
MATH 340: Geometry
Northwestern University, Lecture Notes

Written by Santiago Cañez

These are notes which provide a basic summary of each lecture for MATH 340, “Geometry”,
taught by the author at Northwestern University. The book used as a reference is The Four Pillars
of Geometry by Stillwell. Watch out for typos! Comments and suggestions are welcome.
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Lecture 1: Introduction

The story of mathematics is in large part the story of geometry. Indeed, the study of geometry is
what drove the development of mathematics as a whole for much of written history. To the Ancient
Greeks, “mathematics” was essentially synonymous with “geometry”, and it took much time for
“mathematics” to move far beyond geometry alone. And yet, what geometry actually is is not
so easy to define, mainly because it has come to mean so many seemingly different (but related!)
things over time. In this course we will study geometry in a broad sense, highlighting different
perspectives on what geometry is and the role they’ve played in the history of mathematics.

Let us briefly introduce the four perspectives—or “pillars” as the book calls them—we will con-
sider. To begin with, there is the view that geometry is about constructions. Here, “constructions”
refers to those which can be carried out specifically using only a straightedge, which allows us to
draw lines, and a compass, which allows us to draw circles. We will begin to dive into this topic
shortly, and we will see that these construction axioms are formally encoded by Euclid’s axioms,
which give rise to Euclidean geometry. Euclidean geometry was really the first type of mathematics
done, and dominated mathematics for a very long time.

The second perspective we will consider is that of doing geometry by way of coordinates and
equations. When you think about the equation of a circle x2 + y2 = 1, you should know that
this description of a circle is fairly modern, and those in the time of Euclid would have had no
conception of what these symbols meant. The idea of using coordinates (x, y) to do geometry
was put forth by Descartes’ in the 17th century, and leads to the topic of Cartesian geometry. In
modern language, we might refer to this as “vector geometry”. We will see that numerous results
which can be cumbersome to understand or justify via Euclidean geometry alone become much
simpler to grasp when using vectors and coordinates.

Next we will move to a more visual perspective, which develops geometry in a way which
matches what we actually see in our everyday lives. The key realization here is that when we
actually see “parallel” lines with our eyes—such as parallel train tracks—they actually appear to
intersect at some point very far away on the horizon. The mathematical setting which makes this
observation precise is projective geometry, an extension of Euclidean geometry. Here the notion of
viewing things “from perspective” (as in, from the perspective of a given point) is crucial, and will
require moving towards a somewhat abstract notion of “space”. But, we will see that, yes, parallel
lines do in fact intersect if we interpret “intersect” correctly.

Finally, we will consider the point of view that geometry is all about transformations. This will
be the most abstract perspective we take, but also the one that leads into more modern notions of
geometry. By “transformation” we mean some type of mapping which transforms lines into lines,
with the idea being that if we specify the transformations we are interested in, what “geometry”
means is precisely just what follows as a consequence of those specifications. This is quite vague at
this point, but we will make it clearer what we mean later. We will begin to see some of this when
discussing Euclidean transformations early on, where we will see that the structure of Euclidean
geometry is indeed essentially determined by the nature of these Euclidean transformations. Once
we have this new perspective available, it opens up a new avenue towards the exploration of non-
Euclidean geometry, and we will see here glimpses of the modern role played by differential geometry,
which amounts to doing geometry via calculus. A basic takeaway will be that the notions of “line”
and “transformation” are intimately connected with one another, so that having knowledge of one
essentially determines knowledge of the other.

Parallel postulate. One topic which will underlie much of our discussion, and in particular is
the reason behind the difference Euclidean vs non-Euclidean geometry, is what’s called the parallel
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postulate. This postulate states that given a line and a point not on that line, there exists exactly
one line thorough that point which is parallel to the given line:

This was an assumption made by Euclid way back when, which he could not derive from his other
axioms and had to take as a separate axiom. Mathematicians spent millennia trying to understand
this postulate in a deeper way, seeing if they could succeed where Euclid failed in deriving it.

Alas, their attempts to do so were done in vain as it was proved in the 19th century that
the parallel pospulate, in fact, could not be derived from Euclid’s other axioms. The reason is
that there exist geometric settings—those of non-Euclidean geometry—which satisfy all of Euclid’s
axioms but not the parallel postulate. (Saying that their attempts were done “in vain” is actually
a bit harsh, since after all the only reason why non-Euclidean geometries were ever discovered in
the first place was because of the work done by these previous mathematicians!) Specifically, we
will see that in hyperbolic geometry, the parallel line asserted by the parallel postulate is in fact
not unique, so that given a line and a point not on that line there exist multiple lines through that
point parallel to the given one:

(You might object that the lines above do not appear to be parallel to the given line! This is
simply due to the limitations of drawing hyperbolic geometry figures in the Euclidean plane. Once
we have the correct picture of the hyperbolic plane and know what “hyperbolic lines” are, we will
see that they are parallel.) In spherical geometry, there does not even exist such a parallel line, or
more precisely there “does” but it will intersect the given line. (This begs the question as to what
“parallel” actually means here. With the usual definition of parallel you’ve used all your lives, there
is no such parallel line, but if we reimagine what “parallel” means so that it is possible for parallel
lines to intersect, there does. We’ll get into this later!) Understanding what can and cannot be
done with the parallel postulate will be one of our central goals.

Triangles. To highlight another key difference between Euclidean and non-Euclidean geometry,
let us consider the behavior of triangles, specifically the sum of their interior angles. You no doubt
know that for an ordinary triangle, the sum of its three interior angles is always 180◦, or π radians:

No matter what triangle you take in Euclidean geometry, this sum is always the same, and it is
always 180◦. In spherical geometry however, we have a picture like
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This is a spherical triangle, namely a triangle on the surface of a sphere. The point is that once we
give the correct definition of “line” in spherical geometry, this figure is indeed a 3-sided polygon
whose edges are “lines”. We will see that for any such spherical triangle, the sum of interior angles
is always strictly greater than 180◦! Even worse: the value of the sum is not always the same, and
depends on the area of the triangle. This is very different than what happens in the Euclidean case.

In hyperbolic geometry, a hyperbolic triangle will look possibly like:

(Again, you might object that is not a “triangle”, but in fact it is once we are in “hyperoblic”
frame of mind!) In this case, the sum of interior angles is always strictly less than 180◦, and again
varies depending on the “hyperbolic area” of the triangle in question. (If you want a more modern
perspective on these differences, we note that they arise from the fact that the Euclidean plane
has “curvature zero”, the spherical has positive curvature, and the hyperbolic plane has negative
curvature. We will see very brief glimpses into the notion of “curvature” of this course, but won’t
be able to develop it fully.)

Straightedge and compass. But before we get into any modern perspectives or non-Euclidean
business, we start with geometry as done by the Ancient Greeks. As mentioned before, at that
time “geometry” (or even “mathematics”) was defined in terms of what it was possible to actually
construct, specifically with straightedge and compass. A straightedge is a tool we can use to do two
things:

• construct the line segment connecting any two given points, and

• extend a given line segment indefinitely.

Note that a straightedge is not quite a ruler, as it has no markings and gives us no way to measure
any length. A compass is a tool we can use to do one thing:

• construct the circle of a given radius centered at a given point.

The compass is what allows us to take a given length and “copy” it somewhere else, as we’ll see. The
goal is then to understand what mathematics is possible to derive from straightedge and compass
constructions alone, as the Ancient Greeks would have done.

Addition and subtraction. We assume that all we have to start with is a given length we declare
to be 1. First, we claim we can construct 2, by which we mean we can construct a line segment of
length 2. Take the given segment 1, and extend it indefinitely using the straightedge. Next take
the compass and measure the given length 1 to get a radius of 1. Then construct the circle of radius
1 centered at the right endpoint B of our original segment:
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Mark off the point where this circle intersects our extended line on the right as C. Then segment AC
is what we want: it is a segment of length 2. We would thus interpret this as a literal “construction”
of the number 2. Following the same idea, you can then also construct 3, 4, etc.

More generally, we claim that addition can be carried out via straightedge and compass con-
structions. The statement is that given segments x and y, meaning line segments whose lengths
are these values, we can construct x + y. Take the given segment x, extend it indefinitely, and
construct the circle of radius given y centered at the right endpoint:

Mark the point C where this circle intersects the extended segment on the right, and AC is then
x + y. If x > y, we can also construct x − y: do as above, and then mark the point D where the
constructed circle intersects segment x on the left, so that AD is x− y. The takeaway is that the
basic arithmetic operations of addition and subtraction (as long as we avoid negative quantities!)
can be carried out using only straightedge and compass.

Bisections. Next, we claim that we can construct bisections, both of line segments and of angles.
(To “bisect” means to split into two equal parts.) To bisect a given segment AB, construct the
circle of radius |AB| centered at A and the circle of radius |AB| centered at B. Mark the points
where these circles intersect, and connect these two points using the straightedge:

The point where this segment intersects the original AB is the midpoint of AB, so we have bisected
AB as desired. Even better, we have constructed the perpendicular bisector of AB, which is the
perpendicular line passing through the midpoint. (Technically we only constructed a perpendicular
bisecting segment, but we can extend that to a full line with the straightedge.)

Now, we note that actually justifying that what we constructed above is indeed the correct
midpoint and that the segment we get is indeed perpendicular to the original is a different story.
For this we would need to consider properties of congruent triangles. We will come back to this
point later, and for now only focus on the actual constructions. If nothing else, the symmetry of
the construction (exchanging “left” and “right” leads to the exact picture) should convince you
intuitively that we do get what we claim we get, although this is not yet a formal justification.
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Finally, given an angle, by which we mean we are given two segments that intersect at the
given angle, we can bisect it as follows. Construct a circle of any radius centered at the point of
intersection O, and mark the points A and B where this circle intersects our original segments:

Now use the method above to construct the perpendicular bisector of AB; this bisector will pass
through O, and will bisect the original angle. (Again, actually proving that the angle has indeed
been bisected is a different matter which we will come back to.) If we really want to draw it all out,
we would have to draw the pictures we used above in this new figure to construct the perpendicular
bisector of AB, and the picture quickly gets messy:

From now on we will avoid drawing every single construction we need in full: if have justified a
previous construction, we will simply use it going forward without drawing the picture for it every
single time.

Lecture 2: Constructions

Warm-Up. Given a line and a point, we construct the line through that point which is perpen-
dicular to the given line. To get a feel for this, we first assume the point is on the given line:

Construct any circle centered at E, and mark the points where this circle intersects the line as P
and Q. Then the perpendicular bisector of the segment PQ constructed last time will pass through
E since, by construction, E is the midpoint of PQ. (In other words, |PE| and |EQ| are the radius
of the same circle.) This perpendicular bisector is what we want.

More generally, E can be any given point, not necessarily on the given line. Construct any
circle centered at E with radius large enough so that it intersects the given line in two points P
and Q. Then perpendicular bisector of PQ constructed before is then what we want:
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(To be precise, we have to know that this perpendicular bisector of PQ does pass through the
original point E. This is again the type of thing we will worry about justifying later once we
discuss congruence of triangles.)

Parallels and squares. With the constructions above, we can now construct parallel lines: given
a line ℓ and a point E not on that line, we construct the line through E parallel to ℓ. We simply
first construct the line ℓ′ through E which is perpendicular to ℓ, and then construct the line ℓ′′

through E which is perpendicular to ℓ′:

Note that the first construction is the second more general part of the Warm-Up, but the second
is the restricted first part we described.

Moving on, give a segment we can now construct the square with that given segment as a side.
We simply construct the perpendiculars to the two endpoints, use the compass to copy the length
of the base onto these two perpendiculars using circles, mark points of intersections and connect
with straightedge:

Constructing other polygons. Given a segment AB, we can also construct the equilateral
triangle with that segment as a side using the same idea as in the construction of perpendicular
bisectors. Use the compass to construct circles of radius |AB| centered at each endpoints, mark
the point where these circles intersect, and connect this point to both A and B:
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The resulting triangle is equilateral all sides came from common radii of circles.
With the construction of an equilateral triangle we can construct a regular hexagon. View the

regular hexagon as consisting of six equilateral triangles as follows:

So, given a starting segment, we first construct an equilateral triangle on that segment, then pick
one of the sides of this triangle to construct a new triangle, and so on continue until we “wrap”
all the way around to get the hexagon. (The triangles are constructed in the order 1, 2, 3, 4, , 5, 6
labeled above.)

What about other polygons? Can we construct a regular pentagon? Or a heptagon? Octagon?
It turns out that we can precisely describe those regular polygons which are constructible with
straightedge and compass alone. To give the answer we need the notion of a Fermat prime, which
is a prime number of the form 22

k
+ 1. So:

22
0
+ 1 = 3 is a Fermat prime,

22
1
+ 1 = 5 is a Fermat prime, and

22
2
+ 1 = 17 is a Fermat prime

for example. (Note that it is not true that any number of the form 22
k
+ 1 is prime: 22

5
+ 1 =

4294967297 for example is not prime. The only numbers of this form which are in fact currently
known to be prime, and hence the only known Fermat primes, are the three above, 22

3
+ 1 = 257

and 22
4
+1 = 65537. It is not known whether these are in fact the only Fermat primes, nor whether

there is only a finite number of them!)
The relevant theorem then states the following:

A regular n-gon is constructible with straightedge compass if and only if n is a power
of 2 or of the form n = 2ℓ(product of distinct Fermat primes).

We will give a sense of some of the reasons behind this later on, but giving an actual proof is way
beyond the scope of this course, and is typically done in a course covering what’s called field and
Galois theory. At Northwestern this would be done in the third quarter of one of the abstract
algebra sequences, MATH 330-3 or MATH 331-3.
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With this result at hand, we can now answer some polygon construction questions. Note first
that it makes sense that the triangle is constructible, since 3 is a Fermat prime. The square
is constructible (as we saw) since 4 = 22 is a power of 2. Now, regular pentagons are indeed
constructible since 5 is a Fermat prime. (You can find numerous constructions of pentagons by
searching online. Check it out if you’ve never seen it done!) The hexagon (as we saw) is constructible
since 6 = 2 · 3 is a power of 2 times a single Fermat prime. But now we can see that the regular
7-gon is not constructible (!) since 7 is not a Fermat prime. Octagons are OK, but 9-gons are not
since 9 = 32 is not a product of distinct Fermat primes. And so on.

Thales Theorem. As a next construction, we claim that given any line segment, we can divide it
into n segments of equal length (for any n) using only straightedge and compass. We already saw
how to do this for n = 2 in terms of bisections, but now we want to do it for any number parts.
Take the given segment AB, and draw any line passing through A. Then along this new line, mark
off n points all equally spaced from one another:

To be sure, this can be done using the compass: take any radius you want, and draw a circle at
O above, then another circle of the same radius centered at the intersection C1, then a new circle
centered at this new point to get a new intersection C2, and so on until you have n points in total.
Since the radius we used never changed, the points we get are equally spaced. Now connect the final
point to the right endpoint of the original segment, and construct lines through each Ci parallel to
this line:

The claim is that the intersections Ai we now get along the original segment divide that segment
into n equal pieces. To justify this, we need the following result, which will play an important role
going forward. This is called Thales theorem, and is in the end a statement about maintaining
proportions:

Given a triangle and any line passing through two sides which is parallel to the third
side, the ratios between resulting segments all agree.

That is, given
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with PQ parallel to BC, we have
|AP |
|AB| =

|AQ|
|AC| .

We will come back and prove this later after we know more about triangles. (You will show on the

homework that other ratios in this picture are also equal, for example |AP |
|PB| =

|AQ|
|QC| . You will also

show that the converge of Thales theorem is true.)
Using Thales theorem, we can justify our claim about the division into n segments above.

Consider the part of the picture above that looks like:

Since segment CA1 is parallel to CA2 by construction, we have

|AC1|
|C1C2|

=
|AA1|
|A1A2|

by Thales theorem. But the left side is 1 since A,C1, C2 are equally spaced, so the right side is 1
and hence A,A1, A2 are equally spaced. Now consider the triangle

Segments A2C2 is parallel to A3C3, so the same argument using Thales theorem will show that
|A1A2| = |A2A3|. For this we will need to use the fact that |AC2| = 2|C1C2| and |AA2| = 2|A1A2|,
which we know to be true from the first part of the argument. And so on, continuing in this way
shows that all the Ai on the bottom are equally spaced. (In the notation we are using, B = An.)

Multiplication and division. We previously saw how to “define” addition and subtraction via
straightedge and compass, and now with Thales theorem we can do the same for multiplication and
division. The goal is, given segments x and y, meaning of lengths x and y, to construct a segment
of length xy and one of length x

y . Consider the following picture:
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This is obtained as follows: draw two intersecting lines, mark off (length) x on one and 1 on the
other (recall that as our starting point behind all of this we have a segment of length 1 as given),
and mark off y on the line with 1 (let us measure y as starting from the point where the lines
intersect). Then connect 1 to x, and construct the line through y parallel to the segment from 1 to
x. The claim is that the point where this parallel intersects the line on which x lies is xy, meaning
that the length of the segment on the bottom from the leftmost intersection of the original lines to
this point has length xy. Indeed, in this picture Thales theorem gives

y

1
=

desired length

x
,

so the desired length is xy.
To define division, or in other words construct y

x , use the following picture:

Again, the line from y to the unknown point above (labeled as y
x) is parallel to the line from x to

1 by construction. This unknown length then satisfies

desired length

1
=

y

x

by Thales theorem, which is what we want.

Constructible numbers. Let us be precise now and give a term to the types of “numbers” we
are constructing in the ways we have seen. We say that a real number x is constructible if, starting
from a unit length 1, we can construct a segment of length x using only straightedge and compass.
Thus, 1 is certainly constructible (it is given), and we have seen before that then 2, 3, 4, . . . are
constructible. We also know from the discussion above that products of constructible numbers are
constructible, as are quotients, so that for example 1

2 is constructible. We can summarize much
of what we’ve seen by saying that the set of constructible numbers is “closed” under addition,
subtraction (as long as we subtract smaller from larger), multiplication and division, which means
that performing any of these four basic arithmetic operations on constructible numbers still results
in constructible numbers.

What other numbers are constructible? We will see next time that
√
2 is constructible, and

hence so is something like
5−

√
2

5
3 +

√
2
+ 5
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since this can be obtained from constructible numbers using only the operations +,−, ·,÷. Now
what about 3

√
2? Is it constructible? Are all numbers constructible? We will give the answer to

this next time, but will postpone the justification until after we’ve introduced coordinates.

Lecture 3: More Constructions

Lecture 4: Euclid’s Axioms

Lecture 5: Parallel Postulate, Congruence

Lecture 6: Area and Pythagorus

Lecture 7: Cartesian Coordinates

Lecture 8: Euclidean Isometries

Lecture 9: More on Isometries

Lecture 10: Vector Geometry

Lecture 11: More with Vectors

Lecture 12: Projective Geometry

Warm-Up.

Perspective and straightedge.

Projective planes.

Real projective line. The main projective plane we will care about is the real projective plane,
which we denote by RP 2. We will construct this next time, but to get a sense for the notation and
concepts we will be using, we will first construct the real projective line RP 1. Take note that this
topic, and indeed much of what we will talk about over the next few days, is not actually in the
book, or at least is not presented in as much detail as we will give here. This is a shame, because
the subject of projective geometry is truly much richer than what the book alone describes.

As a set, the real projective line RP 1 is defined to be the set of lines in R2 which pass through
the origin. Now, let’s be careful here about what we’re talking about, since the idea can be quite
abstract: a “point” in RP 1 is not a point (yet) in the typical sense of the word “point”, but is
rather an entire line in R2. We will soon see how to nonetheless think of elements of RP 1 in a way
that is more in line with the word “point” we expect, but this is not strictly part of the definition.
This is similar to the way in which we use the words “points” and “lines” in the definition of
projective plane above, since what we call “points” and “lines” there are simply objects we declare
to be points and lines that satisfy the required properties. Here, we are simply literally declaring
that lines in R2 through the origin are what we mean by the word point in RP 1. So, we have the
following picture of some sample points in RP 1:
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Why does it make sense that we should consider lines in R2 to be single points in RP 1? This
comes from the idea of viewing things “from perspective”. Imagine we stand at the origin of R2

and look out in a certain direction:

The point is that we would not be able to distinguish between a usual point of R2 and one directly
behind it, since in some sense wouldn’t be able to “see” the point directly behind as it is “blocked”
by the point in front. All that matters here is the line of sight itself, so we should treat this entire
line of sight as characterizing a single “point” in projective geometry.

Homogeneous coordinates. To make working with the real projective line algebraically simpler,
we use the following notation. Given a non-origin point (X,Y ) in R2, we denote by [X : Y ] the line
passing through (X,Y ) and the origin. In the language of linear algebra, this is the line “spanned”
by (X,Y ), or in the other words the line consisting of scalar multiples (tX, tY ) of (X,Y ). We
refer to [X : Y ] as being homogeneous coordinates of the point of RP 1 in question. Note that
homogeneous coordinates are not unique, since the line spanned by (X,Y ) is the same as the line
spanned by (tX, tY ). For example, [1 : 1] = [2 : 2] = [−3 : −3] all describe the same element of
RP 1, namely the line Y = X in R2.

Now, for those homogeneous coordinates [X : Y ] with X ∕= 0, we can always turn the first
coordinate into 1 by scaling by 1

X :
[X : Y ] = [1 : Y

X ].

Thus, such points in RP 1 can actually be characterized by a single real number, namely Y
X . If we

recall that [X : Y ] actually describes a line in R2, then this real number Y
X is precisely this slope of

this line. Therefore, we are saying that those lines in R2 passing through the origin with nonzero
homogeneous X coordinate can be fully characterized by their slope in the sense that any such line
corresponds to a unique slope, so that knowing the slope determines the line.

However, there is precisely one line for which the above characterization is not possible, namely
the line [X : Y ] with homogeneous X coordinate X = 0. In this case we cannot scale the X = 0
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coordinate to turn it into 1, but do note that there is in fact only one point of RP 1 of this form since
[0 : Y1] = [0 : Y2] no matter what (nonzero) values Y1 and Y2 have, because it is always possible to
scale Y2, say, to get Y1. Homogeneous coordinates [0 : Y ] = [0 : 1] describe the vertical Y -axis (i.e.,
the span of (0, 1)), so this makes sense since this line has “infinite” slope and does not correspond
to an actual real number like Y

X above.

Visualizing RP 1. So, here is our new picture of RP 1, which justifies our calling RP 1 the real
projective “line”. First, for points [X : Y ] = [1 : Y

X ] with X ∕= 0, we denote them by ordinary points
Y
X on the usual real number line R. Any such element of R is the slope of a unique non-vertical line
passing through the origin in R2. But we have one additional point [0 : Y ] = [0 : 1] corresponding
to the vertical Y axis, which we draw as a “point at infinity”, in a sense “infinitely far away” from
all other points:

Thus, we can think of RP 1 as R∪{∞}, so that is indeed a “line” but together with a single point “at
infinity”. This captures a basic idea of projective geometry in general: we take a standard geometric
object, like a line or a (next time!) plane, and throw in some additional points at infinity.

Note that we above we drew the point at infinity [0 : 1] as occurring on the “far right” of the
number line R, suggesting that in some sense moving along the number line towards the right should
us “closer” and “closer” to this “infinitely far away” point. So, why is it that we do approach this
infinite point as we move along the line? If we go back to where we began with RP 1 defined as
the set of lines in R2 passing through the origin, the idea is simple: as we move towards the right
on the number line, we are actually considering lines in R2 with increasing slope, and as the slope
increases more and more the line in question gets closer and closer to the vertical Y -axis, which
is precisely what the point at infinity is meant to denote! So, it makes sense that moving towards
the right in R ⊆ RP 1 should eventually put us at ∞ = [0 : 1]. But note that [0 : 1] = [0 : −1] since
both (0, 1) and (0,−1) span the same line in R2, namely the Y -axis. If we visualize [0 : −1] as a
“point at inifity” all the way to the left of the number line, we get that these two infinite points
are actually the same, so that moving towards the left on the number will also eventually put us
at the same infinite point as before. Again this makes sense from the original definition of RP 1 in
terms of lines, since taking lines of negative slope getting more and more negative will also get us
closer and closer to the Y -axis:
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Lecture 13: Real Projective Plane

Warm-Up. We argue that RP 1 = R ∪ {∞} can be “visualized” as a circle. First, following the
idea we finished with last time, we have that moving along R ⊆ RP 1 towards the right will “in
the limit” reach the point ∞ at infinity. But of course, this also happens if we move in the other
direction towards the left, so that ∞ is the infinite point on the “left” as well as on the “right”.
Thus, if we move along R towards the right, we eventually hit ∞, which then puts us back all the
way at infinite on the left, and we keep moving towards the right to retrace all of our steps:

Thus, we are indeed moving a long a “circle” in a sense.
To be more precise, in the definition of RP 1 as lines through the origin in R2, note that (almost)

any such line intersects the right half of the unit circle in exactly one point, so we can use this
intersection to represent an entire element of RP 1:

The only line for which this is isn’t true is the y-axis, which intersects the upper half of the unit
circle at both (0,−1) and (0, 1). But these two points then correspond to the same “infinite point”
given by the y-axis, so we should think of them as being the “same”. Thus, if take take this right
semicircle and “glue” (0,−1) to (0, 1) we should get a “picture” of RP 1, and this does result in a
circle!
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The picture above where we “move along” R ⊆ RP 1 towards the right corresponds to moving along
this circle counterclockwise: we start at ∞ = [0 : −1], move counterclockwise to reach ∞ = [0 : 1],
which puts us back at ∞ = [0 : −1], and we continue.

Let us briefly look at the same type of construction, but when considering complex numbers
instead of just real numbers. That is, we define the complex projective line CP 1 to be the set of
lines in C2 = C × C through the origin. Already there is a big difference between this and RP 1,
in that C2 is not actually possible to visualize in the our 3-dimensional world! Indeed, C itself is
usually visualized as a plane with a “real” axis and an “imaginary” axis, so to visualize C2 = C×C
requires four dimensions (!), two of which keep track of the first complex coordinate of (z, w) ∈ C2,
and two of which keep track of the second. So, it is not so clear what we mean by the word
“line” in C2. Algebraically, however, there is no issue: the line passing through a non-origin point
(z, w) ∈ C2 and the origin simply means the set of all complex multiples of (z, w), so all points of
the form (λz,λw) where λ ∈ C. We can then use homogeneous coordinates [Z : W ] = [λZ : λW ]
just as before to describe points of CP 1, and again we get two types of points: those with Z ∕= 0
so that [Z : W ] = [1 : W

Z ] is a “finite point” corresponding to a single complex number W
Z ∈ C, and

those with Z = 0 so that [0 : W ] is an “infinite” point. However, there is only infinite point again
since [0 : W ] can always be scaled to get any other [0 : W ′], so we visualize CP 1 = C ∪ {∞} as C
corresponding to the finite points alone with one infinite point. As was the case with RP 1, moving
along any direction of C ⊆ CP 1 will lead us to reaching this one point ∞, so we can visualize CP 1

as a sphere (!): take the complex plane C and “warp-it” into the shape of a sphere, putting one
final point ∞ on top to tie it all together:

Note that even though this is visually a “sphere”, we still call CP 1 the complex projective line since
there is only one “complex dimension” C ⊆ CP 1 being used. The “sphere” shape arises simply
because a single “complex dimension” corresponds to two “real dimensions”. We will come back
to complex projective “things”, such as the complex projective plane CP 2, later.

Real Projective Plane. Now we move one dimension higher to describe the real projective plane,
denoted by RP 2. Intuitively, this should be the usual xy-plane R2, only with additional “points at
infinity” thrown in. To be precise, we define RP 2 to be the set of lines through the origin in R3.
As with the case of RP 1, there is a conceptual jump here, where we have to wrap our heads around
interpreting a line in R3 through the origin as a “point” in RP 2.

As in the construction of RP 1, we can describe such a line using homogeneous coordinates,
where [X : Y : Z] denotes the line through the origin and the non-origin point (X,Y, Z) in R3.
The same point can also be represented by [tX : tY : tZ] for any nonzero t ∈ R, so homogeneous
coordinates aren’t unique. For example,

[1 : 1 : 1] = [2 : 2 : 2] = [−3 : 3 : 3]

all describe the same point of RP 2, namely the line in R3 with parametric equations

X = t, Y = t, Z = t.
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Finite vs infinite points. In order to better visualize RP 2 as something more “plane-like”, we
focus on two types of points. First, we consider points with nonzero homogeneous Z-coordinate.
For such points [X : Y : Z], we can scale all the coordinates by 1

Z to get

[X : Y : Z] = [XZ : Y
Z : 1].

Thus, such elements of RP 2 are completely characterized by only the pair (XZ , YZ ). We then visualize
this element as literally the usual point (x, y) = (XZ , YZ ) in the usual Euclidean plane R2, and we
refer to such points as being the “finite points” of RP 2. (This is analogous to how certain points of
RP 1 corresponded to ordinary elements of R, namely those corresponding to lines of finite slope.)

But we also have elements of RP 2 with homogeneous Z-coordinate 0: [X : Y : 0]. Note that
scaling such coordinates by any nonzero number will never turn the 0 into something nonzero, so
whether or not the Z-coordinate is zero depends only on the actual point of RP 2 (i.e., only on
the line in R3 it corresponds to) and not on the specific choice of homogeneous coordinates. For
example,

[1 : 1 : 0] = [2 : 2 : 0] = [−3 : −3 : 0]

all describe the same point of RP 2, so even though the X and Y coordinates are not unique the
Z-coordinate is in the case where Z = 0. Such points are thus characterized by the pair [X : Y ]
alone, and we can interpret such a pair of homogeneous coordinates as describing an element of
RP 1! These are what we refer to as being the “infinite points” of RP 2, and the copy of RP 1 that
contains them as being the “line at infinity, or “circle at infinity”. (Recall that we can visualize
RP 1 as a circle!) Specifically, we call [X : Y : 0] the “point at infinity occurring in the direction of
[X : Y : 1], and we will see why we do so in a bit.

Now, what is actually happening here if we go back to the original definition of RP 2 in terms
of lines in R3? Which lines give the “finite points” and which give the “infinite points”? Those
homogeneous coordinates [X : Y : Z] with Z ∕= 0 correspond to lines through the origin which
move off the XY -plane, meaning “up” or “down” so that they are not completely horizontal. Any
such line will intersect the plane Z = 1 in exactly one point, and this is the point (XZ , YZ , 1) we
get when we rescale [X : Y : Z] = [XZ : Y

Z : 1]. Thus, what we are doing for such lines is to take
this intersection with Z = 1 as a single usual “point” in R2 (thought of us the Z = 1 plane) that
represents it. “Infinite” points [X : Y : 0], however, correspond to lines that are fully contained
in the XY -plane since the Z-coordinate never becomes nonzero. Such lines can then be viewed as
lines through the origin in R2 (thought of now as the z = 0 plane), which we how we defined points
RP 1 previously. So we have the following picture:
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Visualizing RP 2. Let us now visualize RP 2 as an actual 2-dimensional “plane”, instead of as
consisting of lines in a 3-dimensional space. We begin with the finite points, which we draw as
usual points in R2. For the infinite points we draw a “circle at infinity” going around our R2 plane:

It is on this circle that we draw our infinite points, and specifically arrange them so that the infinite
point [X : Y : 0] occurs in the “direction” of the finite point [X : Y : 1]. For example, in the picture
above, [1 : 1 : 0] is the infinite point in the direction of (1, 1) = [1 : 1 : 1], which is the same as
the direction of (2, 2) = [2 : 2 : 1] since [2 : 2 : 0] = [1 : 1 : 0], which is the same as the direction
of (3, 3) = [3 : 3 : 1], and so on. Thus, visually, the line y = x in the xy-plane “approaches” the
infinite point [1 : 1 : 0] occurring in the direction of the points (1, 1), (2, 2), (3, 3), . . . on that line.
The line y = 3x containing the finite point (1, 3), as another example, hits the point [1 : 3 : 0] “at
infinity”. Any ordinary line in R2 will contain a unique point at infinity, and will intersect the “line
at infinity” at this point. The infinite point on a line captures the data of the slope of that line.

Note that the line y = x above also approaches the infinite point [−1 : −1 : 0] if we go the other
way in the direction of (−1,−1) = [−1 : −1 : 0] instead. However, we know that the infinite points
[1 : 1 : 0] and [−1 : −1 : 0] are actually the same since one is a multiple of the other, so indeed
y = x only contains a single point at infinity, not two. This is why we picture this line at infinite
as a circle, or more precisely as the “circle” RP 1: [X : Y : 0] = [−X : −Y : 0] so the “direction” we
go in along a line does not matter, we will reach the same “infinity” either way. In summary then,
we visualize RP 2 = R2 ∪ RP 1 as the union of finite points making up the plane R2 and infinite
points making up the circle RP 1. Intuitively, to get RP 2 we start with R2, and throw in a new
infinite point corresponding to each possible “direction” we have in R2. We will see next time that
parallel lines, which are lines moving in the same “direction”, will in fact intersect at the infinite
point corresponding to this direction, which was the original motivation for constructing projective
planes in the first place!

Approaching infinite points. In the picture above we drew, say, the infinite point [1 : 1 : 0] as
being the one “approached” by points (t, t) on the line y = x. Why does this make sense from our
original definition of RP 2 in terms of lines in R3? Recall that the picture of RP 2 above, at least
the finite part, is really the picture of the plane Z = 1 in R3, since the finite points corresponds to
points at which non-horizontal lines in R3 intersect this plane. Thus, “moving along y = x” really
means the following. Take the finite point (1, 1) = [1 : 1 : 1] and draw it as (1, 1, 1) in the z = 1
plane in R3. Then take (2, 2) = [2 : 2 : 1] and draw it as (2, 2, 1) in the z = 1 plane, and so on. We
get the following picture, where we only capture the portion of R3 given by the plane with equation
Y = X in order to get a simpler image:
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The lines which are drawn are precisely the “points” in our original definition of RP 2, and the finite
homogeneous coordinates [X : Y : 1] indicate where these finite points intersect the z = 1 plane.
The main observation is that as we “move” further along the line y = x in the z = 1 plane, the
lines in R3 to which these intersections correspond become more and more “horizontal”, so that
“in the limit” they completely flatten out to get the horizontal line y = x in the xy-plane. But
this line is precisely given by the infinite point [X : X : 0] = [1 : 1 : 0], so we can see visually that
points along the line y = x in RP 2 do indeed approach this specific infinite point.

We can also consider moving along y = x in the z = 1 plane in the other direction, hitting
(−1,−1), (−2,−2), and so on. Here too the corresponding lines we get in R3 become more and
more “horizontal” as we go further and further, and “in the limit” we get the exactly same infinite
point [1 : 1 : 0] as before. This is why it makes sense to say that [−1 : −1 : 0] = [1 : 1 : 0] are the
same infinite point. Good stuff!

Lecture 14: Projective Curves

Warm-Up.

Parallel lines.

Other projective curves.

Bezout’s theorem.

Lecture 15: Projective Transformations

Lecture 16: Linear Fractional Functions

Lecture 17: Cross-Ratio

Lecture 18: Pappus and Desargues

Warm-Up. Suppose we are given two lines L1 and L2 (each a copy of RP 1) with A,B,C, P on
L2 and A,E, F,G on L1. If [A,B;C,P ] = [A,E;F,G], we show that the lines BE,CF, and PG
intersect at a common point O. Here is the picture:
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The point behind this claim is actually one we saw last time: a function which preserves cross-ratio
must be a projective transformation, meaning projection from the perspective of a point. The point
O which is claimed to exist is the point from whose perspective we can project L1 onto L2 above.

Take O to be the intersection of BE with CF , and take D to be the point where OG meets
L2. We claim that D = P . If so, then we are done as the line PG will then indeed pass through
O, which was chosen to the intersection of BE and CF , so that BE,CF, PG intersect at this O.
Consider the projective transformation f which projects L1 onto L2 from the perspective of O. We
have:

f(A) = A since the line through A and O intersects L2 at A,

f(E) = B since the line through E and O intersects L2 at B,

f(F ) = C since the line through F and O intersects L2 at C, and

f(G) = D since the line through G and O intersects L2 at D.

Projective transformations preserve cross-ratio, so

[A,B;C,D] = [f(A), f(E); f(F ), f(G)] = [A,E;F,G].

But also [A,E : F,G] = [A,B : C,P ] from our assumptions, so [A,B : C,P ] = [A,B;C,D]. This
forces P = D since the fourth point in a cross-ratio is completely determined by the data of the
first three points and the value of the cross-ratio itself.

Pappus revisited. Recall Pappus theorem from the first two weeks of class, which stated that for
any “hexagon” with two pairs of opposite sides consisting of parallel lines, the remaining pair of
opposite sides also consisted of parallel lines. (As before, “hexagon” here is used in a general sense
to refer to a six-sided polygon, even one whose sides can intersect one another.)

(Pairs of opposite sides in these pictures are of the same color.) We claim that this previous version
is but a shadow of a more general form, which takes its full shape in the setting of projective
geometry. Indeed, note that we can now interpret “parallel” used in the statement of Pappus
theorem as “intersecting at infinity”. Thus, the claim really is that if two pairs of these opposite
sides have their intersections occurring on the line at infinity, the remaining pair will also have
their intersection on this line at infinity. In other words, all three pairs of opposite sides have their
intersections occurring on the same line at infinity.

To get a more general statement, we simply allow for hexagons where the three pairs of opposite
sides intersect at finite points. Here, then, is the full form of Pappus theorem:
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Given three collinear points A,B,C in RP 2, and three collinear points A′, B′, C ′, the
intersections of AB′ with A′B, of AC ′ with A′C, and of BC ′ with B′C are all collinear.

In this notation, A,B′, C,A′, B, C ′ form the vertices of our hexagon, with edges alternating between
moving from a point on one line (the one containing either A,B,C or the one containing A′, B′, C ′)
to a point on the other. The notation is set up so that when describing “opposite” sides, the same
letters are used, only with one letter “primed”: AB′ vs A′B use the same letters A and B, but
with the prime ′ switching locations. The claim is that the points at which opposite sides intersect
are on the same line, as in the following picture:

(Again, “opposite” sides here are of the same color.) When the line at which these intersects occur
is the line at infinity, we get the previous version of Pappus theorem.

Proof of Pappus. Let us know prove the general form of Pappus theorem. Denote by R the
intersection of AB′ with A′B, by Q the intersection of AC ′ with A′C, and by P the intersection of
BC ′ with B′C. The claim we want is that P,Q,R lie on the same line. Denote by S the intersection
of AC ′ with A′B, and by T the intersection of BC ′ with A′C. The proof uses a pair of projections
to relate the cross ratio [B, T ;P,C ′] to the cross ratio [B,A′;R,S], and then applies the result of
the Warm-Up to get the collinearity of P,Q,R.

Denote by X the intersection (which could be infinite!) of the lines on which A,B,C lie and
on which A′, B′, C ′ lie:

Consider first projection from the perspective of A of the line L on which B,S,R,A′ lie onto the
line M on which X,C ′, B′, A′ lie. This projection sends:

B )→ X since the line through B and A intersects M at X,

A′ )→ A′ since the line through A′ and A intersects M at A′,

R )→ B′ since the line through R and A intersects M at B′, and

S )→ C ′ since the line through S and A intersects M at C ′.

Since projections preserve cross-ratio, we get that

[B,A′;R,S] = [X,A′;B′, C ′].
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Now consider the projection from the perspective of C of M onto the line N on which B, T, P,C ′

lie. This projection sends:

X )→ B since the line through X and C intersects N at B,

A′ )→ T since the line through A′ and C intersects N at T ,

B′ )→ P since the line through B′ and C intersects N at P , and

C ′ )→ C ′ since the line through C ′ and C intersects N at C ′.

Again by preservation of cross-ratio, we get [X,A′;B′, C ′] = [B, T ;P,C ′], so altogether

[B,A′;R,S] = [X,A′;B′, C ′] = [B, T ;P,C ′].

By the result of the Warm-Up, this cross-ratio equality implies that lines A′T,RP , and SC ′ all
intersect at the same point. But the line A′T is the same as the line A′C, and the line SC ′ is the
same as the line AC ′. The intersection of A′C and AC ′ is Q, and so point must also be the line
RP , since this line should intersect both A′T and SC ′ at a common point. Thus R,Q, P do lie on
a common line as claimed.

Desargues revisited. Just as Pappus theorem has a more general projective version than what we
saw before, so does Desargues theorem. The previous version (from the second week!) of Desargues
theorem says the following: Given two triangles as in the picture

with two pairs of corresponding sides parallel, the remaining pair of corresponding sides are also
parallel. (In this picture, “corresponding” sides are ones labeled by the same letters, only with
one side using unprimed letters and the other primed letters. They are of the same color.) If we
interpret “parallel” as intersecting at infinity, then the claim is that all three pairs of corresponding
sides have their intersections lying on the same line. In the setup, the point is that the given
triangles are “in perspective” from a point, meaning that one is the projection of the other from
the perspective of a given point, which is the point O labeled in the picture above.

Here then is the full form of Desargues theorem:

If triangle △ABC and triangle △A′B′C ′ are in perspective from a point (which could
be infinite) in RP 2, then the intersections of AB with A′B′, of AC with A′C ′, and of
BC with B′C ′ are collinear.

Again, when the line on which the three intersections occur is the line at infinity, we get the previous
version of Desargues. Here is the picture to have in mind for the general version:
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(The two triangles here are in perspective from the point O: projection from this point sends A to
A′, B to B′ and C to C ′. Hence it sends AB to A′B′, AC to A′C ′, and BC to B′C ′, which is why
we think of these as being “corresponding” sides.) We will not prove this general form of Desargues
theorem, but it can be derived from the general form of Pappus theorem, just as was the case with
the previous versions.

Projective arithmetic. So, Pappus theorem and Desargues are, in the end, really theorems
about projective geometry, and not so much Euclidean geometry. Now, recall how we saw these
theorems used previously, namely in terms of justifying arithmetic properties of multiplication. The
setup was that we defined “multiplication” of numbers solely in terms of line segments, and then
used Pappus theorem to show that this multiplication so-defined was commutative (this we did in
class) and associative (this was on the second homework). To be precise, it is the fact that Pappus
theorem holds in RP 2 that underlies the commutativity of multiplication in R, and it is the fact
that Desargues theorem holds that underlies associativity of multiplication in R:

Pappus in RP 2 ←−→ commutativity of multiplication in R

Desargues in RP 2 ←−→ associativity of multiplication in R

The upshot is that basic arithmetic properties of R are reflected in geometric properties of the
corresponding projective plane RP 2.

Other projective planes. But there are other projective planes we can consider! In each of these,
we can define a “multiplication” of line segments in similar way to what we did for R, and we can
ask what properties these “multiplications” have. We will not go into this in any more detail in
this course, but we at least state what happens.

We have seen the complex projective plane CP 2 a bit before, where we describe points using
homogeneous coordinates [X : Y : Z], with each of X,Y, Z now complex numbers. It turns out
that in this projective plane Pappus theorem and Desargues theorem still hold, and thus we get as
a consequence that multiplication in C (defined via line segment constructions, which admittedly
can no longer be easily visualized since CP 2 can’t be easily visualized) is both commutative and
associative:

Pappus in CP 2 ←−→ commutativity of multiplication in C

Desargues in CP 2 ←−→ associativity of multiplication in C

Next we move “up” a couple of dimensions, and consider a four-dimensional analog of complex
numbers. That is, we consider “numbers” of the form

x+ yj
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where j2 = −1, but where x and y now are each complex themselves. If x = a+ bi and y = c+ di
with a, b, c, d real (note that we have two “square roots” of −1 in use now: one is i and one is j),
then the “number” we are looking it is

(a+ bi) + (c+ di)j = a+ bi+ cj + dij.

If we denote the “product” ij simply by k, and think of it as yet another “square root of −1”, we
get an expression of the form

a+ bi+ cj + dk

where a, b, c, d ∈ R. Such an expression is called a quaternion, and form a generalization of complex
numbers. (We will actually come back to quaternions soon in this course, where we will use them
to describe three-dimensional rotations!) Under “quaternionic multiplication”, we have

i2 = j2 = k2 = −1 and ij = k.

The set of quaternions is usually denoted by H. We can then form the quaternionic projective
plane HP 2 in the same way as RP 2 or CP 2: takes points with homogeneous coordinates [X : Y : Z]
but where X,Y, Z are quaternions. The amazing thing is that, as it turns out, Pappus theorem
does not hold in HP 2 (!!!), although Desargues theorem does. Thus, we get that multiplication in
H actually is not commutative, but it is indeed associative:

Pappus fails in HP 2 ←−→ multiplication is not commutative in H

Desargues holds in HP 2 ←−→ multiplication is associative in H

(The fact that multiplication is not commutative in H comes down simply to how multiplication
of quaternions is defined, where ji will actually be equal to −ij instead of ij. The point is that
this too can be interpretative in terms of a geometric property, or lack thereof in this case, of the
corresponding projective plane.)

Why stop with a four-dimensional analog of complex numbers? The octonions make up an
eight-dimensional analog of complex numbers, using even more “square roots of −1”. We won’t
attempt to define octonions here though, since it gets a lot more challenging to do so. But, once we
have the set of octonions, denoted by O, we can construct the octonionic projective plane OP 2. Lo
and behold, it turns out that both Pappus theorem and Desargues theorem fail in this projective
plane, so not only is multiplication of octonions not commutative, it also not associative!

Pappus fails in OP 2 ←−→ multiplication is not commutative in O

Desargues fails in OP 2 ←−→ multiplication is not associative in O

The arithmetic details here are fairly complicated to understand, which is why we’ll make no
attempt to do so, but the moral is clear: geometric properties of projective planes reflect arithmetic
properties of the “numbers” from which they are built.
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Lecture 19: Spherical Geometry

Lecture 20: Spherical Triangles

Lecture 21: Quaternions and Rotations

Lecture 22: Hyperbolic Geometry

Lecture 23: Möbius Transformations

Warm-Up. We show that hyperbolic lines are described by equations of the form

Azz̄ +B(z + z̄) + C = 0,

where A,B,C ∈ R. For z = x+ iy, we have

zz̄ = (x+ iy)(x− iy) = x2 + y2 and z + z̄ = (x+ iy) + (x− iy) = 2x.

Thus the equation in terms of z above looks like

A(x2 + y2) + 2Bx+ C = 0

in terms of x and y. If A = 0, this reduces to 2Bx+C = 0, which is the equation of a vertical line.
If A ∕= 0, then after completing the square, A(x2 + y2) + 2Bx+ C = 0 can be written as

A(x+B/A)2 +Ay2 + (C −B2/A) = 0,

which is the equation of a circle centered at a point on the x-axis, namely (−B/A, 0).
Hence, given a vertical line x = x0, we can describe it in complex coordinates as

(z + z̄)− 2x0 = 0.

And given a semicircle (x − x0)
2 + y2 = r2 centered on the x-axis, we can describe it in complex

coordinates as zz̄ − x0(z + z̄)− x20 = 0.

Lecture 24: Hyperbolic Triangles

Warm-Up. We verify that f(z) = 1
z̄ , which is inversion across the unit circle centered at the

origin, sends the line x = 1 to the semicircle (x − 1
2)

2 + y2 = 1
4 . In complex coordinates, the

equation x = 1 becomes
z + z̄ = 2.

Now, dividing through by zz̄ gives
1

z̄
+

1

z
= 2

1

z̄

1

z
.

This means that if z is on the line x = 1, then w = f(z) = 1
z̄ satisfies the equation

w + w̄ = 2ww̄

instead. But in terms of x and y with w = x+ iy, this equation becomes

2x = 2(x2 + y2), or x2 − x+ y2 = 0.

After completing the square, this becomes (x− 1
2)

2 + y2 = 1
4 , which is the desired semicircle. Thus

if z is on x = 1, f(z) is on this semicircle, so f sends x = 1 to this semicircle as claimed.
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Lecture 25: Hyperbolic Distance

Warm-Up. We determine a strict lower bound on the interior angle sum of a hyperbolic triangle;
that is, a number M such that any such interior angle sum is larger than M , and for which nothing
larger than M has this property. Recall that the interior angle sum of any hyperbolic triangle
satisfies

A+B + C = π − area,

where A,B,C are the interior angles. To make this small is the same making the hyperbolic area
of the triangle large, so we can equivalently determine the largest area a hyperbolic triangle can
have.

But given any hyperbolic triangle, we can encase it within a triply asymptotic triangle as we
saw last time:

As B moves down towards P , C towards Q, and A towards R, the area of our hyperbolic triangle
approaches the area of the triple asymptotic triangle, which is π. Thus the hyperbolic area of our
triangle can get arbitrarily close to π from below, so the interior angle sum can get arbitrarily close
to π − π = 0 from above. Hence 0 is the strict lower bound on the interior angle sum.

Lecture 26: More on Distance

Warm-Up. We determine the center of the hyperbolic circle with Euclidean equation

(x− 2)2 + (y − 2)2 = 1.

(It is true in general that any hyperbolic circle, defined as the set of points at fixed hyperbolic
distance away from a fixed “center”, looks just like an ordinary Euclidean circle, but the hyperbolic
center and radius are different than the Euclidean center and radius.) The hyperbolic center of the
Euclidean circle above will lie on the vertical line containing the Euclidean center, so somewhere
on x = 2. The goal then is to find the point on this line whose distance to the bottom-most point
of the circle is equal to its distance to the topmost point:

The point we want is of the form 2 + yi, and we need

dist(2 + 3i, 2 + iy) = dist(2 + iy, 2 + i).
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Using the log formula for hyperbolic distance for points on the same vertical line, this equation
becomes

| log 3
y | = | log y

1 |, or log 3
y = log y.

Exponentiating both sides gives 3
y = y, so y2 = 3 and hence y =

√
3. Thus the hyperbolic center

of the given Euclidean circle is 2 +
√
3i. As a bonus, the radius of this circle is thus the distance

from this center to any point on it, such as 2 + i. Thus the hyperbolic radius is

dist(2 +
√
3i, 2 + i) = log

√
3,

which is approximately 0.239 and is thus smaller than the Euclidean radius, which is 1.

Lecture 27: Hyperbolic Finale

Warm-Up. For fixed y > 0, we compute the hyperbolic length of the line segment between a+ iy
and b+ iy, and then determine the limit of this length as y → ∞. The line segment in question is
parameterized by (t, y) for a ≤ t ≤ b, so the hyperbolic length is given by

! "
(dx)2 + (dy)2

y
=

! b

a

√
12 + 02

y
dt =

! b

a

1

y
dt =

b− a

y
.

Now, as y → ∞, this hyperbolic distance approaches 0. The hyperbolic line connecting a+ iy to
b+ iy, which is a portion of a semicircle, has hyperbolic length which is smaller than the length of
this line segment, so it to approaches 0 as y → ∞. This means that as we move vertically up higher
and higher on the lines x = a and x = b, the lines actually get closer and closer hyperbolically even
they remain at the same Euclidean distance part throughout. (This is similar to the idea that the
parallel lines x = a and x = b intersect at infinity in RP 2!)
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