is a constant which is approximately 9.8 meters per second squared. (This comes from
Newton’s second law of motion in physics which says that force equals mass times acceleration, but
we will simply take that this is the correct acceleration for granted since, after all, this is not a
physics class. All we care about here is integrating so that we can find position from acceleration.)
The initial position of the ball is r(0) = 5 j since it is starting at a height of 5 meters above the
ground, and the initial velocity v(0) should have length |v(0)| = 2 and angle π

4 with the horizontal
direction, so using ideas from polar coordinates we have

v(0) = |v(0)|︸ ︷︷ ︸
r

cos(π/4︸︷︷︸
θ

) + |v(0)|︸ ︷︷ ︸
r

sin(π/4︸︷︷︸
θ

) = 2(
√

2
2 ) i + 2(

√
2

2 ) j =
√

2 i +
√

2 j.

The velocity is

v(t) =

∫
a(t) dt =

∫
(0 i− g j) dt = c1 i + (−gt+ c2) j.

With v(0) =
√

2 i +
√

2 j, we must have

c1 i + (0 + c2) j =
√

2 i +
√

2 j,

so c1 =
√

2, c2 =
√

2. Our velocity is thus

v(t) =
√

2 i + (−gt+
√

2) j.

Next, the position is

r(t) =

∫
v(t) dt =

∫
[
√

2 i + (−gt+
√

2) j] dt = (
√

2t+ d1) i + (−1
2gt

2 +
√

2t+ d2) j.

Since r(0) = 0 i + 5 j, we need
d1 i + d2 j = 0 i + 5 j,

so d1 = 0, d2 = 5. Thus the position of the ball is

r(t) =
√

2t i + (−1
2gt

2 +
√

2t+ 5) j,

so the ball follows the path with parametric equations

x =
√

2t, y = −1

2
gt2 +

√
2t+ 5.

Note that these coordinates (since t = x√
2

from the first equation) satisfy y = −1
4gx

2 +x+5, which

is an upside-down parabola, just as our initial picture above and intuition of what should happen
when you throw a ball suggests.
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Lecture 13: Arclength

Warm-Up. A ball is thrown at a speed of 50 meters per second at an angle of π
3 above the

horizontal from a height of 10 meters, with only gravity acting on the ball. We determine how far
the ball travels downfield, and the maximum height it attains along the way:

The initial position is r(0) = 〈0, 10〉, and the initial velocity is v(0) =
〈
50 cos(π3 ), 50 sin(π3 )

〉
=〈

25, 25
√

3
〉
. With acceleration a(t) = 〈0,−g〉 due to gravity, we have

v(t) =

∫
a(t) dt =

∫
〈0,−g〉 dt = 〈c1,−gt+ c2〉 .

Since v(0) =
〈
25, 25

√
3
〉
, we have c1 = 25, c2 = 25

√
3, so

v(t) =
〈

25,−gt+ 25
√

3
〉
.

Next we get

r(t) =

∫
v(t) dt =

∫ 〈
25,−gt+ 25

√
3
〉
dt =

〈
25t+ d1,−1

2gt
2 + 25

√
3t+ d2

〉
.

Since r(0) = 〈0, 10〉, we have d1 = 0, d2 = 10, so

r(t) =
〈
25t,−1

2gt
2 + 25

√
3t+ 10

〉
is the general position vector of the ball.

Now, to determine how far the ball travels downfield we must determine when it this the ground.
This happens when the vertical j-component of position is 0, so when

−1

2
gt2 + 25

√
3t+ 10 = 0.

With g ≈ 9.8, we use a calculator (just this once!) to solve and get t ≈ 9.06 seconds as the time
when the ball hits the ground. The distance covered up to this point is given by the horizontal
i-component at this time, so the balls travels

25(9.06) = 226.55 meters

downfield. The maximum height the ball reaches along the way occurs when the vertical component
of position is at a maximum, so we find the time at which this occurs by setting the derivative of
this vertical component equal to 0:

0 = (−1
2gt

2 + 25
√

3t+ 10)′ = −gt+ 25
√

3 t = 25
√

3
g ≈ 4.42 seconds.

The maximum height is thus the vertical component at this time, so

−1
2g(4.42)2 + 25

√
3(4.42) + 10 ≈ 105.66 meters
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is the maximum height attained.

Arclength. The final quantity we’ll want to compute given a curve is its arclength, which is just
the length of the segment you would get if you were to straighten the curve out. In other words,
if you were to travel from the starting point of the curve to the end point, the arclength is the
distance you would travel. If a curve is parameterized by r(t) for a ≤ t ≤ b, its arclength is obtained
by integrating the length of the tangent vector all along the curve:

arclength =

∫ b

a
|r′(t)| dt.

This comes from thinking of the tangent vector as giving an “infinitesimal approximation” to the
curve at each point: if r(t) = 〈x(t), y(t), z(t)〉, then r′(t) = 〈x′(t), y′(t), z′(t)〉 so

|r′(t)| =
√
x′(t)2 + y′(t)2 + z′(t)2

gives the “infinitesimal length” of an ‘infinitestimal” piece of the curve, and thus the total length
is obtained by “adding up” all of these infinitesimal quantities, which is what integrating these
quantities over all values of t does:

An analogous integral gives the arclength for 2-dimensional curves as well. For example, take
the circle x2 + y2 = 16, which is parametrized by

r(t) = 〈4 cos t, 4 sin t〉 , 0 ≤ t ≤ 2π.

Of course, this is a circle of radius 4 and hence its circumference (which is its arclength) is 2πr = 8π,
so we don’t need any fancy integral to compute this, but let us see that the integral gives the correct
result anyway. We have

r′(t) = 〈−4 sin t, 4 cos t〉 , so |r′(t)| =
√

16 sin2 t+ 16 cos2 t =

√
16(sin2 t+ cos2 t) =

√
16 = 4.

Thus the arclength is ∫ 2π

0
|r′(t)| dt =

∫ 2π

0
4 dt = 4t

∣∣∣2π
0

= 8π

as expected.

Example. We find the arclength of the curve paramterized by

r(t) =
〈
cos 3t, sin 3t, 2t3/2

〉
0 ≤ t ≤ 2π.

First, just to make sure we have a sense of what it is we are computing the arclength of, let us sketch
this curve. The x = cos 3t and y = sin 3t coordinates of a point on this curve satisfy x2 + y2 = 1,
so our curve lies on the cylinder x2 + y2 = 1, and as the curve wraps around the cylinder the
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z = 2t3/2 coordinate increases, so we have a helix. Now, as t runs between 0 and 2π, the input 3t
into the cosine and sine functions in r(t) runs between 0 and 6π, which means that this curve wraps
around the cylinder three times, or in other words that x and y complete three full revolutions in
the “circular” direction:

To compute the arclength, we start with

r′(t) =
〈
−3 sin 3t, 3 cos 3t, 3t1/2

〉
and then

|r′(t)| =
√

9 sin2(3t) + 9 cos2(3t) + 9t =

√
9(cos3(3t) + sin2(3t) + 9t =

√
9 + 9t = 3

√
1 + t.

Thus the arclength of this curve is∫ 2π

0
|r′(t)| dt =

∫ 2π

0
3(1 + t)1/2 dt = 2(1 + t)3/2

∣∣∣2π
0

= 2(1 + 2π)3/2 − 2.

(We used a substitution u = 1 + t to compute
∫

(1 + t)1/2 dt =
∫
u1/2 du.)

Arclength parameter function. Now saw we wish to find the point along the curve

r(t) =
〈
cos 3t, sin 3t, 2t3/2

〉
, 0 ≤ t ≤ 2π

that is at a distance of 1 from (1, 0, 0), where we measure distance along the curve itself:
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In other words, we want the arclength of the portion of the curve between (1, 0, 0) and the point
we want to be 1. The point (1, 0, 0) is the one occurring at the parameter value t = 0, so we need
to find the value of t such that ∫ t

0
|r′(u)| du = 1,

where we use now use u as the variable of integration so as to not confuse it with the upper limit
t; with this value of t at hand, we plug into our parametric equations to find the point.

The function

s(t) =

∫ t

0
|r′(u)| du

with t varying is called the arclength parameter function and measures distance along the curve
from the point at t = 0 to the point at some arbitrary t > 0. Using the work we did above, we have

s(t) =

∫ t

0
|r′(u)| du =

∫ t

0
3(1 + u)1/2 du = 2(1 + u)3/2

∣∣∣t
0

= 2(1 + t)3/2 − 2.

The point for which we are looking is thus the one occurring at t satisfying

2(1 + t)3/2 − 2 = 1.

Solving gives

2(1 + t)3/2 = 3 (1 + t)3/2 =
3

2
 1 + t = (3

2)2/3, so t = (3
2)2/3 − 1.

Thus, the point along the curve that is at a distance of 1 away from (1, 0, 0) as measured along the
curve is

(cos(3(3
2)2/3 − 1), sin(3(3

2)2/3 − 1), [(3
2)2/3 − 1]3/2).

Note that taking the derivative of

s(t) =

∫ t

0
|r′(u)| du

with respect to t gives, by the Fundamental Theorem of Calculus, s′(t) = |r′(t)|, which is why |r′(t)|
is interpreted as speed: it is the rate of change of distance s(t) with respect to time t.

Lecture 14: Multivariable Functions

Warm-Up 1. We find the arclength of the curve with polar equation r = sin θ. In fact this is a
circle since

r = sin θ  r2 = r sin θ  x2 + y2 = y  x2 + (y − 1
2)2 = 1

4 .

The radius is 1
2 , so the arclength/circumference is π, but we will derive this value from the arclength

integral approach regardless. We can find parametric equations for this curve by taking r = sin θ
in the usual polar coordinate expressions for x and y:

x = r cos θ = sin θ cos θ, y = r sin θ = sin θ sin θ.

To get one revolution of this circle we take 0 ≤ θ ≤ π, since θ = 0 gives the origin with r = 0, and
then θ = π again gives r = 0, and hence the origin.
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With r(θ) =
〈
sin θ cos θ, sin2 θ

〉
, we have

r′(θ) =
〈
cos2 θ − sin2 θ, 2 sin θ cos θ

〉
,

so

|r′(θ)| =
√

(cos2 θ − sin2 θ)2 + 4 sin2 θ cos2 θ

=
√

cos4 θ − 2 cos2 θ sin2 θ + sin4 θ + 4 sin2 θ cos2 θ

=
√

cos4 θ + 2 sin2 θ cos2 θ + sin4 θ

=

√
(cos2 θ + sin2 θ)2

=
√

1 = 1.

Thus the arclength is ∫ π

0
|r′(θ)| dθ =

∫ π

0
1 dθ = π

as expected.

Warm-Up 2. We find the arclength parameter function of r(t) =
〈
ln t, 1

2 t
2,
√

2t
〉

which measures

the distance from (0, 1
2 ,
√

2) in the direction of increasing t along the curve. We have

r′(t) =
〈

1
t , t,
√

2
〉
, so |r′(t)| =

√
1
t2

+ t2 + 2 =
√

(1
t + t)2 = 1

t + t.

The point (0, 1
2 ,
√

2) occurs at parameter value t = 1, so the arclength parameter function measuring
distance from this point is

s(t) =

∫ t

1
|r′(u)| du =

∫ t

1
( 1
u + u) du = (lnu+ 1

2u
2)
∣∣∣t
1

= ln t+ 1
2 t

2 − 1
2 .

Multivariable functions. Now that we have built up a good understanding of 3-dimensional space
and describing objects (lines, planes, surfaces, curves) within it, we shift our focus to studying
functions of several variables, which is what puts the “multi” in “multivariable calculus”. Our
eventual goal is to do calculus with such functions, meaning understand and use their derivatives,
but before looking at derivatives we need a better sense of multivariable functions themselves.

What exactly do we mean by a function of several variables? Here’s an example:

f(x, y) = x2y + exy.

This is a function which takes two variables x and y as input (i.e., f is a function of two variables)
and outputs the number x2y + exy. The function

g(x, y, z) = xyz

is a function of three variables, which takes x, y, z as input and outputs the product xyz. Most
phenomena in the “real world”, or within the “mathematical world”, depend on more than one
variable or input, which must be described using multivariable functions.

Domain and range. A first basic question we can ask about multivariable functions is to de-
termine their domain and range, which are concepts analogous to ones you would have seen in a
single-variable calculus course. Take for example

f(x, y) = ln(y − 3x).
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The domain of f is the set of all possible (x, y) at which we can actually evaluate the function. For
example, if we tried to evaluate this function at (0, 2) we’d get

f(0, 2) = ln(2− 3(0)) = ln 2,

which makes perfect sense so (0, 2) is in the domain of f . But for (2, 0) we get

f(2, 0) = ln(0− 3(2)) = ln(−6),

which is nonsense since we cannot take the logarithm of a negative number, so (2, 0) is not in the
domain of f . In this case, in order for the expression

ln(y − 3x)

to make sense, y−3x must be positive, so the domain of f consists of all (x, y) satisfying y−3x > 0.
Visually, this is the part of the xy-plane that lies strictly above the line y = 3x:

The range of f(x, y) = ln(y − 3x) consists of all numbers we get as actual outputs as the input
(x, y) varies. For example, ln 2 is in the range of f since it is the value obtained by evaluating
f(x, y) at (x, y) = (0, 2). The natural log function gives as outputs every single possible number
as the input varies (i.e, the graph of the single-variable function h(x) = lnx covers all possible
values on the y-axis), so f(x, y) = ln(y− 3x) will give every possible number as an output as (x, y)
varies throughout the domain. Hence the range of f is the interval (−∞,∞), which contains every
possible real number.

The function g(x, y, z) = x2 + y2 + z2 of three variables has domain equal to all of R3 since
all possible values of (x, y, z) will be ones for which the expression x2 + y2 + z2 makes sense. The
outputs in this case, however, can never be negative since g(x, y, z) = x2 + y2 + z2 is always larger
than or equal to 0, so the range is the interval [0,∞) consisting of nonnegative real numbers.

Graphs. As in the single-variable case, a key tool we’ll use to understand the behavior of a
multivariable function is its graph. In the single-variable case, the graph of f(x) consists of the
points in R2 whose y-coordinate is given by the value of the function at the x-coordinate, or in other
words it is the curve defined by y = f(x). For a function f(x, y) of two variables, the analogous
notion is the collection of points (x, y, z) in R3 whose z-coordinate is equal to the value of the
function at the input (x, y), so it is the surface defined by z = f(x, y):
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For example, the graph of the function f(x, y) = x2 + y2 consists of all points satisfying z =
f(x, y) = x2 + y2, which have seen before is the equation of a paraboloid opening upward:

The graph of g(x, y) =
√
x2 + y2 is defined by z =

√
x2 + y2, which gives the top half of the double

cone z2 = x2 + y2:

Again, the point in each of these is that any point on the graph has z-coordinate equal to the value
of the function at the corresponding x, y-coordinates.

Level curves. Let us now consider the graph of h(x, y) = y2 + x, which is defined by z = y2 + x.
This not the equation of a surface we’ve seen before, so in order to get a sense of what the graph
looks like we default to the technique of looking at cross-sections, specifically cross-sections at
different values of z = k. In the context of a function of two variables, these cross-sections are
called level curves and give the piece of the graph that occurs at a certain “elevation”.

For h(x, y) = y2 + x, the level curves at z = k has equation

k = y2 + x.

This gives a curve in the xy-plane, specifically a parabola in this case: the level curve at 0 is
0 = y2 + x, or x = −y2, which passes through the origin; the level curve at z = 1 is 1 = y2 + x, or
x = 1− y2, and has x-intercept at x = 1; the level curve at z = 2 is 2 = y2 + x, or x = 2− y2, and
has x-intercept at x = 2; and so on
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This picture with multiple level curves drawn is called a contour map for h(x, y). View it as
analogous to the type of 2-dimensional picture you typically see on a map for a mountain, where
the heights at which specific level curves occur are labeled. By piecing these level curves together
in 3-dimensions, we can get a sense for what the graph of our function looks like:

Lecture 15: More on Functions

Warm-Up 1. We determine the domain and range of the functions

f(x, y) =
√

16− x2 − y2 and g(x, y) =
1√
x2 − y

.

The expression f(x, y) =
√

16− x2 − y2 is defined as long as we are not taking the square root of
a negative number, so the domain consists of all points satisfying 16 − x2 − y2 ≥ 0. This can be
written as 16 ≥ x2 + y2, which describes the region enclosed by a circle of radius 4 centered at the
origin, including the circle 16 = x2 + y2 on the boundary:

(By boundary here we just the mean the curve where the region “stops”.) This is an example of a
bounded region, which just means that there is a constraint on how far away from the origin points
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within it can be (i.e., it does not extend indefinitely in any direction), and is also a closed region,
which just means that it contains its entire boundary. Since the value of

√
16− x2 − y2 will never

be negative but can take on any nonnegative value, the range of f(x, y) =
√

16− x2 − y2 is the
interval [0,∞) of nonnegative real numbers.

The expression g(x, y) = 1√
x2−y

makes sense as long as the denominator is nonzero, and because

we are taking a square root, this requires that x2−y be positive . The domain of g(x, y) thus consists
of all points satisfying x2 − y > 0, or x2 > y, which is the region below the parabola x2 = y but
not including the parabola itself:

(We draw the boundary of this region, which is the parabola x2 = y, as dotted to indicate that
these points are not meant to be included.) This region is unbounded since there are points within
it that move further and further away from the origin, and it is an example of an open region,
which means that it includes none of its boundary. The value of 1

x2−y is always positive, and gets

arbitrarily close to 0 as x2 − y gets larger, and arbitrarily large as x2 − y gets close to 0. Thus the
range of g(x, y) = 1√

x2−y
is the open interval (0,∞) of positive real numbers.

Warm-Up 2. We describe/sketch the graph of the function h(x, y) = y − ex. We first consider
some level curves. The level curve at z = k is defined by

k = y − ex, or y = ex + k.

These all look like the typical exponential curve y = ex, only shifted up or down depending on the
value of k:

We can thus get a rough visualization of the graph by imagining these level curves occurring at the
appropriate elevations:
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Sketching graphs in general is not easy, but it is not actually something we’ll be concerned with
too much. Indeed, the basic point is that it is possible to determine much of the behavior of the
function from the level curves and contour map alone without needing an accurate picture of the
graph in 3-dimensions. For example, imagine we are at the following point P in the contour map
of h(x, y) = y − ex:

If we move away from P down and towards the right, we can see that the values of h(x, y) should
decrease since they get more negative. (Recall that the values of the function are the ones used to
label the level curves; one of these entire curves is describing all the points at which we get one
specific function value.) At the point P the value of h(x, y) is 0 (since P lies on the level curve at
0), and when moving away from P down and towards the right we get function values that drop
towards −1, then −2, and so on. This means that in this direction the graph of f should slope
“downwards”. If we move away from P up and towards the left, the function values increase, so
the graph of h(x, y) should slope upward in this direction away from P .

Example. Let us consider the function f(x, y) = y
x . Note first that no point with x-coordinate 0

is in the domain of f since y
x is undefined when x = 0. The level curve at z = 0 is given by

0 =
y

x
, or y = 0 (except x = 0);

the level curve at z = 1 is given by

1 =
y

x
, or y = x (except x = 0);

the level curve at z = 2 is given by

2 =
y

x
, or y = 2x (except x = 0);

and the level curve at z = −1 is given by

−1 =
y

x
, or y = −x (except x = 0).
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In fact, all level curves k = y
x are lines y = kx passing through the origin, only excluding the origin

when x = 0. For z > 0 we get lines of positive slope which get closer to being vertical as z → ∞,
while for z < 0 we get lines of negative slope which get closer to being vertical as z → −∞:

To obtain the graph, we take the line y = 0 (excluding the point at x = 0) at z = 0 and imagine
twisting it towards the yz-plane as we move up and down:

(This is something like a 2-dimensional curve of a helix.)
From the contour map, if we are at the point (1, 1) for example, we can see that the function

should decrease if we move in the direction of the vector i at this point since the “elevations”
decrease, while the function should increase if we move in the direction of the vector j at this point
since elevations increase:

Another example. For the function f(x, y) = cos(x+ y), note first that the range is the interval
[−1, 1] since these are the only values cosine can take on, so no part of the graph of f(x, y) occurs
above z = 1 and no part occurs below z = −1. The level curve at z = 0 consists of points satisfying

0 = cos(x+ y).

In order to have such a value for cosine, one possibility is to have the input x + y equal π
2 since

cos π2 = 0. Thus x + y = π
2 makes up a portion of the level curve at z = 0. But cosine is also
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zero at, say, 3π
2 , so x + y = 3π

2 is also part of the level curve at z = 0, and so is x + y = 5π
2 , or

x + y = −π
2 , etc. These are all lines of slope −1 with y-intercepts at odd integer multiples of π

2 ,
which all together make up the level “curve” of f(x, y) = cos(x+ y) at z = 0.

The level curve at z = 1 consists of points satisfying

1 = cos(x+ y).

This value can be attained when x+ y = 0, or x+ y = 2π, or x+ y = −2π, or more generally when
x + y is an integer multiple of 2π. These are also all lines of slope −1, which make up the entire
level curve of f(x, y) at z = 1. The level curve at z = 2, for example, is empty since no points
satisfy 2 = cos(x+ y), and the level curve at z = −1 consists of lines

x+ y = π, x+ y = 3π, x+ y = −π,

or more generally x+ y is an integer multiple of π. The contour map thus looks like:

If we are at the point (0, π2 ), for example, on the level curve at z = 0, moving up and to the right
(say in the direction of the vector i+ j) causes the function f(x, y) = cos(x+y) to decrease in value
towards −1, while moving down and to the left (in the direction of −i − j) causes the function to
increase in value towards 1. The graph of f(x, y) = cos(x+ y) looks like a 2-dimensional version of
a cosine curve:

Level surface example. Finally we consider the 3-variable function g(x, y, z) = x2 + 2y2 + 3z2.
As in the 2-variable case, we consider inputs that given the same value of the function, so points
satisfying

k = g(x, y, z) = x2 + 2y2 + 3z2

for a fixed k. Now, however, such equations describe surfaces and not curves, so we speak of the
level surfaces of g(x, y, z). The level surface at 1 has equation

1 = x2 + 2y2 + 3z2,
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which is the equation of an ellipsoid. The level surface at 2 is also an ellipsoid

2 = x2 + 2y2 + 3z2,

with the difference being that this one is larger than the one before. (Note that the ellipsoid at
z = 1 has x-intercepts at x = ±1, while the level surface at z = 2 has x-intercepts which are
further away from the origin at x = ±2.) The level surface at 0 consists of only the origin since
0 = x2 + 2y2 + 3z2 is only satisfied by x = y = z = 0, and the level surfaces at negative values are
all empty since g(x, y, z) = x2 + 2y2 + 3z2 is never negative. The level surfaces thus look like

In this case we have no hope of visualizing the graph of g(x, y, z) = x2 + 2y2 + 3z2 since this
graph lives in 4-dimensions: we need three dimensions (i.e., axes) to keep track of the inputs x, y, z
and another to keep track of the output. But, we can still get a sense of the behavior of g(x, y, z)
from the level sets alone: if we are on the level surface at z = 2, for example, moving away from
the origin causes the value of g(x, y, z) to increase, while moving towards the origin causes its value
to decrease.

Lecture 16: Multivariable Limits

Warm-Up 1. Given the following contour map of f(x, y), we describe what the graph of f roughly
looks like near the given points P,Q, and R:

The value of f at P is 3 since, as labeled, the entire level curve at z = 3 consists solely of the point
P . As we move away from P in any direction the values of f decreases towards z = 2 and then
towards z = 1, so near P the graph looks something like
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This is the type of picture which says that f has a local maximum at P since the value at P is
larger than it is at any points nearby, but this is a concept we’ll study in detail later. At Q the
value if −3, and then the values increase (i.e., get less negative) as we move away from Q. Thus
near Q the graph looks like

and we would say that f has a local minimum at Q.
The value of f at R is 2 since R sits on the level curve at z = 2. As we move through R

horizontally (i.e., in the direction of increasing x), the values of f increase, so the graphs slopes
upward in this direction, while if we move through R vertically (direction of increasing y), the
values decrease so the graph slopes downward. If you imagine some type of “tangent plane” to the
graph at R (also a concept we will study in more detail later), this plane would tilt upward in the
x-direction but tilt downward in the y-direction.

Warm-Up 2. We describe the level surfaces of g(x, y, z) = x + 2y + 3z. These are given by
equations of the form

k = x+ 2y + 3z

where we hold the value of the function constant at k, and we have seen that such equations describe
planes. Specifically, the level surface at 1 is the plane 1 = x + 2y + 3z with x, y, z-axes intercepts
at (1, 0, 0), (0, 1/2, 0), (0, 0, 1/3); the level surface at 2 is the plane 2 = x+ 2y+ 3z with x, y, z-axes
intercepts at (2, 0, 0), (0, 1, 0), (0, 0, 2/3); and the level surface at 3 is the plane 3 = x+ 2y+ 3z with
intercepts (3, 0, 0), (0, 3/2, 0), (0, 0, 1). As the value of g(x, y, z) = x + 2y + 3z the level surfaces
move further away from the origin, so we get things like
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If we stand on one such plane, say in the first octant, and move away from the origin, the value
of g(x, y, z) increases, while moving towards the origin (still in the first octant) causes g(x, y, z) to
decrease in value.

Limits and continuity. We are almost at the point where we can introduce (finally!) the most
important objects of study this quarter: multivariable derivatives. However, as is usual in calculus,
before derivatives come limits, so we first focus on understanding multivariable limits. The basic
idea is the same as it was in the single-variable case: the limit of f(x, y) as (x, y) approaches (a, b)
is meant to be the number (if it exists!) that f(x, y) approaches as the inputs (x, y) get closer and
closer to (a, b). We denote the value of this limit by

lim
(x,y)→(a,b)

f(x, y),

and we can consider analogous notions for functions of more than two variables as well.
As a first example, let us compute

lim
(x,y)→(1,2)

(xy + y2).

As (x, y) approaches (1, 2), we have x approaching 1 and y approaching 2, so xy approaches 1 · 2
and y2 approaches 22, so altogether

lim
(x,y)→(1,2)

(xy + y2) = 1 · 2 + 22 = 6.

In other words, in this case we can simply evaluate f(x, y) = xy+y2 at the point we are approaching
to get

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

This works here because f(x, y) = xy + y2 is an example of a continuous function, which literally
means that the limit as we approach a point will just be the value at that point. The fact that
f(x, y) = xy + y2 is continuous just comes from the fact that it is built of (using products and
sums) of continuous functions: the functions x and y are continuous, so xy and y2 are continuous,
and hence so is xy + y2.

Examples. Now we consider

lim
(x,y)→(1,3)

xy + x− y − 1

x− 1
.

Note here that f(x, y) = xy+x−y−1
x−1 is not continuous at (1, 3) since it is not even defined there.

This particular example is analogous to something like

lim
x→1

x2 − 1

x− 1

in the single-variable case, where the key point there is that we can find an alternative expression
for our function x2−1

x−1 = x+1 valid for x 6= 1, which allows us to compute the limit using continuity.
In the case at hand, we notice that xy + x− y − 1 factors as xy + x− y − 1 = (x− 1)(y + 1), so

lim
(x,y)→(1,3)

xy + x− y − 1

x− 1
= lim

(x,y)→(1,3)

(x− 1)(y + 1)

x− 1
= lim

(x,y)→(1,3)
(y + 1).

79



The resulting function y+1 is now perfectly continuous at (1, 3), so this final limit can be evaluated
by plugging in:

lim
(x,y)→(1,3)

xy + x− y − 1

x− 1
= lim

(x,y)→(1,3)
(y + 1) = 3 + 1 = 4.

Suppose instead we consider

lim
(x,y)→(1,3)

xy + x− y − 2

x− 1
.

Again the function of which we are taking the limit is not continuous at (1, 3), and now no simple
factorization will be possible. However, note in this case that even though the denominator ap-
proaches zero as (x, y) → (1, 3), the numerator approaches 3 + 1 − 3 − 2 = −1. This means that
the fraction

xy + x− y − 2

x− 1

gets larger and larger (in either the positive or negative direction) as (x, y)→ (1, 3), so it does not
approach a finite value and hence the limit does not exist. (This is analogous to something like
limx→1

x
x−1 .) This was not the case in the previous example

lim
(x,y)→(1,3)

xy + x− y − 1

x− 1

since both the denominator and numerator here approach 0 as (x, y) → (1, 3), so the overall
behavior of the fraction cannot be determined by focusing on the behavior of the numerator and
denominator separately.

Sandwich theorem. For the limit

lim
(x,y)→(0,0)

(x2 + y2) cos( 1
x2+y2

)

we need something new. An attempt to use something like

lim
(x,y)→(0,0)

(x2 + y2) cos( 1
x2+y2

) =

(
lim

(x,y)→(0,0)
(x2 + y2)

)(
lim

(x,y)→(0,0)
cos( 1

x2+y2
)

)
does not work since

lim
(x,y)→(a,b)

f(x, y)g(x, y) =

(
lim

(x,y)→(a,b)
f(x, y)

)(
lim

(x,y)→(a,b)
g(x, y)

)
only applies if both limits on the right exist, and in our case

lim
(x,y)→(0,0)

cos( 1
x2+y2

)

does not exist: as (x, y) → (0, 0), 1
x2+y2

goes to ∞, which makes cos( 1
x2+y2

) oscillate wildly

with no well-defined limit. So, we cannot “break up” the limit in this way. (For an example
of what can go wrong, note that if you tried to apply the same reasoning to limx→0 x( 1

x) to
get (limx→0 x)(limx→0

1
x) = 0(limx→0

1
x) = 0, the answer is nonsense since x( 1

x) = 1 and hence
limx→0 x( 1

x) should be 1.)
The key idea here is that the cosine term is bounded since its values are always between −1

and 1, and so the fact that the x2 + y2 term in front approaches 0 should force the entire product
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(x2 + y2) cos( 1
x2+y2

) to approach 0 as well. (This doesn’t work for limx→0 x( 1
x) since the 1

x term is

not bounded.) To make this precise, we note that

−(x2 + y2) ≤ (x2 + y2) cos( 1
x2+y2

) ≤ x2 + y2,

where on the right we replace the cosine term by the larger value 1, and on the left we replaced the
cosine term by the smaller value −1:

−1 ≤ cos( 1
x2+y2

) ≤ 1 =⇒ −(x2 + y2) ≤ (x2 + y2) cos( 1
x2+y2

) ≤ x2 + y2.

Since both the larger x2 + y2 and smaller −(x2 + y2) bounds approach 0 as (x, y) → (0, 0), the
value (x2 + y2) cos( 1

x2+y2
) we care about must also approach 0 since it is “sandwiched” between

two values that approach 0. Thus,

lim
(x,y)→(0,0)

(x2 + y2) cos( 1
x2+y2

) = 0

by what we’ll call the sandwich theorem, which is also sometimes called the squeeze theorem. (Sand-
wich is the term our book uses, so it’s what we’ll use as well.)

The sandwich theorem is a key tool that we’ll also make use of in the context of polar coordinates
(as we’ll see next time), but note that in the book it is only briefly mentioned in the exercises alone
and not in the main text. Nonetheless, it will be an important concept for us. When using the
sandwich theorem we should be clear about the larger and smaller bounds we’re using and what
the final conclusion is. This is one point where explanations will be necessary.

Another example. We use the sandwich theorem to compute

lim
(x,y)→(0,0)

(x2 + 2y4) sin( exy

x2+y
).

We have
−1 ≤ sin( exy

x2+y
) ≤ 1

since values of sine are never smaller than −1 nor larger than 1, so

−(x2 + 2y4) ≤ (x2 + 2y4) sin( exy

x2+y
) ≤ x2 + 2y4.

Since the limits of both −(x2 + 2y4 and x2 + 2y4 as (x, y) approaches (0, 0) are zero, the sandwich
theorem tells us that

lim
(x,y)→(0,0)

(x2 + 2y4) sin( exy

x2+y
) = 0.

Lecture 17: More on Limits

Warm-Up 1. We determine the value of c which makes the function

f(x, y) =

{
x2−3x−y2+3y

x+y−3 x+ y − 3 6= 0

c x+ y − 3 = 0

continuous at (1, 2). To be continuous at (1, 2) means that the limit as (x, y) approaches (1, 2)
should be the value of the function at (1, 2):

lim
(x,y)→(1,2)

f(x, y) = f(1, 2).
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Since (1, 2) satisfies x+ y − 3 = 0, f(1, 2) has value c, so we need

lim
(x,y)→(1,2)

f(x, y) = c.

Thus by computing the limit on the left we will have determined the value that c must be.
For x+ y− 3 = 0 we have f(x, y) = c already, so what this boils down to is computing the limit

for x+ y − 3 6= 0, which is

lim
(x,y)→(1,2)

x2 − 3x− y2 + 3y

x+ y − 3
.

The numerator of the fraction on the right factors as x2 − 3x− y2 + 3y = (x+ y − 3)(x− y), so

lim
(x,y)→(1,2)

x2 − 3x− y2 + 3y

x+ y − 3
= lim

(x,y)→(1,2)

(x+ y − 3)(x− y)

x+ y − 3
= lim

(x,y)→(1,2)
(x− y) = 1− 2 = −1,

where in the final step we use continuity of x − y to find the limit by plugging in. Thus we need
c = −1 in order to make f(x, y) continuous at (1, 2).

Warm-Up 2. If f(x, y) is a function satisfying |f(x, y)| ≤ [ln(x2 + y2 + 1)]2 at all points, we find
the value of

lim
(x,y)→(0,0)

ef(x,y).

This might not seem possible at first since we do not know what f(x, y) is explicitly—we only know
of some inequality that this unknown function is meant to satisfy. But we actually do have enough
information to find the desired limit.

First, since the exponential function is continuous, we have

lim
(x,y)→(0,0)

ef(x,y) = elim(x,y)→(0,0) f(x,y),

so all we must do is compute the limit of f(x, y) as (x, y)→ (0, 0). From the inequality that f(x, y)
satisfies we get that

−[ln(x2 + y2 + 1)]2 ≤ f(x, y) ≤ [ln(x2 + y2 + 1)]2.

(In general, saying that |a| ≤ b for some expressions a and b means precisely that a itself is sitting
between b and −b:

|a| ≤ b ⇐⇒ −b ≤ a ≤ b.

This is what we are using above to turn |f(x, y)| ≤ [ln(x2 + y2 + 1)]2 into the given string of
inequalities.) Now, since the natural logarithm function is continuous, we have

lim
(x,y)→(0,0)

ln(x2 + y2 + 1) = ln(02 + 02 + 1) = ln 1 = 0.

Thus both −[ln(x2 + y2 + 1)]2 and [ln(x2 + y2 + 1)]2 have limit 0 as (x, y) approaches (0, 0), so the
sandwich theorem gives that

lim
(x,y)→(0,0)

f(x, y) = 0

as well. Hence the desired limit is

lim
(x,y)→(0,0)

ef(x,y) = elim(x,y)→(0,0) f(x,y) = e0 = 1.
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Limits along different paths. Consider now

lim
(x,y)→(0,0)

x+ y

x+ 2y
.

We claim that this limit does not exist, but no technique we’ve seen yet will give a way to justify
this: both numerator and denominator approach 0, so we cannot deduce the behavior of the fraction
from looking at the numerator and denominator separately, and there is no way we can algebraic
simplify the given expression. The new idea we need is that if a limit where to exist, the manner in
which we approach the given point should not make a difference. After all, we want to understand
what f(x, y) approaches as (x, y) approaches (a, b), and since (x, y) can approach (a, b) in many
different ways, the limiting value we get for f(x, y) should be the same regardless.

In this example consider first the limit as we approach (0, 0) using points only on the x-axis,
which is defined by y = 0. Such points look like (x, 0), so the value of the function at such points
is given by

x+ 0

x+ 2(0)
.

We want the limit of this single-variable expression (approaching along a specific curve will always
turn our multivariable limit into a single-variable limit along that curve) as x→ 0, since x→ 0 is
what it means for points of the form (x, 0) to approach (0, 0). We get

lim
(x,0)→(0,0)

x+ 0

x+ 2(0)
= lim

x→0

x

x
= lim

x→0
1 = 1.

So, if we try to determine the value of

lim
(x,y)→(0,0)

x+ y

x+ 2y

using points along the curve y = 0 alone, we would expect the limit to be 1.
However, now we imagine approaching (0, 0) along the y-axis where x = 0. Now we are using

points of the form (0, y), so we get

lim
(0,y)→(0,0)

0 + y

0 + 2y
= lim

y→0

y

2y
= lim

y→0

1

2
=

1

2
.

Thus using points on the curve x = 0 to test the value of the limit, we would expect the limit to be
1
2 . Since we got different candidates for the limit when approaching (0, 0) along these two curves,
it must be the case that the multivariable limit

lim
(x,y)→(0,0)

x+ y

x+ 2y

does not actually exist.
Geometrically, what is happening is that the graph as a type of “jump” at (0, 0) when we

consider the piece where x = 0 vs the piece where y = 0, and this jump is what causes the limit to
not exist:
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Again, if the limit were to exist, it would not matter what piece we use to approach (0, 0)—we’d get
the same limiting value always. This is somewhat analogous to the idea of looking at left vs right-
sided limits in the single-variable case, but not quite the same since when considering approach
along a curve we are taking into account both sides of that curve, not just one side or the other.

Example. We justify the fact that

lim
(x,y)→(0,0)

xy

x2 + 3y2

does not exist. First we check the behavior along y = 0:

lim
(x,0)→(0,0)

0

x2 + 0
= lim

x→0
0 = 0.

Along x = 0 we have

lim
(0,y)→(0,0)

0

0 + 3y2
= lim

y→0
0 = 0.

So far we cannot make any conclusions, but of course there are many other ways in which we
can approach (0, 0) apart from solely along the x- or y-axis. If we approach instead along the line
y = x, so that we consider points of the form (x, x), we have

lim
(x,x)→(0,0)

x2

x2 + 3x2
= lim

x→0

x2

4x2
= lim

x→0

1

4
=

1

4
.

Since we have found different ways of approaching (0, 0) that give different candidate values for the
limit, the original multivariable limit does not exist. Geometrically, we have a “jump” like
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Another example. For

lim
(x,y)→(0,0)

x3y

x6 + y2
,

checking the limits along x = 0 and y = 0 is not enough since these will both give 0, as you can
check. Checking the limit along y = x is still not enough:

lim
(x,x)→(0,0)

x3x

x6 + x2
= lim

x→0

x2x2

x2(x4 + 1)
= lim

x→0

x2

x4 + 1
=

0

1
= 0.

Let us move beyond checking limits along lines alone, and see what happens if we approach (0, 0)
along the curve y = x3 instead. We have

lim
(x,x3)→(0,0)

x3x3

x6 + (x3)2
= lim

x→0

x6

2x6
= lim

x→0

1

2
=

1

2
.

Since we get a different limiting value along y = x3 than, say, x = 0, the multivariable limit does
not exist:

Limits in polar coordinates. Finally we consider

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
.

Nothing we’ve done so far will work here (try it out!), so again we need a new idea. In this case, we
can determine the behavior of the limit by converting to polar coordinates. In polar coordinates,
the function of of which we are taking the limit looks like

x3 + y3

x2 + y2
=
r3 cos3 θ + r3 sin3 θ

r2
= r(cos3 θ + sin3 θ).

The fact that we are meant to approach the origin can be phrased in terms of polar coordinates
as requiring that r (i.e., distance to the origin) approach 0, without any constraints on what is
happening to θ. Thus, we can write our multivariable limit in polar coordinates as

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
= lim

r→0
r(cos3 θ + sin3 θ).
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To determine the value of this polar limit, we use the sandwich theorem! The idea is that the r
factor in front is approaching 0, which seems like it should force the entire expression to approach
0 as well, but to make this clear the sandwich theorem is needed since we are not able to “break
up” the limit as

(limit of r) times (limit of cos3 θ + sin3 θ)

since the second limit does not exist as it will depend on the behavior of θ. Instead, we note that
since cosine and sine only give values between −1 and 1, we have

r(−1− 1) ≤ r(cos3 θ + sin3 θ) ≤ r(1 + 1),

so that r(cos3 θ+sin3 θ) is sandwiched between −2r and 2r. (Note that in this case cos3 θ+sin3 θ will
never actually have the value 1, nor −1, but this is OK: all we need are some “upper” and “lower”
bounds on the value, not the most efficient bounds coming from the maximum and minimum values,
which would take more work to find!)

Since −2r and 2r both approach 0 as r → 0, the sandwich theorem guarantees that

lim
(x,y)→(0,0)

x3 + y3

x2 + y2
= lim

r→0
r(cos3 θ + sin3 θ) = 0.

A picture of the graph does indeed suggest that the value (i.e., the z-coordinate) of the function is
approaching 0 as (x, y) approaches the origin:

Lecture 18: Partial Derivatives

Warm-Up 1. We verify that

lim
(x,y)→(0,1)

x ln y

y − x− 1

does not exist. (To be clear, the given function is not defined at points satisfying y− x− 1 = 0, so
we are only taking the limit using points not on the line y = x+ 1.) First, when approaching (0, 1)
along the y-axis we have

lim
(0,y)→(0,1)

0

y − 1
= lim

y→1
0 = 0.

86



When approaching (0, 1) along the horizontal line y = 1 (careful: we cannot approach along the
x-axis since the x-axis does not pass through the point (0, 1), whereas y = 1 does) we get

lim
(x,1)→(0,1)

x ln 1

−x
= lim

x→0

0

−x
= lim

x→0
0 = 0,

so we move consider other curves.
If we approach (0, 1) along the curve y = ex (which does pass through (0, 1)), we have

lim
(x,ex)→(0,1)

x ln(ex)

ex − x− 1
= lim

x→0

x2

ex − x− 1
.

Since the numerator and denominator here both approach 0, we can use L’Hopital’s rule for single-
variable limits. (There is no analog of L’Hopital’s rule for multivariable limits, but the point is that
after restricting the points we consider to only those along a curve like y = ex, we end up with a
single-variable limits as a result.) L’Hopital’s rule gives

lim
x→0

x2

ex − x− 1
= lim

x→0

2x

ex − 1
.

We still have numerator and denominator approaching 0, so we need another application of L’Hopital’s
rule:

lim
x→0

x2

ex − x− 1
= lim

x→0

2x

ex − 1
= lim

x→0

2

ex
=

2

e0
= 2.

Since this gives a different candidate limit than we got along, say, y = 1, the original multivariable
limit does not exist.

Warm-Up 2. We determine whether or not

lim
(x,y)→(0,0)

x− 2xy + y2√
x2 + y2

exists. The form of the denominator suggests that converting to polar coordinates could be useful,
so we have

lim
(x,y)→(0,0)

x− 2xy + y2√
x2 + y2

= lim
r→0

r cos θ − 2r2 cos θ sin θ + r2 sin2 θ

r

= lim
r→0

(cos θ − 2r cos θ sin θ + r sin2 θ).

We claim that this limit does not exist. As a first step, note that we can compute the limit of
the second and third parts using the sandwich theorem: since sine and cosine are always between
−1 and 1, we have

−2r − r ≤ −2r cos θ sin θ + r sin2 θ ≤ 2r + r,

(note that sin2 θ here cannot reach −1, but that is fine since all we need again are some bounds
and not necessarily the most efficient; no need to work too hard to find the most precise bounds
possible!) and since −3r = −2r − r and 3r = 2r + r both approach 0 as r → 0, we get that

lim
r→0

(−2r cos θ sin θ + r sin2 θ) = 0

by the sandwich theorem.
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So we are left with determining the limit of the initial cos θ term in

lim
r→0

(cos θ − 2r cos θ sin θ + r sin2 θ).

But recall that we placed no restrictions on what was happening θ since r → 0 already forces (x, y)
to approach (0, 0). If we now go back and took θ = 0, so that we approach the origin along the
positive x-axis, we’d get

lim
r→0,θ=0

(cos θ − 2r cos θ sin θ + r sin2 θ) = cos 0 + 0 = 1,

but if we took θ = π
4 , thereby approaching the origin along y = x, we’d get

lim
r→0,θ=π

4

(cos θ − 2r cos θ sin θ + r sin2 θ) = cos(π4 ) + 0 =
√

2
2 .

Since we get different values for different θ-directions, the limit does not exist.

Partial derivatives. We have now arrived at the most fundamental notion of the quarter, that
of the partial derivatives of a multivariable function. Let us use f(x, y) = x2y at the point (1,−2)
as an example. The partial derivative of f(x, y) = x2y with respect to x at (1,−2) is denoted by
∂f
∂x (1,−2), and is defined by the limit

∂f

∂x
(1,−2) = lim

h→0

f(1 + h,−2)− f(1,−2)

h
.

Let us digest this. As h→ 0, we are looking at points (1+h, 2) getting closer to (1, 2), but only via
their x-coordinate since the y-coordinate remains 2 throughout. Thus, we are looking at how the
function f changes “with respect to x” alone, and indeed the limit above is precisely what gives
the ordinary single-variable derivative at x = 1 of the single-variable function f(x, 2) obtained by
holding y constant at 2 and only varying x. To compute this we thus literally treat y as constant
and take a usual derivative with respect to x; x2y is thought of as x2 times a constant, so the
derivative is 2x times that constant:

f(x, y) = x2y =⇒ ∂f

∂x
= 2xy,

and thus evaluating at (1,−2) gives ∂f
∂x (1,−2) = 2(1)(−2) = −4.

This will be how we compute partial derivatives in general, but just this once let us work it out
directly from the limit definition to get a feel for how it works. (After all, all derivative rules you’ve
ever seen in your lives—such as the product and chain rules—are derived from the limit definition.)
We have

∂f

∂x
(1,−2) = lim

h→0

f(1 + h,−2)− f(1,−2)

h

= lim
h→0

(1 + h)2(−2)− 12(−2)

h

= lim
h→0

−2− 4h− 2h2 + 2

h

= lim
h→0

(−4− 2h)

= −4,
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just as expected.
The partial derivative of f(x, y) = x2y with respect to y at (1,−2) is also defined via a limit,

only this time where we only vary the y-coordinate and keep the x-coordinate constant at 1:

∂f

∂y
(1,−2) = lim

h→0

f(1,−2 + h)− f(1,−2)

h
.

This is the single-variable derivative with respect to y of the single-variable function f(1, y) at
y = −2, so we can compute this without having to use the limit definition just be treating x as if
it were constant, differentiating, and then evaluating:

f(x, y) = x2y =⇒ ∂f

∂y
= x2 =⇒ ∂f

∂y
(1,−2) = 1.

(If x is constant, so is x2, which is why the derivative of x2 times y with respect to y is just the
“constant” x2.) We will also use the notation fx and fy for partial derivatives, where the subscript
indicates the variable with differentiate with respect to, so

fx(1,−2) =
∂f

∂x
(1,−2) and fy(1,−2) =

∂f

∂y
(1,−2).

Derivatives as slopes. Geometrically, partial derivatives compute slopes, just as in the single-
variable case. The only difference is that now we consider slopes in different directions: ∂f

∂x gives

the slope in the direction of increasing x, and ∂f
∂y gives the slope in the direction of increasing y.

In other words, the graph of z = f(x, y) is some surface in R3. For the partial derivative at a
point (a, b) with respect to x we hold y = b fixed and vary the value of x to get some curve on the
graph, namely the piece of the graph occuring in the plane y = b:

The slope of this curve at x = a is precisely the partial derivative ∂f
∂x (a, b). Similarly, if we hold

x = a constant and vary y, we get the curve on the graph occuring in the x = a plane, and the slope
of this at y = b is ∂f

∂y (a, b). In the example of f(x, y) = x2y at (1,−2), the fact that fx(1,−2) = −4
is negative means that the graph slopes downward at the point (1,−2,−2) (the z-coordinate is the
function value f(1,−2) = 2) when facing the direction of increasing x, and fy(1,−2) = 1 being
positive means the graph slopes upward at (1,−2,−2) when facing the direction of increasing y.
(We’ll talk about how to find the slopes in other directions soon enough!)

Example. Consider f(x, y) = xexy. To compute fx we think of our function as

xex(constant).

To differentiate this we need the product rule and then the (single-variable) chain rule:

d(xex(constant))

dx
= ex(constant) + xex(constant)(constant).

Thus we get

fx =
∂f

∂x
= exy + xexyy.

(To be clear, the final y at the end comes from differentiating the exponent xy of exy with respect
to x.) For fy we think of our function as

(constant)e(constant)y.
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No produce rule is needed now, just the chain rule:

d((constant)e(constant)y)

dy
= (constant)e(constant)y(constant).

Thus

fy =
∂f

∂y
= xexyx = x2exy.

At, say, the point (2, 4), we’d have

fx(2, 4) = e8 + 8e8 = 9e8 and fy(2, 4) = 4e8,

so the graph of f slopes upward in both the x- and y-directions at the point (2, 4, 2e8) (but it is
steeper in the x-direction than in the y-direction!), where 2e8 = f(2, 4) is the function value.

Second-order partial derivatives. There is no reason why we cannot compute partial derivatives
of partial derivatives themselves, and this gives what are called the second-order partial derivatives
of a function. Take again f(x, y) = xexy, whose first-order partial derivatives we computed before:

fx =
∂f

∂x
= exy + xyexy = (1 + xy)exy and fy =

∂f

∂y
= x2exy.

We can now differentiate fx = ∂f
∂x = (1 + xy)exy either with respect to x or with respect to y:

∂

∂x

(
∂f

∂x

)
= yexy + (1 + xy)exyy and

∂

∂y

(
∂f

∂x

)
= xexy + (1 + xy)exyx.

To be clear, in the first case we are applying the operation ∂
∂x of differentiation with respect to x

to the function ∂f
∂x , and in the second case we are applying the operation ∂

∂y of differentiation with

respect to y to the function ∂f
∂x . These are more commonly denoted by

∂2f

∂x2
= yexy + (1 + xy)exyy and

∂2f

∂y ∂x
= xexy + (1 + xy)exyx

respectively. In subscript notation, these are

fxx =
∂2f

∂x2
and fxy =

∂2f

∂y ∂x
.

Note that in subscript notation, we differentiate in the order written from left to right, while in

the ∂ notation we differentiate in the order written from right to left: ∂2f
∂y ∂x means we differentiate

with respect to x and then y (doing it in this order comes from thinking of this as applying ∂
∂y to

∂f
∂x ), while this would be denoted by fxy in subscript form since x comes first and then y.

But we are not done, as we could also take fy = ∂f
∂y = x2exy and differentiate it with respect to

either x or y. This gives

fyx =
∂2f

∂x ∂y
= 2xexy + x2exyy and fyy =

∂2f

∂y2
= x2exyx.

Thus, f(x, y) = xexy has four second-order partial derivatives:

fxx = [y + (1 + xy)y]exy, fxy = [x+ x(1 + xy)]exy, fyx = [2x+ x2y]exy, fyy = x3exy.

Note that, actually, after some algebraic rewriting, fxy and fyx above are exactly the same; this is
no accident, as we’ll clarify next time!
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Lecture 19: Chain Rule

Warm-Up 1. We find the slope of the tangent line to the piece of the surface

z = x3y4 + y sin(xy)

that lies in the plane y = π
2 at (1, π2 ,

π4

16 + π
2 ) (or rather the point on graph corresponding to this

point), and the slope of the tangent line to the piece that lies in the plane x = 1 at this same point.
The given surface is the graph of f(x, y) = x3y4 + y sin(xy), so the desired slopes are simply the

partial derivatives of this function at (1, π2 ). (Note that the z-coordinate π4

16 + π
2 of the given point

is just the value of f(x, y) at (1, π2 ).) We have

∂f

∂x
= 3x2y4 + y2 cos(xy) and

∂f

∂y
= 4x3y3 + sin(xy) + xy cos(xy).

Hence the slope of the tangent line to the piece of the given graph in the y = π
2 plane (note that on

this plane we hold y constant and only vary x, which is why it is the partial derivative with respect
to x and not y that gives the desired slope) at the given point is

∂f

∂x
(1, π2 ) =

3π4

16

and the slope of the tangent line to the piece in the x = 1 plane (x constant and y varies) at the
given point is

∂f

∂y
(1, π2 ) =

4π3

8
+ 1.

Note that since both of these are positive, the graph of f(x, y) tilts upward at the given point in
both the x- and y-directions.

Warm-Up 2. Given the following drawing of some level curves of a function f(x, y) whose partial
derivatives exist at all points, we determine the signs (i.e., are they positive, negative, or zero) of

fx(P ), fy(P ), fx(Q), and fy(Q).

At P , if we hold the y-coordinate constant and only vary the x-coordinate, we see that the values
of f move from being between 0 and 1 to the left to P , to 1 at P , to between 1 and 2 to the right
of P :
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Thus f is increasing in value with respect to x at P , so fx(P ) should be positive. If we instead fix
the x-coordinate and vary y, the values of f decrease as we move vertically through P , so fy(P ) < 0.

Now, if we fix the x-coordinate of Q and vary y, the values of f(x, y) increase through Q since
get less negative: from being between −2 and −1 below Q, to −1 at Q, to between −1 and 0 above
Q. Thus fy(Q) > 0. With respect to x, however, Q is actually sitting at a local maximum since
the values of f(x, y) are smaller (more negative) than −1 to the left of Q and to the right of Q,
while the value at Q is −1:

If we draw a picture of only z versus x (so ignore the y-direction for now), we’d get something like

which shows the local maximum behavior in the x-direction. At a local maximum the derivative
should be zero, so fx(Q) = 0.

Clairaut’s theorem. We saw an example last time that fxy and fyx happened to give the same
value. Here’s another example of this. The first-order partial derivatives of f(x, y) = x2y3 + xy2

are
∂f

∂x
= 2xy3 + y2 and

∂f

∂y
= 3x2y2 + 2xy.

The second-order partial derivatives of f obtained by differentiating ∂f
∂x are

fxx =
∂2f

∂x2
= 2y3 and fxy =

∂2f

∂y ∂x
= 6xy2 + 2y

and those obtained by differentiating ∂f
∂y are

fyx =
∂2f

∂x ∂y
= 6xy2 + 2y and fyy =

∂2f

∂y2
= 6x2y + 2x.

Indeed, we have fxy = fyx in this example.
Second-order partial derivatives which involve differentiating with respect to different variables

like this are called mixed second-order partial derivatives, and it is basic fact that these will agree
under a continuity assumption. Specifically, what is known as Clairaut’s theorem states that if the
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mixed second-order partial derivatives ∂2f
∂y ∂x and ∂2f

∂x ∂y are continuous (as they are in the examples
we’ve seen), then

∂2f

∂y ∂x
=

∂2f

∂x ∂y
.

So, even though there are ostensibly four second-order partial derivatives for a function of two vari-
ables, two of them agree and there are only three distinct ones, assuming the continuity assumption
in Clairaut’s theorem is satisfied. This cuts down on the number of second-order partial derivatives
one needs to actually compute.

We will use second-order partial derivatives soon enough to discuss linear and quadratic ap-
proximations to functions, but apart from this Clairaut’s theorem will not really play a role this
quarter, so we won’t say much more about it. It will have some important consequences, however,
for integration if you go on to take MATH 230-2. One could also ask how to interpret second-order
partial derivatives geometrically. In the single-variable case second derivatives can be used to dis-
cuss concavity, and at least fxx and fyy have the same interpretation in the two variable case; the
mixed second-order derivatives, however, require a bit more care to interpret geometrically. We’ll
save all such discussions to a written homework since they won’t play a big role for us.

Three variable example. Everything we’ve done (including Clairaut’s theorem) works just as
well for a function of three variables. Take for example g(x, y, z) = xeyz + z. This has three first-
order partial derivatives, each obtained by holding two variables constant and differentiating with
respect to the third:

∂g

∂x
= eyz,

∂g

∂y
= xzeyz,

∂g

∂z
= xyeyz + 1.

Now we can differentiate each of these in one of three ways, and get at first glance nine total second-
order partial derivatives. But, many of these will be the same because of Clairaut’s theorem, so we
actually only get six distinct things. For example, we have

∂2g

∂z ∂x
=

∂

∂z

(
∂g

∂x

)
= yeyz and

∂2g

∂x ∂z
=

∂

∂x

(
∂g

∂z

)
= yeyz,

which are the same. Also,

gyz = xeyz + xyzeyz is the same as gzy = xeyz + xyzeyz.

The second-order partial derivative of g with respect to z twice has no “mixed” counterpart, and is

gzz =
∂2g

∂z2
= xy2eyz.

Multivariable chain rule. Suppose f(x, y) = x sin(xy), but that now x and y themselves are
also functions that depend on some new variables u and v via

x = uv and y = 2u+ u2v.

Substituting these values into f(x, y) will give an expression for f that depends on u and v:

f(x(u, v), y(u, v)) = uv sin(uv[2u+ u2v]).

Our goal is to determine how f changes with respect to these new variables, or in other words to
compute ∂f

∂u and ∂f
∂v . One approach is to take the expression we have for f above in terms of u
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and v and differentiate it directly as we’ve been doing. This works fine in this example, although
it will be a little messy since the expression for f in terms of u and v is not so nice. But, we will
come across scenarios where such a direct substitution method is not going to work out, so we need
something new.

What need is a multivariable version of the chain rule, since we can view the process above as
composing f(x, y) with the functions x(u, v) and y(u, v) for x, y in terms of u, v. Let us first recall
the single-variable chain rule, and formulate in a way similar to that above where we treat a given
variable as a function itself. The single-variable chain rule says that

(g(f(x))′ = g′(f(x))f ′(x).

Think of g(t) as a function of the variable t. Then in the composition g(f(x)) we set this variable
t = f(x) to itself be a function of x. The derivative of g with respect to the “new” variable x is

dg

dx
=
dg

dt

dt

dx
, where

dg

dt
= g′(f(x)) and

dt

dx
= f ′(x).

The point is that in order to differentiate g with respect to the new variable x, we differentiate
g with respect to the “intermediate” variable t, and multiply the result by the derivative of this
intermediate variable t with respect to the new variable x. As x varies, the value of t will vary,
which causes the value of g to vary, and so the rate at which g changes with respect to x should
indeed depend on both the rate at which g varies with respect to t and the rate at which t varies
with respect to x, which is what the chain rule dg

dx = dg
dt

dt
dx says.

To get the correct expression for the multivariable chain rule, let us be clear about what depends
on what: here f depends on x and y, and each of x and y depend on u and v, which we summarize
in the diagram

To determine how the value of f changes with respect to u, note that changing the value of u
changes the value of x and y, and each of these changes in turn changes the value of f . So, we
should expect contributions to ∂f

∂u from both the resulting change in x and the resulting change in
y; the correct statement is that

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
.

Each term on the right comes from one of the ways in which depends on u: the first comes from
f depending on u through the “intermediate” variable x, and the second from f depending on u
through the “intermediate” variable y. All we do is look at all the ways to get from f at the top
of the diagram to u at the bottom, take a products of derivatives along each “branch” that occurs,
and then add all such contributions together:
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For ∂f
∂v we’d have one contribution through the “x” branch which looks like ∂f

∂x
∂x
∂v , and another from

through the “y” branch which looks like ∂f
∂y

∂y
∂v , so that ∂f

∂v = ∂f
∂x

∂x
∂v + ∂f

∂y
∂y
∂v . The same idea works

no matter how many variables and dependencies we have.

Example. For f(x, y) = x sin(xy) where

x = uv and y = 2u+ u2v,

we thus have

∂f

∂u
=
∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u

= [sin(xy) + xy cos(xy)]v + x2 cos(xy)[2 + 2uv]

and

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v

= [sin(xy) + xy cos(xy)]u+ x2 cos(xy)u2.

If we want to evaluate these partial derivatives specifically at, say, the values (u, v) = (1, 2) of the
“new” variables, we just note that at these values we have x = uv = 2 and y = 2u + u2v = 6, so
that we can just evaluate ∂f

∂u and ∂f
∂v at u = 1, v = 2, x = 2, y = 6:

∂f

∂u
(1, 2) =

∂f

∂x
(2, 6)

∂x

∂u
(1, 2) +

∂f

∂y
(2, 6)

∂y

∂u
(1, 2)

= [sin(12) + 12 cos(12)]2 + 4 cos(12)[6]

= 2 sin(12) + 48 cos(12)

∂f

∂v
(1, 2) =

∂f

∂x
(2, 6)

∂x

∂v
(1, 2) +

∂f

∂y
(2, 6)

∂y

∂v
(1, 2)

= [sin(12) + 12 cos(12)] + 4 cos(12)

= sin(12) + 16 cos(12).

Lecture 20: Directional Derivatives

Warm-Up 1. Suppose a cylindrical wax candle is melting. As it does, its height and radius change
with respect to time. (It gets shorter as time goes on and perhaps the melting was falls down the
sides and increases the radius.)
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We want to give an expression for the rate at which the volume of the candle changes with respect
time in terms of the change in the radius and the change in the height.

The base of the candle has area πr2, so the volume of the candle, which is area of the base
times the height, is

V = πr2h.

But now we have that r and h depend on time t, so we have the dependencies

The chain rule thus gives

dV

dt
=
∂V

∂r

dr

dt
+
∂V

∂h

dh

dt

= 2πrh
dr

dt
+ πr2dh

dt
,

which is our desired expression. (Note that we here use the convention that single-variable deriva-
tives are written using d

dt notation so that ∂ is only used when working with partial derivatives.

Here r and h are single-variable functions of t alone, which is why we use dr
dt ,

dh
dt instead of ∂r

∂t ,
∂h
∂t ,

but there is no harm in writing this as

∂V

∂t
= 2πrh

∂r

∂t
+ πr2∂h

∂t

instead; it’s just a matter of preference. In the end we are thinking of V as a single-variable function
of t alone, which is why we also use dV

dt .) If we were given information about some of these actual
values, say the numerical values of the radius and height at some given instance and the rate at
which they are changing, we can find numerical values of dV

dt as well.

Warm-Up 2. Suppose the temperature at each point in R3 is given by a function T (x, y, z), and
that specifically at (0, 1, 2) we know that

Tx(0, 1, 2) = 1, Ty(0, 1, 2) = 2, and Tz(0, 1, 2) = −3.

We determine the rate at which the temperature T is changing at (0, 1, 2) with respect to the polar
variable θ. As θ changes we are moving in an angular direction through (0, 1, 2), and such a change
in θ causes in change in x and y (not z!), so that T should change as well:
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To be clear, we think of our new variables as (r, θ, z), where r, θ are the usual polar coordinates
replacing x, y:

x = r cos θ, y = r sin θ, z remains z.

(These are what are called cylindrical coordinates for R3, which you’ll learn more about in MATH
230-2 when computing certain three-variable integrals. This is the only example we’ll do with such
coordinates in this class.) Note that we do not know what T (x, y, z) actually is—we only know the
rate at which T changes in the x-, y-, and z-directions, but in fact this is enough to find the change
with respect to θ.

Here are our dependencies:

The multivariable chain rule thus gives

∂T

∂θ
=
∂T

∂x

∂x

∂θ
+
∂T

∂y

∂y

∂θ
+
∂T

∂z

∂z

∂θ
,

one term for each branch leading to θ in our diagram. Using the polar expressions for x and y (and
noting that z is independent of theta), we have

∂T

∂θ
=
∂T

∂x
(−r sin θ) +

∂T

∂y
(r cos θ) +

∂T

∂z
(0) = −r sin θ

∂T

∂x
+ r cos θ

∂T

∂y
.

Now, at the point (0, 1, 2), we have r = 1 and θ = π
2 , while z remains 2. Indeed, (r, θ) = (1, π2 0

are the polar values that give (x, y) = (0, 1), which are the proper x and y coordinates of (0, 1, 2).
Thus, to get the rate of change in T with respect to θ at this (0, 1, 2), we evaluate at these values:

∂T

∂θ
(1, π2 , 2)︸ ︷︷ ︸

(r,θ,z)

= (−1 sin π
2 )
∂T

∂x
(0, 1, 2)︸ ︷︷ ︸

(x,y,z)

+(1 cos π2 )
T

y
(0, 1, 2)︸ ︷︷ ︸

(x,y,z)

= (−1)(1) + (0)(2)
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= −1,

where the values of Tx(0, 1, 2) and Ty(0, 1, 2) come from our initial setup. (The value of Tz(0, 1, 2) =
−3 was not needed since this ended up being multiplied ∂z

∂θ = 0.) Thus, when moving in the angular
direction through (0, 1, 2) the temperature would be decreasing.

Differentiating along a path. Take the same setup temperature setup as above, but now assume
we move through (0, 1, 2) along the curve parametrized by

r(t) =
〈
cos(π4 t), sin(π4 t), t

〉
.

This describes a helix wrapping around the cylinder x2 + y2 = 1, and we want to determine the
rate at which the temperature is changing at (0, 1, 2) but now with respect to motion along this
helix, or in other words with respect to the “time” parameter t on this curve. Our dependencies
are now

where x = cos(π4 t), y = sin(π4 t), z = t from the given parametrization, so the chain rule gives

dT

dt
=
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
+
∂T

∂z

dz

dt

=
∂T

∂x
(−π

4 sin(π4 t)) +
∂T

∂y
(π4 cos(π4 t)) +

∂T

∂z
(1).

The point (0, 1, 2) we want occurs along the curve at time t = 2 (since then x = cos(π4 · 2) = 0, y =

sin(π4 · 2) = 1, and z = 2), so the value of dT
dt at our point is

dT

dt

∣∣∣
t=2

= Tx(0, 1, 2)(−π
4 sin π

2 ) + Ty(0, 1, 2)(π4 cos π2 ) + Tz(0, 1, 2)

= (1)(−π
4 ) + (2)(0) + (−3) = −π

4 − 3.

Thus when moving along this path specifically, the temperature at (0, 1, 2) would be decreasing at
a rate of π

4 + 3 (decrease because the derivative was negative).
Let us note that we can write the result of the chain rule above a little more compactly by

interpreting the right side as a dot product:

∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
+
∂T

∂z

dz

dt
=

〈
∂T

∂x
,
∂T

∂y
,
∂T

∂z

〉
·
〈
dx

dt
,
dy

dt
,
dz

dt

〉
.

The second vector
〈
dx
dt ,

dy
dt ,

dz
dt

〉
is just the tangent vector r′(t) along this path, and the first vector〈

∂T

∂x
,
∂T

∂y
,
∂T

∂z

〉
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is important enough that we give it its own name: this is called the gradient vector of T and is
denoted by ∇T . (The ∇ symbol is pronounced “nabla”. We’ll see why we use the term “gradient”
for this vector soon enough.) The upshot is that when evaluating a function such as T only among
points on a path with parametrization r(t), the derivative of T with respect to the path parameter
t can be written as

d

dt
T (r(t)) = ∇T (r(t)) · r′(t).

Notice how, in a sense, this expression does look like “derivative of the outside” times “derivative
of the inside”, which are phrases you might have seen used for the single-variable chain rule.

Directional derivatives. Let us put the idea above to good use. Given a function, say for now of
two variables f(x, y), we have seen that ∂f

∂x gives the rate of change of f in the x-direction, or more

precisely in the direction of the vector i, and ∂f
∂y gives the rate of change of f in the y-direction, or

more precisely direction of j. That is, if we stand a point on the graph and face in one of these two
directions, these partial derivatives give the slope of the part of the graph we see in that direction.
But there are numerous other directions in which we might want to know the slope/rate of change,
say the direction of i + j, or i− j, or whatever. How do we compute these?

To be precise, let us take the point (a, b) and a unit vector u = 〈c, d〉 giving us the direction we
care about. (We will see next time we require that u be a unit vector here.) By looking at the rate
of change of f at (a, b) in the direction of u, we mean to look at how f changes when evaluated
among points strictly from the line passing through (a, b) in the direction of u:

But we know how to describe this line explicitly, namely it has parametric equations

x = a+ ct, y = b+ dt,

so we are looking at the rate at which the values f(a+ ct, b+dt) are changing at (a, b)—or in other
words at t = 0 since this is the value of t that gives the point (a, b)—since these are precisely the
values of f along this line. We define the directional derivative of f at (a, b) in the direction of the
unit vector u to be exactly the rate of change of these values f(a + ct, b + dt) at t = 0, and we
denote it by

Duf(a, b) =
d

dt

∣∣∣
t=0

f(a+ ct, b+ dt).

This is precisely the same setup as the previous example where we differentiated along a curve,
only that here the curve is a line parametrized by r(t) = 〈a+ ct, b+ dt〉. According to the chain
rule work we did previously, we can write this directional derivative as

Duf(a, b) =
d

dt

∣∣∣
t=0

f(a+ ct, b+ dt) = ∇f(a, b) · r′(t) = ∇f(a, b) · u,

where the tangent vector of r(t) = 〈a+ ct, b+ dt〉 is r′(t) = 〈c, d〉 = u.
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The upshot is that to compute a directional derivative all we have to do is take the gradient of
our function (i.e., the vector whose components are the partial derivatives of our function) at the
point we care about and dot it with the unit direction vector we care about. Note in particular
that

Dif(a, b) = ∇f(a, b) · i = 〈fx(a, b), fy(a, b)〉 · 〈1, 0〉 = fx(a, b)

and
Djf(a, b) = ∇f(a, b) · j = 〈fx(a, b), fy(a, b)〉 · 〈0, 1〉 = fy(a, b),

so the directional derivatives in the directions of i or j (i.e., the slopes in x- and y-directions) are
indeed just the usual partial derivatives.

Example. We compute the directional derivative of f(x, y) = x2y+ y2 at (1, 2) in the direction of
i + j. Note that i + j = 〈1, 1〉 is not a unit vector, so before we can apply our directional derivative
formula we must divide by its length to get a vector of length 1 in the direction we want:

u =
1√
2

i +
1√
2

j.

The desired directional derivative is

Duf(1, 2) = ∇f(1, 2) · u.

The gradient vector of f is
∇f = 〈fx, fy〉 =

〈
2xy, x2 + 2y

〉
,

so the gradient vector at (1, 2) specifically is

∇f(1, 2) = 〈4, 5〉 .

Thus the directional derivative we want is

Duf(1, 2) = ∇f(1, 2) · u = 〈4, 5〉 ·
〈

1√
2
, 1√

2

〉
= 4√

2
+ 5√

2
= 9√

2
.

Hence at the point (1, 2) the function f(x, y) = x2y + y2 is changing at a rate of 9√
2

when facing

the direction of i+ j. This is positive, so the graph at this point in this direction is sloping upward.
Instead if we want the directional derivative in the direction of, say, 2i− j, we take

v =
2√
5

i− 1√
5

j

as our unit direction vector. The gradient vector of f at (1, 2) is still 〈4, 5〉, so the directional
derivative of f at (1, 2) in the direction of v is

Dvf(1, 2) = ∇f(1, 2) · v = 〈4, 5〉 ·
〈

2√
5
,− 1√

5

〉
= 8√

5
− 5√

5
= 3√

5
.

Thus the graph at this point in this direction is still sloping upward, but note that it is not sloping
upward as steeply as it is in the direction of i + j because this new rate of change is less positive
than was the previous one.
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Lecture 21: Gradient Vectors

Warm-Up. Set f(x, y, z) = x2y−y3z+xz2 and v = i+j+k. We determine whether f is changing
more rapidly in the direction of v at the point (1, 1, 1) or at the point (1,−3, 0). We have

∇f =
〈
2xy + z2, x2 − 3y2z,−y3 + 2xz

〉
,

so ∇f(1, 1, 1) = 〈3,−2, 1〉 and ∇f(1,−3, 0) = 〈−6, 1, 27〉. We divide v by its length to get a unit
vector in the desired direction:

u = 1√
3

i + 1√
3

k + 1√
3

k =
〈

1√
3
, 1√

3
, 1√

3

〉
.

Thus at the point (1, 1, 1), f is changing at a rate of

Duf(1, 1, 1) = ∇f(1, 1, 1) · u = 〈3,−2, 1〉 ·
〈

1√
3
, 1√

3
, 1√

3

〉
= 2√

3

in the direction of u, and at (1,−3, 0) the rate of change of f in the direction of u is

Duf(1,−3, 0) = ∇f(1,−3, 0) · u = 〈−6, 1, 27〉 ·
〈

1√
3
, 1√

3
, 1√

3

〉
= 22√

3
.

Since Duf(1,−3, 0) > Duf(1, 1, 1), f is changing more rapidly at (1,−3, 0) in the direction of v
than it is at (1, 1, 1). Note that both of these directional derivatives are positive, so f is increasing
in this direction at both points, it’s just that the rate of increase is even more positive at (1,−3, 0)
than at (1, 1, 1).

Geometric interpretations of gradients. Take f(x, y) = x2y + y3. We ask whether there is
a direction in which the directional derivative of f at (1, 2) is, say, 20, or in other words whether
there is a direction in which the slope of the graph of f(x, y) at (1, 2, 10) is 20. Algebraically, this
comes down to determining whether there is a unit vector u such that

Duf(1, 2) = ∇f(1, 2) · u = 20.

But to answer this what we really need to know is how large the value of Duf(1, 2) can be among
all possible directions u. That is, if we stand on the graph of f(x, y) at (1, 2, 10) and look all
around, what is the steepest slope we’ll see?

We have ∇f =
〈
2xy, x2 + 3y2

〉
, so ∇f(1, 2) = 〈4, 13〉. If we take u = 〈c, d〉 as our unit vector,

thus assuming c2 + d2 = 1, then

Duf(1, 2) = ∇f(1, 2) · u = 〈4, 13〉 · 〈c, d〉 = 4c+ 13d,

so we are looking to maximize 4c + 13d among points (c, d) satisfy c2 + d2 = 1. This is actually
a type of optimization problem we will return to at the end of the quarter, but in this particular
case we have a simple approach based on the geometric properties of dot products we saw at the
beginning of the quarter. We have

Duf(1, 2) = ∇f(1, 2) · u = |∇f(1, 2)||u| cos θ = |∇f(1, 2)| cos θ

where θ is the angle between ∇f(1, 2) and u, and where we use the fact that u is assumed to
be a unit vector to say that |u| = 1. (This is why we restrict our attention to only unit vectors
when computing directional derivatives, so that we can guarantee the rate of change of f in a given
direction at a point depends only the function, the point we are at, and the direction as measured
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by an angle, but not on whether we use a vector of length 2 to describe that direction, or of length
5, or of length whatever.)

The value of Duf(x, y) = |∇f(x, y)| cos θ is thus as large as possible when cos θ is as large as
possible, which happens when cos θ = 1 and hence when the angle θ between u and ∇f(x, y) is
zero. But this means that ∇f(x, y) and u point in the same direction, so the first conclusion is
that the direction of ∇f(x, y) itself is precisely the direction in which f increase most rapidly at
(x, y). The second conclusion is that this most rapid rate of increase, or in other words the largest
value that Duf(x, y) can have among all possible direction, is

Ddirection of ∇f(x, y)f(x, y) = |∇f(x, y)| cos(0) = |∇f(x, y)|,

so the length of the gradient at a point is itself that most rapid rate of increase. To summarize:
• ∇f(P ) points in the direction in which f increases most rapidly at P , and
• |∇f(P )| gives that most rapid rate of increase.

Thus, the gradient of f(x, y) is not just some random vector made up of the partial derivatives,
but it encodes much important geometric information as well via its direction and length. This
interpretation is where the term “gradient” comes from, since gradients in general are things that
describe something that changes, such as a color gradient or an elevation gradient on a mountain.

In the example above, we have that the largest possible rate of change of f(x, y) = x2y + y3

at (1, 2) among all directions is |∇f(1, 2)| = | 〈4, 13〉 | =
√

173. Since 20 is larger than
√

173, we
conclude that there is no direction in which the value of Duf(1, 2) is 20. Moreover, the direction
in which this maximum rate of change occurs is that of ∇f(1, 2) = 〈4, 13〉 itself.

Example. Suppose T (x, y) = xexy gives the temperature at a point (x, y) in a lake, and that we
are at the point (2, 5). The direction in which the temperature increases most rapidly at (2, 5) is
∇T (2, 5). We have

∇T =
〈
exy + xyexy, x2exy

〉
, so ∇T (2, 5) =

〈
11e10, 4e10

〉
,

so the max rate of change of the temperature occurs in the direction of
〈
11e10, 4e10

〉
. The rate of

change in this direction, or in the words the maximum rate of change at (2, 5) itself, is

|∇T (2, 5)| = |
〈
11e10, 4e10

〉
| =

√
121e20 + 16e20 = e10

√
137.

What about the direction in which the temperature decreases most rapidly at (2, 5)? This is
the direction in which Du∇T (2, 5) is as small as possible, and from

Du∇T (2, 5) = ∇T (2, 5) · u = |∇T (2, 5)| cos θ,

we see that this happens when cos θ = −1, so that θ = π. Hence the direction in which the
temperature decreases most rapidly is the direction opposite that of the gradient (since the angle
between this direction and the gradient must be π), and so is

−∇T (2, 5) =
〈
−11e10,−4e10

〉
.
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The rate of change in this direction, which is the smallest that DuT (2, 5) can be among all possible
directions, is |∇T (2, 5)| cos(π) = −|∇T (2, 5)| = −e10

√
137.

Another example. Suppose we are given the following level curves of a function f(x, y):

We want to (roughly) sketch the gradient vectors of f at P and at Q. The first thing to note is
that ∇f(P ) cannot point, say, down and to the left since in this direction f is decreasing in value
(which we can see from the z-values on the level curves occurring in this direction), while we know
∇f(P ) must be point in a direction in which f is increasing in value. Moreover, we cannot have
the gradient of f at P look something like

since, although f is increasing in this direction, it is not increasing by as much as it is in, say, the
direction

We can see that this is true by noting that in the first direction it takes f longer to increase by
a value of 1 than it does in the second, since the level curves are closer to one another in latter
direction than in the former. The closer level curves are to one another, the steeper the graph will
be at those points. Thus ∇f(P ) looks something like
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We can draw ∇f(Q) in a similar way, where this gradient vector should point at Q towards the
level curve at 3. But we can see a bit more, namely how long this gradient is versus the one at P .
The lengths of these gradients give the slopes in the directions in which the graph is steepest at
the given points, so we can determine which gradient is longer by determining where the graph is
steeper. The fact that the level curves at P are closer to one another implies that the graph here
is steeper than it is as Q, so the gradient at P should be longer than the gradient at Q:

Relation to level sets. There is one final important geometric observation we can make about
the gradient. Note what happens if we ask for the directional derivative in a direction tangent to
a level curve:

In this tangent direction u, the value of f(x, y) remains constant since moving along the level curve
does not change the value of f(x, y). (The level curve is, after all, the set of points at which f
has one specific value.) Since f remains constant in this direction, the rate of change of f in this
direction should be zero, so

0 = Duf(P ) = ∇f(P ) · u.

But this means that ∇f(P ) is orthogonal to the tangent direction u. Another way saying this is
that if we parametrize the level curve using some r(t), then f(r(t)) is constant as t varies, so the
derivative of this function which respect to t is 0. But we can write this derivative as

d

dt
f(r(t)) = ∇f(r(t)) · r′(t)

as we saw when discussing the idea of “differentiating along a curve” before, so ∇f(r(t)) · r′(t) = 0
and hence ∇f(P ) is orthogonal to the tangent vector r′(t).

Everything works just as well for functions of more than two variables, so the upshot is at any
point P , ∇f(P ) will always be orthogonal to the level set of f containing P :
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This helps to draw more accurate pictures of gradients, but also has another important use, as we
will see next time.

Final example. We find parametric equations for the line which is perpendicular to the curve

x2y + y3 = 10

at the point (1, 2). To find this line we need a point on it, such as (1, 2), and a vector giving the
direction of the line, so in this case we need a vector that will be perpendicular to the curve at
(1, 2). But if we think of the given curve as a level curve of

f(x, y) = x2y + y3,

namely the level curve at the value z = 10, then we know that ∇f(1, 2) will indeed be orthogonal
to this curve at (1, 2). From a previous example we have ∇f(1, 2) = 〈4, 13〉, so we take this as a
direction vector for the perpendicular line:

Hence the perpendicular line at (1, 2) has parametric equations x = 1 + 4t, y = 2 + 13t.

Lecture 22: Tangent Planes

Warm-Up 1. For f(x, y) = xexy + y2, we find the direction in which f increases most rapidly at

(−2, 1), and the direction in which it increases at a rate that is
√

2
2 times that most rapid rate of

increase at (−2, 1). The direction in which f increases most rapidly at a point is given the gradient
of f at that point. So, we compute

∇f(x, y) =
〈
exy + xyexy, x2exy + y2

〉
, and ∇f(−2, 1) =

〈
−e−2, 4e−2 + 2

〉
.

Thus, at (−2, 1), f increases most rapidly in the direction of
〈
−e−2, 4e−2 + 2

〉
.
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Now, the rate of change in the direction computed above, or in other words the largest rate of
change f has at (−2, 1) among all possible directions, is |∇f(−2, 1)|. If we want directions in which

the rate of change is
√

2
2 times this largest amount, we want unit vectors u such that

Duf(−2, 1) =
√

2
2 |∇f(−2, 1)|.

But, using the geometric formula for the dot product, this is the same as

|∇f(−2, 1)| cos θ︸ ︷︷ ︸
∇f(−2,1)·u

=
√

2
2 |∇f(−2, 1)|,

meaning we want vectors so that angle between it as ∇f(−2, 1) satisfy cos θ =
√

2
2 . Hence, the

angle should be θ = ±π
4 , so we have two directions in which the rate of change is

√
2

2 times the
largest possible rate of change in any direction—namely the two directions obtained by rotating
∇f(−2, 1) by π

4 or by −π
4 .

This is indicative of what happens in general. The gradient at a point always points in the
direction of most rapid increase, and the negative of the gradient (as we saw in an example last
time) points in the direction of most rapid decrease. As we take a direction moving away from that

of the gradient, the directional derivative gets smaller but remains positive for a while, hitting
√

2
2

times the maximum rate of change when we hit angles θ = ±π
4 away from the gradient direction:

Moving further away still leads eventually to directions in which the rate of change is zero (these
are precisely the directions tangent to the level curve containing the point of interest since they
are the directions orthogonal to the gradient), and then we reach directions in which the rate of
change becomes negative, until finally hitting the most negative the rate of change can be in the
direction opposite the gradient. In the example of f(x, y) = xexy + y2 at (−2, 1), these behaviors
all look like
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Warm-Up 2. We find a Cartesian equation for the tangent line to the curve

xexy + y2 = −2e−2 + 1

at the point (−2, 1). (Note that (−2, 1) does satisfy this equation, which is why we are using this
specific right-hand side.) We can view this curve as the level curve of f(x, y) = xexy + y2 at the
value z = −2e−2 + 1, so we know that ∇f(−2, 1) =

〈
−e−2, 4e−2 + 1

〉
will be orthogonal to the

given curve at (−2, 1):

Now, the tangent line we want should be orthogonal to this gradient vector. A point (x, y) will
thus be on this tangent line precisely when

∇f(−2, 1) · 〈x− (−2), y − 1〉 = 0.

Indeed, in order for (x, y) to be on this line, the vector 〈x− (−2), y − 1〉 from (−2, 1) to (x, y)
must be parallel to this tangent line, which means it must perpendicular to the gradient. (This is
exactly the same idea we used to derive the equation of a plane with a given normal vector way
back when!) Thus, the Cartesian (meaning x, y) equation of this tangent line is〈

−e−2, 4e−2 + 2
〉
· 〈x+ 2, y − 1〉 = 0,

or −e2(x+ 2) + (4e−2 + 2)(y − 1) = 0 after we compute the dot product.

Normal vectors and tangent planes. Consider the unit sphere x2 + y2 + z2 = 1. We now seek
to describe the tangent plane to the sphere at, say, the point ( 1√

3
, 1√

3
, 1√

3
):

If we recall the method for finding equations of planes we discussed early in the quarter, what we
need are a point on the plane (which we have!) and a vector normal to the plane.

But this normal vector can now be found using gradients! Indeed, the key is to interpret the
given sphere as the level surface of a three-variable function, namely

f(x, y, z) = x2 + y2 + z2
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in this case. The unit sphere is the level surface of this function at the value 1, and we know from
last time that the gradient of f at a point is indeed normal to the level set (surface in this case)
of f containing that point. So, ∇f( 1√

3
, 1√

3
, 1√

3
) will be normal to the tangent plane we want. We

have
∇f = 〈2x, 2y, 2z〉 , so ∇f( 1√

3
, 1√

3
, 1√

3
) =

〈
2√
3
, 2√

3
, 2√

3

〉
.

The equation of the tangent plane with this normal vector and containing ( 1√
3
, 1√

3
, 1√

3
) is then〈

2√
3
, 2√

3
, 2√

3

〉
·
〈
x− 1√

3
, y − 1√

3
, z − 1√

3

〉
= 0

in vector form, and
2√
3
(x− 1√

3
) + 2√

3
(y − 1√

3
) + 2√

3
(z − 1√

3
) = 0

in scalar form.
For another example, take the surface with equation xy + z2 = 5. We can view this as a level

surface of the function
f(x, y, z) = xy + z2,

specifically the level surface at the function value 5. Thus at any point on this surface, the vector

∇f = 〈y, x, 2z〉

will be normal to the surface. The point (1, 1, 2) is on this surface, for example, so ∇f(1, 1, 2) =
〈1, 1, 4〉 is normal to the tangent plane at this point, so this tangent plane has equation

(x− 1) + (y − 1) + 4(z − 2) = 0.

Tangent planes to graphs. Now consider the special case where the surface in question is the
graph of a function z = f(x, y) of two variables. (Note that here f denotes something different
than what it did in the examples above: there f was a function of three variables of which the
given surface was a level surface, but now f is denoting a function of two variables whose graph is
the given surface. The difference can be seen in a simple example like the paraboloid z = x2 + y2,
which is the graph of f(x, y, z) = x2 + y2, but which can also be seen as the level surface of the
three-variable function g(x, y, z) = x2 + y2 − z at the value 0.) The tangent plane to this graph at
a point (a, b, f(a, b)) is an analog of the tangent line to the graph of y = f(x) at a point (a, f(a))
you would have studied in a single-variable calculus course:

To find an equation of this tangent plane, we view the graph z = f(x, y) as a level surface of
g(x, y, z) = f(x, y)− z, namely the level surface at the value 0. Since ∇g = 〈fx, fy,−1〉, a normal
vector for the tangent plane at (a, b, f(a, b)) is then

∇g(a, b, f(a, b)) = 〈fx(a, b), fy(a, b),−1〉 .

The tangent plane thus has vector equation

〈fx(a, b), fy(a, b),−1〉 · 〈x− a, y − b, z − f(a, b)〉 = 0,
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and scalar equation

fx(a, b)(x− a) + fy(a, b)(y − b)− (z − f(a, b)) = 0.

It is standard to rewrite this plane equation by isolating z to get

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Compare this resulting equation to the equation for the tangent line to y = f(x) at (a, f(a))
from single-variable calculus, which is

y = f(a) + f ′(a)(x− a).

In both equations the first constant term (i.e., the term with no variable attached) is the value of the
function at the input point, and the terms with variables have values of derivatives as coefficients.
Before f ′(a) gave the slope of the tangent line, and now we have two slopes to consider in the
tangent plane, the slope in the x-direction fx(a, b) as the coefficient of the x term, and the slope in
the y-direction fy(a, b) as the coefficient of the y term. In a sense, these two partial derivatives tell
us how the tangent plane “tilts” in one direction or another. The upshot is that the tangent plane
equation does look the same as the old tangent line equation, only now with two linear terms to
account for the two variables on which our function depends.

Example. Let us find the equation for the tangent plane to the graph of f(x, y) = x2y3 + x at
(2, 1, 6). (Note that 6 = f(2, 1) is just the value of the function at (2, 1).) We have

fx = 2xy3 + 1 and fy = 3x2y2,

so the tangent plane is

z = f(2, 1) + fx(2, 1)(x− 2) + fy(2, 1)(y − 1)

= 6 + 5(x− 2) + 12(y − 1).

Linearization. Recall in the single-variable case that the tangent line to y = f(x) at x = a can
be used to approximate the value of f(x) for x near a. Indeed, the tangent line gives what’s called
the best linear approximation of f near a. The same is true in the two-variable case, where the
tangent plane

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

gives the best linear approximation to f(x, y) for (x, y) near (a, b). In this setting, giving the
“best” linear approximation means that among all planes passing through the point (a, b, f(a, b)),
the tangent plane is the one that comes closest to matching the graph of z = f(x, y). Said another
way, the function

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

best approximates f near (a, b) among all possible linear functions, where “linear” in this context
refers to the fact that x and y occur to a first power only. This function L is called the linearization
of f at (a, b), and is simply the function whose graph is the tangent plane.

For example, for the function f(x, y) = x2y3 + x, the linearization of f at (2, 1) is

L(x, y) = 6 + 5(x− 2) + 12(y − 1).
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With this we can approximate the value of, for example, (1.9)2(1.1)3 + 1.9. This is nothing but the
value f(1.9, 1.1) for the function f above, so the linearization gives

f(1.9, 1.1) ≈ 6 + 5(1.9− 2) + 12(1.1− 1) = 6 + 5(−0.1) + 12(0.1) = 6.7

as the desired linear approximation. Since (1.9, 1.1) is fairly close to the point (2, 1) at which we
computed the linearization/tangent plane at, this should give a fairly good approximation. The
actual value of f(1.9, 1.1) = (1.9)2(1.1)3 + 1.9 is 6.70491, so 6.7 is indeed pretty good, and much
quicker to compute by hand than (1.9)2(1.1)3 + 1.9 would be.

Error bound. We can judge how good of an approximation the linearization gives using the linear
error bound. The fact is that the error in using the linear approximation is no larger than

|linear error| ≤ 1

2
M(|∆x|+ |∆y|)2

where M denotes a bound on the magnitudes of the second derivatives of f :

|fxx| ≤M, |fxy| ≤M, |fyy| ≤M.

The change ∆x = x− a in x and change ∆y = y − b in y denote the difference between the values
of x and y giving the f(x, y) we are wanting to approximate and the point (a, b) at which we took
the linearization, and the bounds on the second derivatives above should be valid for all x, y that
occur within these changes ∆x,∆y. (We will give a sense as to where this error bound comes from
next time.)

To see this in action in the example f(x, y) = x2y3 + x, for (a, b) = (2, 1) and (x, y) = (1.9, 1.1)
we have

∆x = 1.9− 2 = −0.1 and ∆y = 1.1− 1 = 0.1.

Also, since fx = 2xy3 + 1 and fy = 3x2y2, we have

fxx = 2y3 fxy = 6xy2 fyy = 6x2y.

For x between 2 and 1.9 and y between 1 and 1.1, the absolute values of all of these second
derivatives are no larger than, say, M = 27 (check what happens at the largest values of x and y
in the ranges we are considering), so the error in approximating (1.9)2(1.1)2 + 1.9 by

6 + 5(1.9− 2) + 12(1.1− 1)

is no larger than
1

2
M(|∆x|+ |∆y|)2 =

27

2
(0.1 + 0.1)2 =

27

2
(0.2)2 = 0.54.

As we saw above, the difference between the actual value 6.70491 of what we’re trying to approx-
imate and the approximate value 6.7 we found is 0.00491, which is indeed smaller than the error
bound 0.54 we derived. The point is that finding the actual error is not always feasible since finding
the exact value of f(x, y) is not always possible, but having an approximate value together with a
sense of how far off that approximate value is is often good enough.
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Lecture 23: Quadratic Approximations

Warm-Up. We find an equation for the tangent plane to the graph of z = ye3x at (0, 1, 1) and
use it to approximate the value of 0.9e0.3. For f(x, y) = ye3x, we have

fx = 3ye3x and fy = e3x.

Thus the tangent plane at (0, 1, 1) is

z = f(0, 1) + fx(0, 1)(x− 0) + fy(0, 1)(y − 1)

= 1 + 3x+ (y − 1).

If we think of 0.9e0.3 as 0.9e3(0.1), we see that we want to approximate f(0.1, 0.9), so since
(0.1, 0.9) is fairly close to (0, 1), the tangent plane / linearization should give a fairly good approx-
imation. We get

0.9e0.3 ≈ 1 + 3(0.1) + (0.9− 1) = 1.2.

The difference between this approximation and the actual value of f(0.1, 0.9) = 0.9e3(0.1) is no
larger than the linear error bound

1

2
M(|∆x|+ |∆y|)2

where M is a bound on the second derivatives of f . Since

fxx = 9ye3x fxy = 3e3x fyy = 0,

for 0 ≤ x ≤ 0.1 and 0.9 ≤ y ≤ 1 we get

|fxx| ≤ 9e0.3 and |fxy| ≤ 3e0.3,

so M = 9e0.3 is a bound we can use. For us, ∆x = 0.1 and ∆y = −0.1, so the error in our
approximation is no larger than

1

2
(9e0.3)(0.1 + 0.1)2 = 0.18e0.3.

This error bound is about 0.243. The actual value of 0.9e0.3 is about 1.21487, so the difference
between this and our approximate value of 1.2 does indeed fall within this error bound.

Taylor polynomials. We now seek to derive better approximations using expressions beyond
simply linear ones, such as quadratic ones. To put this into the right context, we briefly introduce
the notion of a Taylor polynomial. The first-order Taylor polynomial of f(x, y) at (a, b) is nothing
by the linearization from before:

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

As we said last time, the point is that this is the linear polynomial which best approximates f near
(a, b) among all linear polynomial.

The second-order Taylor polynomial of f(x, y) at (a, b) is

Q(x, y) = L(x, y) +
1

2
[fxx(x− a)2 + 2fxy(x− a)(y − b) + fyy(y − b)2].
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Here, L(x, y) denotes the first-order Taylor polynomial, so the second-order Taylor polynomial
starts with this and adds on “second-order”, or quadratic, terms. Just as the linear terms in the
first-order Taylor polynomial have as their coefficients the corresponding partial derivatives, the
coefficients of the quadratic terms in the second-order Taylor polynomial are the corresponding
second-order partial derivatives. The term in the middle 2fxy(x − a)(y − b) is really two terms in
one: the corresponding quadratic terms are (x− a)(y − b) and (y − b)(x− a), with coefficients

fxy(a, b) and fyx(a, b)

respectively, so that really the quadratic piece altogether is

1

2
[fxx(a, b)(x− a)2 + fxy(a, b)(x− a)(y − b) + fyx(a, b)(y − b)(x− a) + fyy(y − b)2].

Equality of the mixed partial derivatives fxy and fyx then allows us to group these two mixed terms
into one, so we just write it as 2fxy(x− a)(y − b) instead.

The presence of the extra 1
2 in front is not something we will explain in this course. If you’ve

seen single-variable Taylor polynomials before (as would be covered in MATH 226 for example),
the 1

2 should look familiar to you. It’s there because it has to be there so that differentiating
fxx(a, b)(x − a)2, for example, twice gives fxx(a, b) instead of 2fxx(a, b), but understanding this
fully requires knowing more about Taylor polynomials in general than what we’ll need. You can
ask about it if you’d like to know some more of these details, but for the purposes of this course
you can simply take it as given that the 1

2 has to be there.

Example. Back to the example of f(x, y) = ye3x. The first-order Taylor polynomial of f at (0, 1)
is the linearization

L(x, y) = 1 + 3x+ (y − 1).

To compute the second-order Taylor polynomial of f at (0, 1), we need the second-order partial
derivatives:

fxx = 9ye3x fxy = 3e3x = fyx fyy = 0.

The second-order Taylor polynomial is then:

Q(x, y) = L(x, y) +
1

2
[fxx(0, 1)(x− 0)2 + 2fxy(0, 1)(x− 0)(y − 1) + fyy(0, 1)(y − 1)2]

= 1 + 3x+ (y − 1) +
1

2
[9x2 + 6x(y − 1)].

Quadratic approximations. Just as first-order Taylor polynomials provide the best linear ap-
proximations to a function, second-order Taylor polynomials provide the best quadratic approxi-
mations. That is, the second-order Taylor polynomial of f at (a, b) is the quadratic polynomial
that best approximates f near (a, b) among all quadratic polynomials. So, in the example above,
the best quadratic approximation to f(x, y) = ye3x near (0, 1) is given by

Q(x, y) = 1 + 3x+ (y − 1) +
9

2
x2 + 3x(y − 1).

Before we used the first-order Taylor polynomial to approximate f(0.1, 0.9) = 0.9e0.3, and got 1.2
as the approximate value. Now, the second-order Taylor polynomial gives

f(0.1, 0.9) ≈ 1 + 3(0.1) + (0.9− 1) +
9

2
(0.1)2 + 3(0.1)(0.9− 1) = 1.215.
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The actual value of 0.9e0.3 was about 1.21487, so the quadratic approximation is indeed a better
approximation than the linear approximation.

Plotting the graph of z = ye3x, of z = 1+3x+(y−1), and of z = 1+3x+(y−1)+ 9
2x

2+3x(y−1)
on a computer shows these approximations in action. (I won’t include these drawings here since
I can’t find a nice way to make them clear enough, but you should try to graph these on your
own on GeoGebra or a similar program!) The first-order Taylor polynomial gives an OK match to
the graph of z = ye3x when close to (0, 1), and the second-order Taylor polynomial gives a better
approximation that is valid for a bit further away from (0, 1) than was the case for the first-order
approximation. The second-order approximation visually captures more of the “curvature” of the
graph of z = ye3x as we start to move away from (0, 1).

Another example. We compute the best linear and quadratic approximations (or in other words
the first- and second-order Taylor polynomials) of f(x, y) = e2x cos(3y) at (0, π). We have

fx = 2e2x cos(3y) fy = −3e2x sin(3y)

and then
fxx = 4e2x cos(3y) fxy = −6e2x sin(3y) fyy = −9e2x cos(3y).

The best linear approximation near (0, π) is given by

L(x, y) = f(0, π) + fx(0, π)(x− 0) + fy(0, π)(y − π) = −1 + 2x

and the best quadratic approximation is

Q(x, y) = L(x, y) +
1

2
[fxx(0, π)(x− 0)2 + 2fxy(0, π)(x− 0)(y − π) + fyy(0, π)(y − π)2]

= −1 + 2x+
1

2
[−4x2 + 9(y − π)2].

Plotting all of these on a computer again shows the way in which the quadratic approximation is
better than the linear approximation, and the quadratic one captures the way in which the surface
“curves” as we move away from (0, π).

Back to linear errors. We can now saying something about the expression we had last time for
the linear error bound:

1

2
M(|∆x|+ |∆y|)2.

The point is that this comes from the quadratic terms in the second-order Taylor polynomial. To
be precise, it turns out that the linear error can be described on the nose by evaluating the second
derivatives appearing in these quadratic terms at some point (c, d) on the line segment that run
between (a, b) and (x, y). That is, for some such (c, d), the linear error is exactly

1

2
[fxx(c, d)(x− a)2 + 2fxy(c, d)(x− a)(y − b) + fyy(c, d)(y − b)2].

This result is known as Taylor’s theorem, and understanding it in full is beyond the scope of this
course. The expression above looks almost the same as the quadratic expressions in the second-order
Taylor polynomial, only that in that case the second derivatives are evaluated at the point (a, b) at
which we are taking the approximation, whereas here they are evaluated at some unknown (c, d). If
you recall seeing the mean value theorem in single-variable calculus, a similar thing happens there,
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and indeed Taylor’s theorem is just a higher-order version of that. (The single-variable version of
Taylor’s theorem is covered in MATH 226.)

The explicit form of the error given above is not so helpful, however, precisely because in
general we have no information about c and d. However, often we don’t need the explicit error,
just a bound on the error, and this where the error bound we saw last time comes in: we bound
the second derivatives by a single number M , so that

|fxx(c, d)|, |fxy(c, d)|, |fyy(c, d)|

are all no larger than M , regardless of what the unknown (c, d) is. Then the linear error is bounded
by

1

2
[M |∆x|2 + 2M |∆x||∆y|+M |∆y|2]

where ∆x = x− a and ∆y = y − b. Since

|∆x|2 + 2|∆x||∆y|+ |∆y|2 = (|∆x|+ |∆y|)2,

we end up with precisely the formula for the error bound we had before. The takeaway is that this
linear error bound appears as it does because of the behavior of the quadratic terms.

Higher-order approximations. To get better approximations, we use higher-order Taylor poly-
nomials. The third-order Taylor polynomial, which provides the best cubic approximation, takes
the second-order Taylor polynomial and adds on cubic terms like

(x− a)3, (x− a)2(y − b), (x− a)(y − b)2, (y − b)3.

The coefficients used for each of these are the corresponding third-order partial derivatives evaluated
at (a, b), and in the end we put an extra factor of 1

6 in front, analogous to the 1
2 we used in the

second-order Taylor polynomial. And so on, we add on higher-order terms with higher-order partial
derivative as coefficients to keep going.

Just as the error in the linear approximation is controlled by the quadratic terms in the second-
order Taylor polynomial, the error in the quadratic approximation is controlled by the cubic terms
in the third-order Taylor polynomial, and so on. We’ll give one example of this next time, but
quadratic errors will not play a big role for us. Linear errors, however, are definitely things with
which you should be familiar.

Lecture 24: Local Extrema

Warm-Up. We approximate the value of cos(π3 − 0.1) sin(π3 + 0.2) using a linear and a quadratic
approximation. Of course, you can just plug this into a calculator and see that the value is

0.5536512...

but the point is that Taylor polynomials are what calculators and computers use to come up with
such values in the first place; your calculator has no idea what “sin” or “cos” mean, all it knows
are the Taylor polynomials approximating them which are stored in its memory.

We find the second-order Taylor polynomial of f(x, y) = cosx sin y at (π/3, π/3). We have

fx = − sinx sin y, fy = cosx cos y
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and then
fxx = − cosx sin y, fxy = − sinx cos y = fyx, fyy = − cosx sin y.

Hence the second-order Taylor polynomial is

Q(x, y) = f(π3 ,
π
3 ) + fx(π3 ,

π
3 )(x− π

3 ) + fy(
π
3 ,

π
3 )(y − π

3 )

+ 1
2 [fxx(π3 ,

π
3 )(x− π

3 )2 + 2fxy(
π
3 ,

π
3 )(x− π

3 )(y − π
3 ) + fyy(

π
3 ,

π
3 )(y − π

3 )2]

=
√

3
4 −

3
4(x− π

3 ) + 1
4(y − π

3 ) + 1
2 [−

√
3

4 (x− π
3 )2 − 2(

√
3

4 )(x− π
3 )(y − π

3 )−
√

3
4 (y − π

3 )2]

From this we can extract the first-order Taylor polynomial by taking the linear terms:

L(x, y) =
√

3
4 −

3
4(x− π

3 ) + 1
4(y − π

3 ).

The linear approximation to cos(π3 − 0.1) sin(π3 + 0.2) is thus

cos(π3 − 0.1) sin(π3 + 0.2) ≈
√

3
4 −

3
4(−0.1) + 1

4(0.2) = 0.5580127...

and the quadratic approximation is
√

3

4
− 3

4
(−0.1) +

1

4
(0.2) +

1

2
[−
√

3

4
(−0.1)2 −

√
3

2
(−0.1)(0.2)−

√
3

4
(0.2)2] = 0.5558476....

Comparing the value given by a calculator we gave at the beginning, we see that both of these
approximations are pretty good, with the quadratic approximation being better.

But even without the actual value to compare these approximations too, we can estimate the
errors resulting from each. Note that all second-order partial derivatives of f computed above are
bounded in absolute value by 1, so linear approximation is accurate to within

1

2
(1)( 0.1︸︷︷︸

|∆x|

+ 0.2︸︷︷︸
|∆y|

)2 =
1

2
(0.3)2 = 0.045,

which we can see is indeed true using the actual value. The quadratic error is no larger than

1

6
M(|∆x|+ |∆y|)3

where M is now a bound on the third-order partial derivatives of f . (This is the only example of
a quadratic error we will look at, so it is not important to memorize this expression. As briefly
mentioned last time, it comes from the cubic terms in the third-order Taylor polynomial.) If we
compute all third-order partial derivatives of f we will see that they too are all bounded by 1
(they all involve products of sines and cosines), so we take M = 1 and see that the quadratic
approximations is accurate to within

1

2
(1)(0.1 + 0.2)3 =

1

2
(0.3)3 = 0.0135,

which also makes sense given that we know the actual value.

Optimization. Our final goal this quarter is to study optimization, which deals with determining
how large or small the values of a function can be, possibly subject to some constraints. This is,
no doubt, one if not the main use of multivariable differential calculus in other fields, and is a nice
way to finish off the course.

We start by understanding local extrema of functions of two variables, namely local maximums
and local minimums:
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(Ignore the notion of a saddle point for now.) Just as in the single-variable case, local maxima are
points at which the function value is larger than (or equal to) what it is at points nearby, and local
minima are points at which the function value is smaller than (or equal to) what it is at points
nearby. Consider for example the function

f(x, y) = 4x+ 6y − 12− x2 − y2.

We can rewrite this by completing the square in both the x and y terms to get

f(x, y) = −(x− 2)2 − (y − 3)2 + 1.

Note that f(2, 3) = 1, and in fact for any other point we have f(x, y) < 1 since −(x−2)2− (y−3)2

is never positive, so the value of f(x, y) in general is never larger than 1. Thus, (2, 3) is a local
maximum of f and the graph of f looks like the first picture in the image above, with the topmost
point of the upside-down paraboloid occurring at (2, 3, f(2, 3)) = (2, 3, 1).

Critical points. Finding the local extrema of the function in the example above was possible by
doing some algebraic manipulation (i.e., completing the square), but this type of method only works
in very specific cases, and so will not be suitable in general. We need a better way of finding and
then classifying local extrema. The key observation is that at a local maximum or a local minimum
of f(x, y), it must in fact be true that both partial derivatives of f must be zero. Indeed, if we
consider only the behavior of f in the x-direction at a local maximum, we see that we also have
a local maximum of the single-variable function obtained from f(x, y) by varying x only, so the
derivative of this single-variable function fx must be zero, and similarly for the function obtained
when varying y only. The same is true in the local minimum case, so the upshot is that at a local
maximum or a local minimum, we must have

fx = 0 and fy = 0.

A point satisfying this condition, where both partial derivatives are zero, is called a critical
point of f . (You would have seen the same terminology used in the single-variable case.) So, local
extrema are among the critical points. However, there is another type of critical point that is not
a local extrema, which we call a saddle point. (See the third picture in the image above.) Instead
of looking like a paraboloid or an upside-down paraboloid, the graph of f at a saddle point looks
like a hyperbolic paraboloid, or in other words the surface of a saddle. The distinguishing feature
of a saddle point is that it is sitting at a minimum in one direction, but at a maximum is another
direction, as opposed to local maxima which sit at maximums in all directions or local minima
which sit at minimums in all directions. Since a saddle point sits at a minimum one way but at a
maximum another way, we still get that both partial derivatives are zero.

Examples. For the function f(x, y) = 4x+6y−12−x2−y2 from before, the critical points satisfy

fx = 4− 2x = 0 and fy = 6− 2y = 0.
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Thus x = 2 and y = 3, so (2, 3) is the only critical point of f . We argued before that in this case
this critical point was a local maximum of f .

For g(x, y) = x2 − 2y2 + 2x+ 3, the critical points are found by solving

gx = 2x+ 2 = 0 and gy = −4y = 0,

so we get (−2, 0) as the only critical point. This is an example where again some algebraic manip-
ulation allows us to determine what type of critical point this is. After completing the square we
get

g(x, y) = (x+ 1)2 − 2y2 + 2.

This is the equation of a saddle (hyperbolic paraboloid) shifted by −1 in the x-direction, which
can determine by comparing to something more standard like z = x2 − y2. Thus (2, 3) is a saddle
point of g(x, y) = x2 − 2y2 + 2x+ 3.

Second derivative test. Determining that (2, 3) was a saddle point above was possible to do
using some algebra again because of the specific type of function we looked at. More generally, to
determine what type of critical point we have, we can use the following second derivative test. At
a critical point of f(x, y) we compute the value of the expression

D = fxxfyy − (fxy)
2.

The second derivative test says that:
• if D > 0 and fxx < 0, then our critical point is a local maximum;
• if D > 0 and fxx > 0, then our critical point is a local minimum; and
• if D < 0, then our critical point is a saddle point.

If D = 0, the second derivative test gives us no information.
Now, justifying why this second derivative test works is beyond the scope of this course, but

we will give a small sense of intuition next time. Conceptually though, we do expect that the
behavior of critical points should be determined by something like “concavity”, as is the case for
single-variable functions, and “concavity” should be measured by second derivatives, so it makes
sense that second-order partial derivatives are used in distinguishing between local maxima, local
minima, and saddle points. Again, why the specific combination of second derivatives used in D
above is the correct one to use is not something we will be able to justify in this course.

In the f(x, y) = 4x+ 6y − 12− x2 − y2 example with critical point (2, 3), we have

fxx = −2 fxy = 0 fyy = −2,

so D = fxxfyy − (fxy)
2 = 4. Since D > 0 and fxx < 0, the second derivative test says that (2, 3) is

a local maximum of f . In the g(x, y) = x2 − 2y2 + 2x + 3 example with critical point (−2, 0), we
have

gxx = 2 gxy = 0 gyy = −4.

Since D = fxxfyy − (fxy)
2 = −8 is negative, (−2, 0) is indeed a saddle point as we justified earlier.

Example. We find and classify the critical points of f(x, y) = x2 + y3 − x2y + y. The critical
points satisfy

fx = 2x− 2xy = 0 and fy = 3y2 − x2 + 1 = 0.

The first equation can be written as 2x(1−y) = 0, so x = 0 or y = 1. If x = 0, the second equation
becomes

3y2 + 1 = 0,
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which has no solutions, so there are no critical points in the x = 0 case. If instead y = 1, the fy = 0
equation becomes

3− x2 + 1 = 0, so x = ±2.

Thus here we get two critical points: (−2, 1) and (2, 1).
To classify these critical points, we compute second derivatives:

fxx = 2− 2y fxy = −2x fyy = 6y.

At the critical point (−2, 1), we get

D = fxxfyy − (fxy)
2 = (0)(−12)− (4)2 = −16 < 0,

so (−2, 1) is a saddle point of f . At (2, 1) we get

D = fxxfyy − (fxy)
2 = (0)(12)− (−4)2 = −16 < 0,

so (2, 1) is also a saddle point of f . Thus f(x, y) = x2 + y3 − x2y + y has two critical points, both
of which are saddle points.

Lecture 25: Absolute Extrema

Warm-Up. We find and classify the critical points of f(x, y) = x2 − y3 − x2y + y. This is almost
the same function we finished with last time, only with a sign change in the y3 term. The critical
points satisfy

fx = 2x− 2xy = 0 and fy = −3y2 − x2 + 1 = 0.

The first equation again gives x = 0 or y = 1. For x = 0, the second equation becomes

−3y2 + 1 = 0, so y = ± 1√
3
,

so so far we get two critical points: (0, 1√
3
) and (0,− 1√

3
). For y = 1, the fy = 0 equation becomes

−3− x2 + 1 = 0,

which has no solutions. Thus the points found above are the only critical points.
We have

fxx = 2− y fxy = −2x fyy − 6y.

At (0,− 1√
3
), we get

D = fxxfyy − (fxy)
2 = (2 + 1√

3
)( 6√

3
)− 0 > 0,

so since fxx = 2 + 1√
3
> 0 at this point, (0,− 1√

3
) is a local minimum of f . At (0, 1√

3
), we get

D = fxxfyy − (fxy)
2 = (2− 1√

3
)(− 6√

3
)− 0 < 0

(note that 2 − 1√
3
> 0), so (0, 1√

3
) is a saddle point of f . Having a computer plot the graph of

f(x, y) = x2− y3− x2y+ y should be it clear what is going on: near (0,− 1√
3
), the graph does look

like a paraboloid opening upward, while near (0, 1√
3
) the graph does look like a saddle:
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Why does the second derivative test work? We will not be able to fully justify the second
derivative test, but let us now give at least some sense as to where it comes from. The key
is in looking at the second-order Taylor polynomials at critical points. Let us use the function
f(x, y) = x2 − y3 − x2y + y from above as an example. The second-order Taylor polynomial of f
at (0,− 1√

3
) is

z = − 2
3
√

3
+ 1

2 [(2 + 1√
3
)x2 + 6√

3
(y + 1√

3
)2].

Because of the positive coefficients of the x2 and y2 terms, this quadric surface is indeed a paraboloid
opening upward, so (0,− 1√

3
) is a local minimum of this second-order Taylor polynomial. And that

is the point: the function f(x, y) near (0,− 1√
3
) should be pretty similar to this second-order Taylor

polynomial since this polynomial gives a good approximation to f near this point, and so (0,− 1√
3
)

being a local minimum of this polynomial is why it is a local minimum of f as well:

The second-order Taylor polynomial of f at (0, 1√
3
) is

z = 2
3
√

3
+ 1

2 [(2− 1√
3
)x2 − 6√

3
(y − 1√

3
)2].

This is a quadric surface with coefficients of x2 and y2 being of opposite sign, so this surface is
a hyperbolic paraboloid, or a saddle. Thus, again, the idea is that the behavior of f(x, y) near
the critical point (0, 1√

3
) is modeled by the behavior of its second-order Taylor polynomial at this

point, so since this polynomial has a saddle point at (0, 1√
3
), so too does f :
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In general, the second-order Taylor polynomial of a function f at a critical point (a, b) looks
like

z = f(a, b) +
1

2
[fxx(a, b)(x− a)2 + 2fxy(x− a)(y − b) + fyy(y − b)2],

where there are no linear terms since these have coefficients fx(a, b) = 0 = fy(a, b) given that
(a, b) is a critical point of f . Near (a, b), the behavior of f is roughly the same as that of this
Taylor polynomial, so the only question is what the graph of this Taylor polynomial looks like.
The conditions in the second derivative test turn out to precisely determine this Taylor polynomial
graph, and hence determine the nature of the critical point overall. There is still more to be said
here, namely why specifically the quantity

D = fxx(a, b)fyy(a, b)− (fxy(a, b))
2

is of interest in determining the shape of the graph of the second-order Taylor polynomial, but
that it all we will say in this course. To learn more you can look up material on what’s called
the Hessian if you’re interested (the Hessian is the quantity we’ve denoted by D), and material on
“diagonalizing quadratic forms”, whatever that means.

Absolute extrema. Now we move away from the problem of finding the local extrema of a
function f to that of finding its absolute or global extrema, which are the largest and/or smallest
values a function can have overall. To make matters more interesting, we are interested in finding
such values only over a restricted region D, meaning we ask for the absolute max/min values of f
among points of D. The first thing to say is how we know that such absolute values exist. The
answer usually comes from the Extreme Value Theorem, which states that any continuous function
over a region that is both closed and bounded will have both an absolute maximum and an absolute
minimum. (Recall that to be “closed” means that the region should include all its boundary.) So,
if our function is continuous and our region is closed and bounded, our search for absolute extrema
will not be done in vain.

To find the absolute extrema, we start the same way as before by finding points where f possibly
has a local max or min (we don’t care about saddle points here), which means finding the critical
points of f . After finding these critical points we can simply plug them into f to see which gives
the largest value and which gives the smallest. However, this method does not account for the fact
that the absolute max/min of f might actually occur along the boundary of D, since it is possible
that a point on the boundary might give the largest or smallest value overall and yet not be a
critical point. For instance, for a function and region looking like
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we see that the maximum of f over D occurs on the boundary of D and not at the local maximum
in the interior of D; in this case the partial derivatives of f at the boundary point are not zero, so
the boundary point is not a critical point of f . This analogous to the issue of optimizing a single
variable function over an interval, where the endpoints of the interval should also be considered in
the end even though they might not be critical points.

So, after finding critical points of f we still have to check for any possible maximums/minimums
on the boundary. Usually this means that we use the equation(s) of the boundary to come up with
a simplified version of f along the boundary, and optimize that simplified function instead. The
following examples show how this all works.

Example 1. We find the absolute extrema of f(x, y) = x2 + xy + y2 − 6y over the rectangle
described by −3 ≤ x ≤ 3 and 0 ≤ y ≤ 5, which looks like:

The function f is continuous, and this region is closed and bounded, so the extreme value theorem
guarantees that the absolute extrema we seek do exist.

First we find critical points. We have

∇f = (2x+ y, x+ 2y − 6),

so critical points satisfy
2x+ y = 0 and x+ 2y − 6 = 0.

The first equation gives y = −2x and substituting into the second gives

x+ 2(−2x)− 6 = 0, so − 3x− 6 = 0.

Thus x = −2 and as a result y = −2x = 4, so (−2, 4) is the only critical point. Note that at this
point we can use the second derivative test to determine that (−2, 4) is a local minimum, but this
is not necessary since in the end we’ll just test all points we find anyway to determine which give
the absolute max and min.
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Now we check the boundary of the rectangle, which consists of four different line segments. The
bottom has equation y = 0, so the function f along the bottom edge becomes

f(x, 0) = x2.

This is now just a function of one variable, which we optimize using techniques from single variable
calculus. In this case the only (single-variable) critical point is at x = 0, giving (0, 0) as a candidate
point for the absolute max and min overall. The right edge has equation x = 3, so the function
becomes

f(3, y) = 9 + 3y + y2 − 6y = y2 − 3y + 9.

Then fy = 2y−3 along the right edge, so (3, 3
2) is a candidate max/min point along the right edge.

The top edge is y = 5 so f becomes

f(x, 5) = x2 + 5x− 5.

Then fx = 2x+ 5 along the top, so (−5
2 , 5) is another candidate max/min. Finally, the left edge is

x = −3, so f becomes
f(−3, y) = y2 − 9y + 9,

which gives (−3, 9
2) as another candidate.

To recap, so far we have

(−2, 4), (0, 0), (3, 3
2), (−5

2 , 5), (−3, 9
2)

as possible points where the absolute maximum and minimum occur. But these aren’t the only
possible points since checking each boundary edge does not take into account what happens at the
corners of the rectangle! For instance, along the right edge we had

f(3, y) = y2 − 3y + 9,

which has its maximum value along the right edge at the corner (3, 5), and yet this point is not
a critical point of the function f restricted to the right edge. In other words, for the same reason
why finding critical points of f(x, y) does not necessarily give candidate max/min point along the
boundary, finding critical points of f restricted to each boundary piece does not necessarily the
candidate max/min points which occur at the corners of each boundary piece. So, we have to
include the four corners

(3, 0), (3, 5), (−3, 5), (−3, 0)

among the candidate points for an absolute max/min.
In total then we have nine points to test: the one critical point, the four points we found along

the boundary pieces, and the four corner points. Plugging all of these into the function gives:

f(−2, 4) = −12 f(0, 0) = 0 f(3, 3/2) = 6.75

f(−5/2, 5) = −11.25 f(−3, 9/2) = −11.25 f(3, 0) = 9

f(3, 5) = 19 f(−3, 5) = −11 f(−3, 0) = 9,

so the absolute maximum value of f is 19, which is attained at (3, 5), while the absolute minimum
value of f is −12, which is attained at (−2, 4).

Example 2. We find the absolute extrema of the function f(x, y) = x2y over the region described
by 3x2 + 4y2 ≤ 12, which is just the region enclosed by the ellipse 3x2 + 4y2 = 12. Again, f is
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continuous and this region is closed and bounded, so absolute extrema exist by the extreme value
theorem. First,

fx = 2xy fy = x2,

which are both 0 only when x = 0. Thus points on the y-axis are the critical points of f . Note,
however, that along the y-axis, the value of f(0, y) is 0, and 0 will be neither the absolute maximum
nor the absolute minimum of f since points in the first quadrant give values larger than 0 and points
in the fourth quadrant give values smaller than 0. Hence the critical points on the y-axis won’t
matter in the end.

Now, the points on the boundary satisfy 3x2 + 4y2 = 12, so x = ±
√

4− 4
3y

2. Hence along the

boundary the function f becomes

f(±
√

4− 4
3y

2, y) =
(
4− 4

3y
2
)
y = −4

3y
3 + 4y.

This has derivative −4y2 + 4, so only y = ±1 give critical points. Then x2 = 4 − 4
3y

2 = 4 − 4
3 , so

x = ±
√

8
3 . However, we have to be careful again about not missing any points we need to consider.

In particular, after solving for x in terms of y above, the resulting expressions x = −
√

4− 4
3y

2 for

the left half of the ellipse and x =
√

4− 4
3y

2 for the right half are only valid for −
√

3 ≤ y
√

3, so

we are missing the potential behaviors at these endpoints y = ±
√

3. (These are analogous to the
“corners” in the rectangle case.) At each of these, however, we get that x = 0, so f is zero and we
already said that 0 would be neither the absolute maximum nor the absolute minimum.

Hence the candidate max/min points along the boundary ellipse are(√
8
3 , 1
)
,
(
−
√

8
3 , 1
)
,
(
−
√

8
3 ,−1

)
,
(√

8
3 ,−1

)
.

Plugging in these points together with the critical points on the y-axis, we find that the absolute
maximum value of f is 8

3 , which is attained at (
√

8/3, 1) and (−
√

8/3, 1), and the absolute minimum

value is −8
3 , which is attained at (−

√
8/3,−1) and (

√
8/3, 1).

Lecture 26: Lagrange Multipliers

Warm-Up 1. We find the absolute extrema of f(x, y) = 1 + (x+ 1)2 − 2(x+ 1)(y − 1)− (y − 1)2

over the region enclosed by the triangle with vertices (0, 0), (0, 1), and (1, 0). This region is closed
and bounded, and f is continuous, so the absolute extrema exist.

The critical points of f satisfy

fx = 2(x+ 1)− 2(y − 1) = 0 and fy = −2(x+ 1)− 2(y − 1) = 0.

Adding these two equations together gives −4(y−1) = 0, so y = 1. Then using y = 1 in the fx = 0
equation gives 2(x+ 1) = 0, so x = −1. Thus (−1, 1) is the only critical point of f , but since this
does not fall within our given triangular region, we can simply ignore it.

Now we check for candidates for the absolute extrema on the boundary triangle. The bottom
edge has equation y = 0, so along this edge our function becomes

f(x, 0) = 1 + (x+ 1)2 + 2(x+ 1)− 1 = x2 + 4x+ 3.
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This has single-variable critical points when 2x+ 4 = 0, so at x = −2, which does not give a point
in our region. The left edge of the triangle has equation x = 0, so our function along this edge
becomes

f(0, y) = 1 + 1− 2(y − 1)− (y − 1)2 = −y2 + 3.

This has single-variable critical points when −2y = 0, so when y = 0. This gives the origin (0, 0)
as a candidate point, which is a corner point we would have considered anyway. Finally, along the
diagonal edge of the triangle where y = 1− x, our function values are

f(x, 1− x) = 1 + (x+ 1)2 − 2(x+ 1)(−x)− (−x)2 = 4x2 + 4x+ 2.

Differentiating gives 8x+ 4 = 0, so x = −1
2 , which falls outside our region.

Thus the only points we need to consider are the corner points of the triangle: (0, 0), (1, 0), and
(0, 1). Evaluating our function at each of these gives

f(0, 0) = 3 f(1, 0) = 8 f(0, 1) = 2,

so the absolute maximum value of f over the given region is 8 and occurs at (1, 0), while the
absolute minimum value is 2 and occurs at (0, 1).

Warm-Up 2. We find the point on the plane x+ 2y + 5z = 1 that is closest to the point (1, 0, 2).
To find the point closest to (1, 0, 2) we need to minimize the function which gives distance from a
point (x, y, z) to (1, 0, 2), which is

f(x, y, z) =
√

(x− 1)2 + y2 + (z − 2)2.

But we are only considering points (x, y, z) that lie on the plane x+ 2y + 5z = 1, meaning we are
only considering points whose x-coordinate satifies

x = 1− 2y − 5z.

The point is that with this condition we can turn our three-variable distance function above into a
two-variable function by substituting in for x, so the function we need to minimize is

f(1− 2y − 5z, y, z) =
√

(1− 2y − 5z − 1)2 + y2 + (z − 2)2.

A final simplification is to note that a square root is optimized when the expression of which we
are taking the square root is optimized, so it is enough to minimize the two-variable function

f(y, z) = (−2y − 5z)2 + y2 + (z − 2)2.

(This will avoid having to differentiate a square root, which will avoid a bit of messy algebra.) The
upshot is that finding the absolute minimum of this one function incorporates both the original
distance function we wanted and the constraint that our point should lie on the given plane.

There are no boundary points to consider in this case since we are considering points (y, z) that
vary throughout the entire yz-plane, so the absolute minimum must occur at a critical point. Note
also that the extreme value theorem does not apply since the yz-plane is not bounded, so we have
to rely on our geometric intuition to conclude that an absolute minimum should exist. The critical
points satisfy

fy = 2(−2y − 5z)(−2) + 2y = 0 and fz = 2(−2y − 5z)(−5) + 2(z − 2) = 0,
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which simplify to
10y + 20z = 0 and 20y + 52z − 4 = 0.

The first equation vies y = −2z, and the second then gives

20(−2z) + 52z − 4 = 0, or 12z = 4.

Hence z = 1
3 , so y = −2(1

3) = −2
3 . The absolute minimum of f(y, z) = (−2y − 5z)2 + y2 + (z − 2)2

thus occurs when (y, z) = (−2
3 ,

1
3). The corresponding value of x is x = 1 − 2(−2

3) − 5(1
3) = 2

3 , so
the point on x+ 2y + 5z = 1 that is closest to (1, 0, 2) is (2

3 ,
1
3 ,−

2
3).

Lagrange multipliers. The second Warm-Up above is an example of constrained optimization,
where we optimize a function among points satisfying some constraining equation; in that case, we
were optimizing (in the original phrasing)

f(x, y, z) =
√

(x− 1)2 + y2 + (z − 2)2

subject to the constraint
x+ 2y + 5z = 1.

We also had an example of this last time, when we were optimizing

f(x, y) = x2y

subject to the constraint
3x2 + 4y2 = 12

describing the ellipse which enclosed the region of interest. In both of these examples the ap-
proach was to use the constraint to eliminate a variable, and then optimize the resulting function
dependeding on one less variable.

However, such an approach becomes challenging to carry out in other examples as soon as we
work with more complicated functions and constraints. Instead, we consider a new approach, given
by what’s called the method of Lagrange multipliers. The goal of this method is, as described above,
to optimize (meaning maximize or minimize) a function subject to a constraint. In the two-variable
case we have a function f(x, y) we want to optimize and the constraint is described by an equation
of the form

g(x, y) = k.

In the three-variable case, we have a three-variable function to optimize and the constraint will be
described by a three-variable function as well, and so on.

Here is the key geometric picture to have in mind, at least in the two-variable case. Say that
the level curves of f look like
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with the maximum of f among points satisfying the constraint occurring at the point P . The
question is: what does the constraint curve have to look like in relation to these level curves? It
should certainly pass through P if we are assuming P satisfies the constraint, but we can say more.
The constraint curve cannot look like

since this would lead to points satisfying the constraint curve which give a larger value for f than
P does, which is not possible if we are saying that P is where the maximum occurs. Thus, the
constraint curve can only look like

with the point being that at a maximum the constraint curve and level curve must be tangent to
each other. A similar reasoning shows that the same is true at a minimum.

Now, ∇f(P ) is perpendicular to the level curve of f containing P and ∇g(P ) is perpendicular
to the constraint curve at P , so since these two curves are tangent to each other, these two gradients
must be parallel to each other. Hence the conclusion is:

At a point which gives the maximum or minimum value of f subject to the constraint
determined by a function g, we must have ∇f = λ∇g for some scalar λ.

Thus, solving ∇f = λ∇g gives us the candidate points for the maximum/minimum of f subject to
the constraint g = k. All this works for three-variable optimization problems as well. The scalar λ
that shows up here is called the “Lagrange multiplier” of the problem, which is where the name of
the method comes from. This scalar itself has a certain interpretation, but not one we will cover
in this course.

Example. Let us revisit the problem of finding the absolute extrema of f(x, y) = x2y among
points on the ellipse 3x2 + 4y2 = 12. We thus take the constraint curve to be

g(x, y) = 3x2 + 4y2 = 12.

By the method of Lagrange multipliers, the absolute extrema we seek should be among the points
satisfying the equation

∇f = λ∇g
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for some scalar λ.
The equation above in this case becomes〈

2xy, x2
〉

= λ 〈6x, 8y〉 .

Comparing each component on both sides gives two equations, and the constraint gives a third:

2xy = λ6x

x2 = λ8y

3x2 + 4y2 = 12.

The goal is to find (x, y) that satisfy all three of these, for some λ. (There is no set way of doing so
that will work every single time, so it is important to get practice with these types of equations.)
Here we note that dividing the first equation by the second gives

2xy

x2
=
λ6x

λ8y
, or

2y

x
=

6x

8y
.

Now, anytime we divide we should be careful to not divide by zero. But here x, y, or λ might
be zero, so such a manipulation would not be valid in these cases. However, if x or y is zero,
our function value is just f(0, y) = 0 or f(x, 0) = 0, and 0 is not the absolute maximum nor
minimum we want since x2y can take on positive and negative values at other points on the ellipse
3x2 + 4y2 = 1. Moreover, if λ = 0, then 2xy = λ6x implies that at least one of x or y is zero, which
we just pointed out does not give the absolute extrema we need. Thus, we may as well assume that
none of x, y, λ are zero.

If none of x, y, λ are zero, then the equation 2y
x = 6x

8y is valid, and hence 16y2 = 6x2. Thus

8y2 = 3x2, and plugging into the constraint gives

8y2 + 4y2 = 12.

Thus y = ±1, and then 3x = 8y2 = 8, so x = ±
√

8
3 . Hence we get four points satisfying the

Lagrange multiplier equations overall, namely

(
√

8
3 , 1), (

√
8
3 ,−1), (−

√
8
3 , 1), (−

√
8
3 ,−1).

The absolute extrema of f(x, y) = x2y among points satisfying 3x2 + 4y2 = 12 are those among
these points, and we simply plug into to see which is which; we get the same answer as last time,
where the absolute maximum is 8

3 and occurs at the points with positive y-coordinate, and the
absolute minimum is −8

3 , occurring at the points with negative y-coordinate.

Lecture 27: More on Multipliers

Warm-Up 1. We find the point on x + 2y + 5z = 1 that is closest to (1, 0, 2), now using the
method of Lagrange multipliers. We thus want to minimize the function

f(x, y, z) = (x− 1)2 + y2 + (z − 2)2

subject to the constraint
g(x, y, z) = x+ 2y + 5z = 1.
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(The distance from (x, y, z) to (1, 0, 2) is actually the square root of the function defining f , but,
as we point out before, minimizing this square root is the same as minimizing f .) By the method
of Lagrange multipliers, the minimum occurs among the points satisfying

∇f = λ∇g, which is 〈2(x− 1), 2y, 2(z − 2)〉 = λ 〈1, 2, 5〉 .

By comparing components and including the constraint, we get the equations

2(x− 1) = λ

2y = 2λ

2(z − 2) = 5λ

x+ 2y + 5z = 1.

The first equation gives x = 1 + 1
2λ; the second gives y = λ; and the third gives z = 2 + 5

2λ.
Plugging these into the constraint gives

(1 + 1
2λ) + 2λ+ 5(2 + 5

2λ) = 1,

which gives λ = −2
3 . Thus

x = 1 + 1
2(−2

3) = 2
3 , y = −2

3 , and z = 2 + 5
2(−2

3) = 1
3 .

Hence we get that the point on x+ 2y + 5z = 1 closest to (1, 0, 2) is (2
3 ,−

2
3 ,

1
3), which agrees with

the answer we found before.

Warm-Up 2. We find the largest possible product among three positive numbers x, y, z whose
sum is 100. So, we want to maximize the function

f(x, y, z) = xyz

subject to the constraint
g(x, y, z) = x+ y + z = 100.

The maximum occurs among points satisfying λf = λ∇g, which in this case is

〈yz, xz, xy〉 = λ 〈1, 1, 1〉 .

Thus the equations to solve, including the constraint, are

yz = λ

xz = λ

xy = λ

x+ y + z = 100.

The first two equations immediately give yz = xz. Now, we are only considering positive
numbers, so we may assume that each of x, y, z is nonzero. (Even if one were zero, the value of
f would then by 0, which is not the maximum we want since in particular x = 1, y = 1, z = 98
satisfy the constraint and give xyz = 98.) Thus we can divide by z to get x = y. Similarly, we have
xz = xy, and dividing by the nonzero number y gives x = z. Hence, the product xyz is maximized
when x, y, z are all the same. Plugging into the constraint gives

x+ x+ x = 100, so x =
100

3
,
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and thus y = z = 100
3 as well. We know these values give a maximum instead of a minimum because

the product in this case is 1003

33
, which is larger than the value 98 we get when x = 1 = y, z = 98.

Another example. Consider a rectangular box. We want to determine the dimension of the box
which result in the maximum possible volume among those boxes with surface area 100. Denoting
the dimensions by x, y, z (z is height) we thus want to maximize the volume function f(x, y, z) = xyz
subject to the constraint

g(x, y, z) = 2xy + 2yz + 2xz = 100,

which comes from figuring out the surface area of the box. Then ∇f = λ∇g becomes

(yz, xz, xy) = λ(2y + 2z, 2x+ 2z, 2x+ 2y).

Equating components and including the constraint gives the equations

yz = λ(2y + 2z)

xz = λ(2x+ 2z)

xy = λ(2x+ 2y)

2xy + 2yz + 2xz = 100.

To solve these, note that the left sides of the first three equations are pretty similar and become
equal after multiplying the first equation through by x, the second by y, and the third by z:

xyz = λ(2xy + 2xz)

xyz = λ(2xy + 2yz)

xyz = λ(2xz + 2yz).

Then subtracting the first two equations gives

0 = 2λz(x− y).

None of the dimensions can be zero since this certainly wouldn’t give a maximum volume (we
wouldn’t even really have a box at all), and λ can’t be zero since this would imply that some of
the dimensions were zero. Thus we must have

x− y = 0, so x = y.

Subtracting the first and third equations from before gives

0 = 2λy(x− z).

Again, λ and y are not zero so x−z = 0 and hence x = z. Thus so far we know that the dimensions
of the box we’re looking for will result in the length, width, and height all being the same.

Now we find the exact values of x.y.z. Substituting x = y = z into the constraint gives

2y2 + 2y2 + 2y2 = 100, so y =
10√

6
.

(We ignore the negative square root since y should be a positive width.) Hence we have

x =
10√

6
, y =

10√
6
, z =

10√
6
.
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To show that these dimensions indeed give a maximum volume and not a minimum volume, we
argue as follows. Consider shrinking the height and width of the box but at the same time increasing
the length so that the surface area stays fixed at 100. Then the volume, because the height and
width are approaching 0, will approach zero as well. Since we can make the volume arbitrarily
small while keeping the surface area at 100, there is no minimum volume so the dimensions we
found must give a maximum volume.

Final example. Suppose we are constructing an open (i.e. no lid) can in the shape of a cylinder,
where the material for the base costs $5/cm2 and the material for the upright side costs $2/cm2. We
determine the dimensions which minimize the cost of constructing the can if we want the volume
to be 40π cm3.

Letting r, h denote the radius and height, the total cost of making the can is

f(r, h) = 5πr2 + 4πrh,

which is obtained by multiplying the area of the base and side by the corresponding cost per unit
area. Thus we want to minimize f subject to the constraint g(r, g) = πr2h = 40π. Lagrange
multipliers gives the equation

(10πr + 4πh, 4πr) = λ(2πrh, πr2),

so the dimensions we want must satisfy

10πr + 4πh = 2λπrh

4πr = λπr2

πr2h = 40π.

We can assume r and h are nonzero since otherwise the volume could not 40π, and hence we can
also assume λ 6= 0 since otherwise the second equation above would give r = 0. The second equation
then gives

r =
4

λ
.

Substituting into the first equation gives

10π

(
4

λ

)
+ 4πh = 2λπ

(
4

λ

)
h,

which simplifies to h = 10
λ . Comparing r = 4

λ and h = 10
λ gives

h =
5

2
r,

and plugging this into the constraint gives

πr2

(
5

2
r

)
= 40π, so r3 =

80

5
.

Hence r = 3
√

80/5 and h = 5
2

3
√

80/5 are the dimensions which minimize cost.
To be sure that this gives a minimum and not a maximum, note that we can increase r and

decrease h = 40
r2

accordingly to keep the volume at 40π, and this will lead to larger and larger costs
since increasing the area of the base has a greater effect on cost than decreasing the height. Thus
there can be no maximum cost, so the dimensions we found indeed give minimum cost.
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