
MATH 381: Fourier Analysis and Boundary Value Problems
Northwestern University, Lecture Notes

Written by Santiago Cañez

These are notes which provide a basic summary of each lecture for MATH 381, “Fourier Analysis
and Boundary Value Problems for ISP”, taught by the author at Northwestern University. The
book used as a reference is the 11th edition of Elementary Differential Equations and Boundary
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welcome.
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Lecture 1: Introduction

This is a course about partial differential equations. A partial differential equation (PDE for short)
is a differential equation that involves an unknown multivariable function and its partial derivatives.
The basic goal is understand the solutions of such an equation (or at least their behaviors), or in
other words the functions which satisfy it. Partial differential equations model a wide variety of
phenoma, and their study constitutes a vast area of mathematics.

Example. Here is an example of a basic PDE, known as the heat equation:

∂u

∂t
=

∂2u

∂x2
.

Here, u(x, t) is a function of two variables, x which represents position and t as time. In the
standard interpretation, the value of u(x, t) gives the temperature at position x and time t along
a metal rod that has been previously heated. The heat equation characterizes the time evolution
of the temperature function u(x, t), and says that at every instant of time and at every position
the rate of change of u(x, t) with respect to time must equal the second derivative of u(x, t) with
respect to position. (We will see why this is the correct equation needed to model heat diffusion
later. Also, there are some constants usually included that I am omitting for now.)

Now, one solution to the heat equation is given by the function

u1(x, t) = e−t sinx.

Indeed, the partial derivative ut is−e−t sinx, and the second-order partial derivative uxx is−e−t sinx,
so this function does satisfy ut = uxx. More generally, one can check that for any n the function

un(x, t) = e−n2t sin(nx)

is also a solution of the heat equation. So, we have many solutions so far, such as

u1(x, t) = e−t sinx, u2(x, t) = e−4t sin(2x), u3(x, t) = e−9t sin(3x)

and so on for other positive integers n.
To get more solutions, we can exploit some properties of the heat equation, namely that it is

linear and homogeneous. We will clarify what this means precisely later, but you might recall that
in the ODE case it is true that sums of scalar multiplies of solutions of a linear homogeneous ODE
are also solutions of the same ODE. This is also true in the PDE case, so something like

5e−t sinx+ 7e−9t sin(3x)

is also a solution of the heat equation. More generally, things like

c1e
−t sinx+ · · ·+ cne

−n2t sin(nx)

and other “linear combinations” of solutions are also solutions. But why stop with sums of scalar
multiples of finitely many solutions? Does it make sense to take an infinite sum of solutions and
still get a solution? The answer is that—once we handle convergence issues appropriately–yes it is
true that something like the infinite series

∞!

n=1

cne
−n2t sin(nx)
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will also be a solution of the heat equation. Again, there are some subtleties here dealing with
convergence (in particular, does this infinite sum even exist as a finite value?), but we will clarify
these as we go.

Towards Fourier series. Suppose now we go back and impose an initial condition on the heat
equation, by which we mean a function f(x) telling us what the initial temperature (at time 0)
should be at any position along the rod:

u(x, 0) = f(x) for all x.

We can ask whether it’s possible to find a solution of the heat equation of the “infinite sum” form

u(x, t) =

∞!

n=1

cne
−n2t sin(nx)

which in particular satisfies this given initial condition. In order for this candidate to satisfy
u(x, 0) = f(x), we need the following to be true:

f(x) = u(x, 0) =

∞!

n=1

cne
−n20 sin(nx) =

∞!

n=1

cn sin(nx).

The sum at the end is an example of a Fourier series, so the conclusion is that in order for

u(x, t) =

∞!

n=1

cne
−n2t sin(nx)

to be a solution of the initial value problem

∂u

∂t
=

∂2u

∂x2
, u(x, 0) = f(x),

the coefficients cn must come from a series expansion

f(x) =

∞!

n=1

cn sin(nx)

of the function f(x). If we can figure out what these coefficients cn should be, we can construct a
solution of our initial value problem.

Why Fourier? So, Fourier series will help us construct solutions of PDEs. Now, so far we are
only saying that such Fourier series indeed give solutions, but we are not saying anything about
whether they give all solutions. Perhaps there are other solutions of the same initial value problem
above apart from the ones derived from Fourier series. More conceptually, apart from saying that
“it works”, why should we even anticipate that Fourier series should play any role in solving PDEs
ahead of time? This is a deep issue, that we will shed a bit of light on later in the quarter.

For now, we can gather some sense as to why considering Fourier series when solving PDEs
might be reasonable by considering an analogous method for solving ODEs using power series. For
example, consider the ODE y′ = y. The single-variable functions which satisfy this are precisely
the scalar multiples of ex. One way to see this is by assuming that the unknown solution we want
can be expressed as a power series such as

y =

∞!

n=0

cnx
n.
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Then we can determine what properties this power series would need to have in order for the
function y it defines to satisfy y′ = y. From this you can derive that in fact the coefficients cn must
be of the form

cn =
C

n!

for some constant C, so that the solution we want looks like

y =

∞!

n=0

C

n!
xn,

which is precisely the power series expansion of y = Cex. So, the idea here is to assume you can
write your solution as a power series, and then work out what that power series actually has to
look like.

But power series are not the only types of series we can use to express functions in a “nice”
way. As we will see, many functions, in particular those which are continuously differentiable, can
in fact be expressed in the form

f(x) =
a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L )

for appropriate choices of a0, an, bn, and L. This right hand side is the form of a general Fourier
series, and if we assume that our solution of a given differential equation can be expressed in
this way, we can then try to work out information about the unknown coefficients in the hopes of
determining the solution explicitly. Again, there are deeper reasons for why Fourier series are the
right types of series to consider, but we’ll come back to this later.

Boundary values. The discussion above explains why the phrase “Fourier analysis” shows up in
the title of this course, so now we say something about the remaining phrase: “boundary value
problems”. Consider the heat equation, now with specified boundary values:

∂u

∂t
=

∂u

∂x2
, u(0, t) = 0 = u(L, t).

In the standard interpretation, we are imagining a metal rod of length L, and here we are stating
that the temperatures at the ends of the rod—i.e., at the boundaries—should be zero at all times.
The question is whether we can find a solution of the heat equation satisfying these boundary
conditions. Or, we can consider boundary conditions like

ux(0, t) = 0 = ux(L, t)

which characterizes a rod with insualted ends, and other examples. We will see here as well that
Fourier series end up being a natural thing to consider. But, unlike, say, an ODE with initial
conditions, the question of exitence and uniqueness of solutions is more subtle when imposing
boundary conditions. (We will also consider the two-dimensional heat equation

∂u

∂t
=

∂u

∂x2
+

∂u

∂y2
,

characterizing temperature functions u(x, y, t) on two-dimensional regions, and corresponding bound-
ary and initial conditions.)
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To give a sense of what can happen when imposing boundary conditions, consider the example
of the following second-order ODE with boundary conditions:

y′′ + 4y = 0, y(0) = 0, y(π) = 0.

The functions satisfying y′′ + 4y = 0 are all of the form

y = c1 cos(2t) + c2 sin(2t)

where c1 and c2 are scalars, as we will briefly review at some point. In order to satisfying the given
boundary conditions, we need

0 = y(0) = c1 cos 0 + c2 sin 0 = c1,

so that y = c2 sin(2t), and also
0 = y(π) = c2 sin(2π),

which is satisfied by all c2. Hence this particular boundary value problem in fact has infintely many
solutions, namely all scalar multplies of sin(2t). But, we can find other boundary conditions for
which there will only be one solution, and others for which there will be none. The point is that
more analysis is needed when determining the behavior of solutions with boundary conditions, as
there is no “general” answer that always applies.

Lecture 2: Fourier Series

Warm-Up. We give examples of boundary conditions on the ODE

y′′ + 9y = 0

which result in zero, exactly one, and infinitely many solutions. First, we note that all functions
satisfying y′′ + 9y = 0 are of the form

y = c1 cos(3t) + c2 sin(3t).

Consider the boundary conditinos y(0) = 0, y(π) = 0. To satisfy the first condition requires that

0 = y(0) = c1 cos(0) + c2 sin(0) = c1,

so that our candidate solution of the form y = c2 sin(3t). Any such function automatically satisfies
y(π) = 0 since sin(3π) = 0, so these boundary conditions result in infinitely many solutions.

Now, consider y(0) = 0, y(π) = 1. The first conditions again gives y = c2 sin(3t). But now no
such function satisfies y(π) = 1 regardless of c2, so these boundary condiitons result in no solutions.
Finally, for y(0) = 0, y(π2 ) = 1, we first have y = c2 sin(3t) from the first condition, and the second
requires

1 = y(π2 ) = c2 sin(
3π
2 ) = −c2.

Thus y = − sin(3t) is the only solution of y′′ + 9y = 0 satisfying the boundary conditions y(0) = 0
and y(3π2 ) = 1.

Fourier series. As we saw briefly last time, Fourier series will play a role in solving various PDEs.
To be clear, a Fourier series is an infinite series of the form

a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L ).

5



(We will see shortly why the constant terms is written as a0
2 instead of simply a0.) For now we

bypass the question of which functions can be expressed as such a series, and focus instead on
determining, in the case where a function is expressible in a such a way, any information we can
derive from having such a expression available. That is, if

f(x) =
a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L ),

what can we say about f or the required series? As a first observation, we note that the series itself
is periodic with period 2L, since the cosine and sine terms are 2L-periodic:

cos
nπ(x+ 2L)

L
= cos

"nπx
L

+ 2nπ
#
= cos

nπx

L

and similarly for sin nπx
L . Thus, the function f had better be 2L-periodic as well:

f(x+ 2L) = f(x).

By appropriately choosing the value of L we can in effect set the period to be whatever we need.
So we suppose that f is indeed 2L periodic. The next step is to see what we can say about the

unknown coefficients a0, an, and bn in the equation

f(x) =
a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L ).

We’ll refer to these coefficients as the Fourier coefficients of f , and we claim that the value of these
can be determined explicitly, so that there is only one possible set of coefficients for which this
equality can hold. Compare this to what happens for power series: if f is to be expressible as a
power series

f(x) =

∞!

n=0

cnx
n,

it turns out that the value of cn must be given by f (n)(0)
n! , where f (n) denotes the n-th order

derivative. The same type of conclusion is true of the Fourier coefficients above, only that the
explicit formulas will be a little more involved.

Orthogonality relations. Before deriving formulas for the Fourier coefficients, we highlight the
following integral identities, called the orthogonality relations of sine and cosine. (We will see next
time why we use the term “orthogonality” here.) For nonnegative integers n and m, we have:

$ L

−L
cos nπx

L cos mπx
L dx =

%
&'

&(

0 if m ∕= n

L if m = n ∕= 0

2L if m = n = 0
$ L

−L
cos nπx

L sin mπx
L dx = 0

$ L

−L
sin nπx

L sin mπx
L dx =

)
0 if m ∕= n or m = n = 0

L if m = n
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For the first result, when m = n = 0 note simply that we have

$ L

−L
cos 0πx

L cos 0πx
L dx =

* L
−L dx = 2L.

When m = n ∕= 0, we can use the double-angle formula for cosine cos2A = 1
2(1 + cos 2A) to get

$ L

−L
cos2 nπx

L dx =
1

2

$ L

−L
(1− cos 2nπx

L ) dx = 1
2

+
x− L

2nπ sin 2nπx
L

,---
L

−L
= L.

When m ∕= n, we can use the following trig identity:

cosA cosB =
1

2
[cos(A+B) + cos(A−B)].

This gives $ L

−L
cos nπx

L cos mπx
L dx =

1

2

$ L

−L
[cos (n+m)πx

L + cos (n−m)πx
L ] dx,

which can be computed directly to get the value 0. (Both pieces give terms involving sine which
evaluate to zero at both L and −L, since sine of an integer multiple of π is zero.)

Similar trig identities for the product of two sine functions, or a cosine function and a sine
function can be used to derive the other orthogonality relations.

Deriving Fourier coefficients. We now use the orthogonality relations to derive formulas for
the coefficients in

a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L ).

The computation we go through might seem to come out of nowhere at first, but next time we will
put it in its proper context.

First, for a nonnegative integer m, we multiply both sides of the equality above through by
cos mπx

L :

f(x) cos mπx
L = a0

2 cos mπx
L +

∞!

n=1

+
an cos

nπx
L cos mπx

L + bn sin
nπx
L cos mπx

L

,
.

Now we integrate both sides:

$ L

−L
f(x) cos mπx

L dx = a0
2

$ L

−L
cos mπx

L dx

+

∞!

n=1

.
an

$ L

−L
cos nπx

L cos mπx
L dx+ bn

$ L

−L
sin nπx

L cos mπx
L

/
dx.

There is a subtle point here in that, although it is always true that the integral of a sum of finitely
many functions equals the sum of the integrals of each of those individual functions, this is not true
for integrals of infinite sums in general. In other words, some care is needed in order to guarantee
that we can exchange the integration and summation to get that

$ L

−L

0 ∞!

n=1

(ancos
nπx
L cos mπx

L dx+ bnsin
nπx
L cos mπx

L )

1
dx
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equals
∞!

n=1

.
an

$ L

−L
cos nπx

L cos mπx
L dx+ bn

$ L

−L
sin nπx

L cos mπx
L dx

/
.

This is related to the problem of understanding the convergence of Fourier series, but we postpone
this discussion for now.

The orthgonality relations tell us what all the integrals in

a0
2

$ L

−L
cos 0πx

L cos mπx
L dx+

∞!

n=1

.
an

$ L

−L
cos nπx

L cos mπx
L dx+ bn

$ L

−L
sin nπx

L cos mπx
L

/
dx

evaluate to. (Note that we introduced cos 0πx
L into the first integral; this of course is simply the

constant 1, but we write it in this way so as to make the application of the orthogonality relations
to this part clear.) If m = 0, the only nonzero integral in this entire expression is the first one, in
which case the value of the integral is 2L. Thus we get in this case that

$ L

−L
f(x) cos 0πx

L dx =
a0
2
(2L) = a0L,

so

a0 =
1

L

$ L

−L
f(x) cos 0πx

L dx =
1

L

$ L

−L
f(x) dx.

When m > 0, the only nonzero integral on the right side of the equation

$ L

−L
f(x) cos mπx

L dx = a0
2

$ L

−L
cos mπx

L dx

+

∞!

n=1

.
an

$ L

−L
cos nπx

L cos mπx
L dx+ bn

$ L

−L
sin nπx

L cos mπx
L

/
dx.

is the specific one in the infinite series occuring for n = m and involving the two cosine terms. That
is, the entire right side above simplifies to am

* L
−L cos mπx

L cos mπx
L dx, so we get

$ L

−L
f(x) cos mπx

L dx = am

$ L

−L
cos

mπx

L
cos

mπx

L
dx = amL,

and thus

am =
1

L

$ L

−L
f(x) cos mπx

L dx.

Here we assumed m > 0, but note that this same expression also gives the correct value we derived
aboe for a0 when m = 0. This is why we wrote the constant term in our Fourier series as a0

2 instead

of as a0: in the latter case, the formula for the value of a0 would be 1
2L

* L
−L f(x) dx, where the extra

2 comes from the differenence in the orthogonality relations when m = n ∕= 0 versus m = n = 0;
by incorporating this 1

2 into the Fourier series form instead, we can use the same formula for a0 as
for the other am.

So, we have now derived the explicit formulas for the Fourier coefficients an (n ≥ 0) when we
have equality in

f(x) =
a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L ).
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A similar argument where we instead multiply through by sin mπx
L (m > 0), integrate, and then

use the same orthgonality relations produces

$ L

−L
f(x) sin mπx

L dx = bm

$ L

−L
sin mπx

L sin mπx
L dx = bmL,

so that bm = 1
L

* L
−L f(x) sin mπx

L dx. The conclusion is thus that, if a periodic function f is to be
expressible as a Fourier series

f(x) =
a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L ),

the values of the Fourier coefficients an, bn must be given by

an =
1

L

$ L

−L
f(x) cos mπx

L dx for n ≥ 0 and bn =
1

L

$ L

−L
f(x) sin nπx

L dx for n ≥ 1.

Thus, determining an explicit Fourier series simply comes down to computing some integrals.
(That’s not to say that computing these integrals is necessarily easy, as we will see.)

Lecture 3: More on Fourier Series

Warm-Up 1. We compute the Fourier series of the “square wave” function defined by setting

f(x) =

)
0 −1 ≤ x < 0

1 0 ≤ x < 1

and then extending to all of R to have period 2. Thus, the portion of the graph for 1 ≤ x < 2 looks
just like the portion for −1 ≤ x < 0, the portion for 2 ≤ x < 3 looks like the portion for 0 ≤ x < 1,
and so on:

(Hopefully we can see where the term “square wave” comes from!) In this case thus the value of L
in the general form of a Fourier series is 1, which is half the period.

First, we compute an:

an =
1

1

$ 1

−1
f(x) cos nπx

1 dx =

$ 1

0
cosnπx dx =

)
1 n = 0

0 n ∕= 0.

where we use the fact that f(x) = 0 on the interval between −1 and 0, so that the integral over
this portion is zero, and that f(x) = 1 on the interval between 0 and 1 so that the integral of
f(x) cosnπx over this portion is just the integral of cosnπx. For bn, n ≥ 1 we have:

bn =
1

1

$ 1

−1
f(x) sin nπx

1 dx
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=

$ 1

0
sinnπx dx

= − 1

nπ
cosnπx

---
1

0

=
1

nπ
(1− cosnπ).

Thus the Fourier series of this function f is

1

2
+

∞!

n=1

1

nπ
(1− cosnπ) sinnπx.

(There are no cosnπx terms for n ≥ 1 since they all have coefficient an = 0)
We can rewrite this series in another way using the fact that cosnπ = (−1)n, so that

1− cosnπ =

)
0 if n is even

2 if n is odd.

So it is only the odd-indexed terms that show up in our series, and if we express these odd indices
as 2n+ 1 for n ≥ 0, we get that the Fourier series of f is

1

2
+

∞!

n=0

2

(2n+ 1)π
sin[(2n+ 1)πx].

As we’ve said before, the question as to whether this series does in fact equal the square wave
function f is one we’ll come back to.

Warm-Up 2. We compute the Fourier series of the “triangular wave” function defined by setting

f(x) =

)
−x −L ≤ x < 0

x 0 ≤ x < L

and extending to have period 2L. (Draw the graph of this to see why we use the phrase “triangular
wave”.) First, let us actually determine the value of bn:

bn =
1

L

$ L

−L
f(x) sin nπx

L dx =
1

L

.$ 0

−L
−x sin nπx

L dx+

$ L

0
x sin nπx

L dx

/

Now, we can save time by noting that the first integral on the right is precisely the negative of the
second one, which we can see by making a change of variables u = −x:

$ 0

−L
−x sin nπx

L dx =

$ 0

L
u sin −nπu

L (−du) = −
$ 0

L
−u sin nπu

L du = −
$ L

0
u sin nπu

L du.

Thus, the sum of the integral from −L to 0 with the integrl from 0 to L is zero. The better
explanation for why this happens is to note that since f(x) is an even function (meaning f(−x) =
f(x) for all x) and sin nπx

L an odd function, the product f(x) sin nπx
L is odd and integrating an odd

function over a symmetric interval centered at zero results in the value zero. So bn = 0 for all
n ≥ 1, and there will be no sin nπx

L terms in the Fourier series.
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Now, for an we have

an =
1

L

$ L

−L
f(x) cos nπx

L dx =
2

L

$ L

0
x cos nπx

L dx,

where now we use the fact that cos nπx
L is an even function to say that the product f(x) cos nπx

L is
even, and integrating an even function over a symmetric interval gives twice the value of its integral
over half of the interval. (Alterantively we can simply break up the integral into one piece over
[−L, 0] where f(x) = −x, and a piece over [0, L] where f(x) = x, and then compute both integrals.
Using the fact that we are integrating an even function will save some of work.) For n = 0 we get

a0 =
2

L

$ L

0
x dx = L,

and for n ≥ 1 we get (using integration by parts):

an =
2

L

$ L

0
x cos nπx

L dx

=
2

L

2
L

nπ
x sin

nπx

L

----
L

0

+
L2

n2π2
cos

nπx

L

----
L

0

3

=
2L

n2π2
(cosnπ − 1).

Thus the Fourier series of the triangular wave function f is

L

2
+

∞!

n=1

2L

n2π2
(cosnπ − 1) cos

nπx

L
.

If we again distinguish between even and odd n, so that cosnπ − 1 is either −2 or 0, we can write
this Fourier series as

L

2
−

∞!

n=0

4L

(2n+ 1)2π2
cos

(2n+ 1)πx

L
.

Here comes the linear algebra. Now we revisit the derivation of the Fourier coefficients we went
through last time, and view it from the “proper” perspective. The correct context behind all of this
is the linear algebra of inner products. In this particular case, consider a “space” V of 2L-periodic
functions. (We will place restrictions on the types of functions we need to consider later.) The sum
of periodic functions is still periodic, as is any scalar multiple of a periodic function. This says that
V is actually a vector space, which, if you recall, is just a set equipped with addition and scalar
multiplication operations, satisfying some standard axioms. (We won’t have a real need to recall
the formal definition of “vector space”, but you can look it up elsewhere.)

On this space V we can define the following inner product : for f, g ∈ V , we define (f, g) to be

(f, g) =

$ L

−L
f(x)g(x) dx.

Think of this as analogous to the usual dot product of vectors in Rn, where we think of a function
f as a “vector” with an infinite number of components indexed by x in [−L,L]. The expression
f(x)g(x) is the product of the “x-components” of f and g, and taking the integral of f(x)g(x)
then “adds” these products together, just as in what happens for x · y = x1y1 + · · · + xnyn when
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x = (x1, . . . , xn) and y = (y1, . . . , yn). This inner product has the usual properties one would
expect of a dot product, like:

(f, f) ≥ 0, (f, g) = (g, f), and (f, c1g1 + c2g2) = c1(f, g1) + c2(f, g2)

where in the final one c1 and c2 are scalars. After using the definition of this particular inner
product, we see that each of these amounts to a basic property of integrals. The point is that
anything you did you with dot/inner products before can be carried over to the setting of this
particular vector space and inner product. (A vector space equipped with an inner product is close
to the definition of what a Hilbert space is, although the formal definition of a Hilbert space has
one more technical requirement we will mention later.)

Back to orthogonality. With this inner product at hand, we now define what it means for two
functions f and g to be orthogonal. Based on what happens for the usual dot product in R2 or R3,
we say that f and g are orthogonal if their inner product is zero:

(f, g) =

$ L

−L
f(x)g(x) dx = 0.

Now we see that the “orthogonality relations” we had last time are precisely the statements that
the various sine and cosine functions we are considering in a Fourier series are all orthogonal to one
another:

(cos nπx
L , cos mπx

L ) = 0 = (sin nπx
L , sin mπx

L )

for m ∕= n and
(cos nπx

L , sin mπx
L ) = 0

for all m,n. (This is why we call these the “orthogonality” relations.) Moreover:

(cos 0πx
L , cos 0πx

L ) = 2L and (cos nπx
L , cos nπx

L ) = L = (sin nπx
L , sin nπx

L )

for n ≥ 1. The point is that these cosine and sine functions make up an “orthogonal basis” of
our space V , and the problem of expressing a function as a Fourier series is just the problem of
writing a vector as a linear combination of orthogonal basis vectors. (To be clear, so far we only
that these cosine and sine functions form an orthogonal set of elements of V ; to say that they form
an orthogonal basis also requires knowing that they “span” V , which means that every element
can indeed be written as a linear combination of these. This again boils down to a question about
convergence.)

Rederiving the coefficients. For the sake of convenient notation, we will use φn and ψn to
denote these cosine and sine functions:

φn(x) = cos
nπx

L
and ψn(x) = sin

nπx

L
.

Then our desired Fourier series is

f(x) =
a0
2
φ0(x) +

∞!

n=1

[anφn(x) + bnψn(x)].

(Again, ψ0(x) = cos 0 = 1, but we write it here explicitly next to a0
2 simply to make this term

look like the rest, apart from the extra 1
2 which comes from the fact that (φ0,φ0) = 2L instead of

(φn,φn) = L for n ≥ 1.)

12



Let us rederive the Fourier coefficients using this new notation, and since we worked it out
explicitly for an last time, this time we will show the work for bn. Fix m ≥ 1 and take the inner
product of both sides above with ψm:

(f,ψm) =
a0
2
(φ0,ψm) +

2 ∞!

n=1

[anφn + bnψn],ψm

3
.

By linearity of the inner product, we can distribute the inner product through the series on the
right to get:

(f,ψm) =
a0
2
(φ0,ψm) +

∞!

n=1

[an(φn,ψm) + bn(ψn,ψm)].

(Again, some care is needed here: this is the same “exchange integration and infinite summation”
issue we mentioned last time. In this case, although we know that something like

(c1f1 + · · ·+ cnfn, g)

distributes as c1(f1, g) + · · · + cn(fn, g), more work is needed—convergence issues—to know that
this is still true if we have an infinite sum in the first component of the inner product, as we do
above.) By the orthogonality of the functions φn and ψn, we have

(φ0,ψm) = 0, (φn,ψm) = 0 for all m,n, and (φn,ψm) = 0 for n ∕= m.

Thus the only nonzero term on the right side of

(f,ψm) =
a0
2
(φ0,ψm) +

∞!

n=1

[an(φn,ψm) + bn(ψn,ψm)]

is the one where n = m, so we get

(f,ψm) = bm(ψm,ψm).

Hence

bm =
(f,ψm)

(ψm,ψm)
.

If we put in what the definition of this inner product actually is, this expression is just

bm =
(f,ψm)

(ψm,ψm)
=

1

L

$ L

−L
f(x) sin mπx

L dx

as we had before. Similarly, by taking inner products of both sides with φn (which is just what we
did last time only without the language of inner products), we get

an =
(f,φn)

(φn,φn)
=

1

L

$ L

−L
f(x) cos nπx

L dx

for n ∕= 0 and
a0
2

=
(f,φ0)

(φ0,φ0)
.

13



You might recognize the formula for these coefficients as precisely the same one you get when
considering orthogonal basis vectors of, say, R3: if u1,u2,u3 form an orthogonal basis of R3, then
when writing x as a linear combination of u1,u2,u3, the coefficient of ui needed to do so

x · ui

ui · ui

where · is the usual dot product. Of course, this is no accident, since is the same computation in
that case as the one here, all dependent on having orthogonality.

Orthogonal projections. Hence our desired Fourier series written solely using inner products is

f =
(f,φ0)

(φ0,φ0)
φ0 +

∞!

n=1

4
(f,φn)

(φn,φn)
φn +

(f,ψn)

(ψn,ψn)
ψn

5
.

An individual term of this series, such
(f,ψn)

(ψn,ψn)
ψn

for example, is again one you might recognize from linear algebra, say in the form
"x · u
u · u

#
u

when dealing with vectors in Rn: this is precisely the orthogonal projection of x onto u! By analogy
we then refer to

(f,ψn)

(ψn,ψn)
ψn

as being the orthogonal projection of f onto ψn, and similarly for the terms in the Fourier series
involving φn.

Thus we can reformulate the problem of finding a Fourier series as one about reconstructing a
function f as the (infinite) sum its orthogonal projections onto the orthogonal basis functions φn

and ψn. The moral is that the study of Fourier series is essentially the study of a certain orthogonal
basis for a certain vector space and the orthogonal projections onto said basis elements. The same
idea will make an appearance later in the context of Sturm-Louiville theory.

Lecture 4: Complex Fourier Series

Warm-Up. Define the norm of a function f defined on the interval [−π,π] to be ‖f‖ =
6

(f, f),
where (f, f) is the inner product we defined last time. So, explicitly:

‖f‖ =

7$ π

−π
f(x)2 dx.

(This is called the L2-norm of f , and is an infinite-dimensional version of the usual norm ‖x‖ =6
x21 + · · ·+ x2n of vectors x = (x1, . . . , xn) in Rn.) We find the function in the span of

φ0(x) = 1, φ1(x) = cosx, ψ1(x) = sinx, φ2(x) = cos 2x, ψ2(x) = sin 2x

which minimizes
88x2 − g(x)

88 among all g in this span. We are using the term “span” here in the
same way as in linear algebra: it is the set of all possible linear combinations of the given functions,
so in this particular case functions that look like

c0 + c1 cosx+ c2 sinx+ c3 cos 2x+ c4 sin 2x

14



where the ci are scalars.
Now, if you think about the analogous question in the setting of Rn, the answer there is one

you would have seen previously: given x in Rn and u1, . . . ,uk in Rn, the vector in span(u1, . . . ,uk)
which minimizes ‖x− y‖ among all y in this span is precisely the orthogonal projection of x onto
this span! Indeed, this is one way of defining what “orthgonal projection” actually means. The same
fact is true in more general vector spaces, so this problem is just asking to compute the orthogonal
projection of the function x2 onto the span of the functions φ0,φ1,ψ1,φ2,ψ2 above. But if you
recall the linear-algebra interpretation we gave behind Fourier series last time, this orthoogonal
projection is precisely the portion of the full Fourier series of x2 which only goes up to the cos 2x
and sin 2x terms:

a0
29:;<

proj onto φ0

+ a1 cosx9 :; <
proj onto φ1

+ b1 sinx9 :; <
proj onto ψ1

+ a2 cos 2x9 :; <
proj onto φ2

+ b1 sin 2x9 :; <
proj onto ψ2

where for n ≥ 1:

an =
(x2,φn)

(φn,φn)
=

1

π

$ π

−π
x2 cosnx dx and bn =

(x2,ψn)

(ψn,ψn)
=

1

π

$ π

−π
x2 sinnx dx.

(This uses the fact that the functions φ0,φ1,ψ1,φ2,ψ2 make up an orthogonal basis of this span, so
that the orthogonal projection onto this entire span is the sum of the orthogonal projections onto
each individual basis vector. For a0 it is a0

2 which equals the orthogonal projection, not simply
a0 alone, which stems from the difference in values between (φ0,φ0) = 2π and (φn,φn) = π for
n ∕= 0. The point of this problem is to emphasize this connection between orthgonal projections
and Fourier series; I will not asking something along these lines phrased in terms of linear algebra
on an exam, but you should know about it for the sake of context!)

So, we compute some Fourier coefficients. Since x2 is even on the interval [−π,π], the coefficients
bn are zero since they involve integrals of the odd functions x2 sinnx over symmetric intervals
centered at zero. Then:

a0 =
1

π

$ π

−π
x2 dx

=
2

π

$ π

0
x2 dx since the integrand is even

=
2π2

3

an =
1

π

$ π

−π
x2 cosnx dx (n ≥ 1)

=
2

π

$ π

0
x2 cosnx dx since the integrand is even

=
2

π

.
1

n
x2 sinnx

---
π

0
− 2

n

$ π

0
x sinnx dx

/

= − 4

πn

.
− 1

n
x cosnx

---
π

0
+

1

n2
sinnx

---
π

0

/

=
4 cosnπ

n2

15



The desired orthogonal projection, and hence function in the span of φ0,φ1,ψ1,φ2,ψ2 which mini-
mizes

88x2 − g
88 among all g in this span, is

a0
2

+ a1 cosx+ b1 sinx+ a2 cos 2x+ b2 sin 2x =
π2

3
− 4 cosx+ cos 2x.

Orthonormal functions. As you saw in linear algebra, we can also turn an orthogonal basis of
a space into an orthonormal one by dividing each basis vector by its norm. In our case, for the
functions

φn = cos
nπx

L
and ψn = sin

nπx

L
,

the orthogonality relatoins say that:

‖φ0‖ =
6

(φ0,φ0) =
√
2L, ‖φn‖ =

6
(φn,φn) =

√
L =

6
(ψn,ψn) = ‖ψn‖),

where n ≥ 1. Thus, we can produce the following orthonormal basis of our space of periodic
functions:

φ0

‖φ0‖
=

1√
2L

,
φn

‖φn‖
=

1√
L
cos

nπx

L
,

ψn

‖ψn‖
=

1√
L
sin

nπx

L
.

With these normalized functions—call them =φ0, =φn, =ψn respectively—the Fourier series looks like:

(f,=φ0)=φ0 +

∞!

n=1

[(f,=φn)=φn + (f, =ψn)=ψn]

This perspective will not be crucial for us, but just makes another connection with linear algebra.

Complex orthogonality. Computing a Fourier series explicitly takes quite a bit of work, since
there are multiple integrals to compute, some involving cosine and some sine. (Sure, for certian
functions, namely those which are even or odd, we can cut down the number of integrals we actually
have to compute since some will automatically be zero, but that is not necessarily the case for most
functions.) The form of the Fourier series can also be a bit cumbersome to write down, since there’s
one portion which needs cosines and another which needs sines. It would be nice to have a more
compact way of expressing a (real) Fourier series, while at the same reducing the number of integral
computations needed.

To see how this can be done, we start by recaling the following identity when dealing with
complex numbers:

eiθ = cos θ + i sin θ.

(Indeed, this is one possible way of defining what the complex exponential eix even means.) Then
for any n we also have

einx = cosnx+ i sinnx.

The point is that the cosine and sine terms on the right are precisely the ones which show up in a
Fourier series (say for a 2π-periodic function), so that it seems plausible that we can rewrite the
entire Fourier series using complex exponentials instead.

To set the stage, we consider a vector space of complex-valued 2π-periodic functions (still of a
real variable), and define take the following as an inner product:

(f, g) =

$ π

−π
f(x)g(x) dx.
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The bar on g(x) denotes the complex conjugate. (Recall that g is complex-valued, so that even if x
is real, g(x) will be a complex number in general.) The need to use a conjugate for this second term
can be traced back to the fact that to get the norm of a complex z, we need to take

√
zz, which

will always be real. (Concretely, when taking the “norm” of f , using
* π
−π f(x)

2 dx does not work if
f(x) is complex since this will not produce a nonnegative real number as a result; we need to use* π
−π f(x)f(x) dx instead, which is always real and nonnegative, so that then taking the square root

makes sense.) Then for the functions einx, where n now can be any integer (not just nonnegative),
we have for n ∕= m:

(einx, eimx) =

$ π

−π
einxeimx dx

=

$ π

−π
einxe−imx dx

=

$ π

−π
ei(n−m)x dx

=
1

i(n−m)
ei(n−m)x

---
π

−π

=
1

i(n−m)
[ei(n−m)π − e−i(n−m)π].

(Note that computing integrals with complex numbers works the same as any other integral com-
putations; simply treat i as a constant like you normally would.) Using eiθ = cos θ+ i sin θ, we can
see that:

ei(n−m)π = cos([n−m]π) + i sin([n−m]π) = cos([n−m]π)

and
e−i(n−m)π = cos(−[n−m]π) + i sin(−[n−m]π) = cos([n−m]π)

since sine of an integer multiple of π is zero, and cosine is even. The upshot is that

(einx, eimx) =
1

i(n−m)
[ei(n−m)π − e−i(n−m)π] = 0,

so the functionx einx are orthogonal with respect to this complex inner product. Moreover,

(einx, einx) =

$ π

−π
einxe−inx dx =

$ π

−π
dx = 2π,

so all of these functions have “norm”
√
2π.

Complex Fourier series. So, by analogy with the real Fourier series using the orthgonal cosine
and sine functions, we can now consider a complex Fourier series using the orthgonal einx functions
instead. Since these functions are orthogonal, if a complex-valued function f is expressible as such
a Fourier series:

f(x) =

∞!

n=−∞
cne

inx,

we get that the coefficients cn must be given by

cn =
(f, einx)

(einx, einx)
=

1

2π

$ π

−π
f(x)einx dx =

1

2π

$ π

−π
f(x)e−inx dx.
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We call this series with these specific coefficients the complex Fourier series (also called the expo-
nential Fourier series) of f . (Note that the sum here allows for n to be negative, to make sure
we cover all of the orthogonal functions einx. For the cosine/sine Fourier series there was no need
to allow n negative, since cos(−nx) = cos(nx) and sin(−nx) = − sin(nx), so that the terms which
would occur for negative n are already accounted for in the terms with positive n. In the complex
case, it is not true that einx is the same as or is the negative of e−inx—rather they are complex
conjugates of one another—so each of these must be included in the series.)

The derivation of the formula for cn comes from the same one we used for the real Fourier
coefficients, but just to be clear: take inner product of both sides of

f(x) =

∞!

n=−∞
cne

inx

with eimx to get:

(f, eimx) =

2 ∞!

n=−∞
cne

inx, eimx

3
=

∞!

n=−∞
cn(e

inx, eimx),

and use orthogonality to see that the only potential nonzero term on the right is the one for
n = m. Note now that, instead of having to compute an and bn coefficients separately, here we
have only one (complex) integral to compute—apart from the n = 0 case which often requires its
own computation.

The complex Fourier series of f certainly looks cleaner than the previous series using sines and
cosines, or at least it is a more compact form to write down. But it is fair to ask just what relation
there is between this complex Fourier series and the previous real one? The answer is a very nice
one: when f is a real-valued function, the complex Fourier is literally the same as the real Fourier
series! That is, when f is real, we have equality

a0
2

+

∞!

n=1

(an cosnx+ bn sinnx) =

∞!

n=−∞
cne

inx

for the values of a0, an, bn, cn given before.
So, we are not computing a different type of Fourier series after all, at least for real functions—

all we are doing is computing the same Fourier series in an alternative (maybe quicker since it
involves fewer integrals?) way. Showing that the complex Fourier series is just a rewritten form
of the real Fourier series, for real-valued functions, is a problem on the homework. For the most
part this quarter, we will mainly care about the real Fourier series, but having the complex form
will make certain things simpler to express from time to time; in particular, the complex form will
make the connection between Fourier series and Fourier transforms clearer.

Example. We compute the complex Fourier series of the triangular wave function:

f(x) =

)
−x, −π ≤ x < 0

x, 0 ≤ x < π,
f(x+ 2π) = f(x).

Note that since f is real-valued, the complex Fourier series will be exactly the same as the real
Fourier series we computed previously, although written to use complex exponentials instead of
sines and cosines.
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First, we compute:

c0 =
1

2π

$ π

−π
f(x)

1; <9 :
e−i0x dx =

1

π

$ π

0
x dx =

π

2
,

where we use the fact that f is even to say that
* π
−π = 2

* π
0 . Next, for n ∕= 0 we have:

cn =
1

2π

$ π

−π
f(x)e−inx dx =

1

2π

.$ 0

−π
−xe−inx dx+

$ π

0
xe−inx dx

/
.

Now, in this case we cannot simplify this to twice the integral from 0 to π since, although f is
even, f(x)e−inx is not even: replacing x by −x gives the complex conjugate of f(x)e−inx, but not
f(x)e−inx itself. Nonetheless, there is a way to simplify our computation as follows. If we make
the change of variables u = −x in the first integral we get:

$ 0

−π
−xe−inx dx =

$ 0

π
ueinu(−du) =

$ π

0
ueinu du,

which is the same as
* π
0 xeinx dx after renaming the variable of integration. This is the conjugate

of the second integral in our expression:

$ π

0
xe−inx dx =

$ π

0
xe−inx dx =

$ π

0
xeinx dx.

Thus, the expression $ 0

−π
−xe−inx dx+

$ π

0
xe−inx dx

is the sum of a complex number and its conjugate, so it should equal twice the real part of that
complex number:

$ 0

−π
−xe−inx dx+

$ π

0
xe−inx dx = 2

.
real part of

$ π

0
xe−inx dx

/
.

Hence there is only one integral we need to compute, namely
* π
0 xe−inx dx.

We have:
$ π

0
xe−inx dx = − 1

in
xe−inx

---
π

0
+

1

in

$ π

0
e−inx dx

= − 1

in
πe−inπ − 1

i2n2
e−inx

---
π

0

= − 1

in
πe−inπ +

1

n2
(e−inπ − 1)

= i
π cosnπ

n
+

1

n2
(cosnπ − 1).

We only need twice the real part of this, so overall we get

cn =
1

2π

.$ 0

−π
−xe−inx dx+

$ π

0
xe−inx dx

/
=

1

2π

.
2

n2
[cosnπ − 1]

/
=

cosnπ − 1

πn2
.
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The complex Fourier series of f is thus

∞!

n=−∞
cne

inx where c0 =
π

2
and cn =

cosnπ − 1

πn2
for n ∕= 0,

which we can also write as
π

2
+

∞!

n=−∞
n ∕=0

cosnπ − 1

πn2
einx,

where the n ∕= 0 in the notation for the sum indicates that the n = 0 term is meant to be excluded;
the n = 0 term is written separately at the start since it has a different form from the other cn. As
alluded to above (based on a homework problem), this complex Fourier series can be shown to be
literally the same as the Fourier series

π

2
+

∞!

n=1

2

n2π
(cosnπ − 1) cosnx

we previously computed in Warm-Up 2 of Lecture 3.

Lecture 5: Fourier Convergence

Warm-Up. We compute the complex Fourier series of f(x) = x2,−π ≤ x ≤ π, extended to be
2π-periodic. We have

c0 =
1

2π

$ π

−π
x2 dx =

π2

3

and for n ≥ 0:

cn =
1

2π

$ π

−π
x2e−inx dx

=
1

2π

.
− 1

in
x2e−inx

----
π

−π

+
2

in

$ π

−π
xe−inx dx

/

= − iπ

2n
(einπ − e−inπ) +

1

inπ

.
− 1

in
xe−inx

----
π

−π

− 1

i2n2
e−inx

----
π

−π

/

= − iπ

2n
(einπ − e−inπ) +

1

n2
e−inπ +

1

n2
einπ − i

πn3
(einπ − e−inπ),

which simplies to 2
n2 cosnπ after using e±inπ = cos(nπ)± i sin(nπ) = cos(nπ). The complex Fourier

series of f is thus

π2

3
+

∞!

n=−∞
n ∕=0

(−1)n
2

n2
einx.

Note that if we use einx = cos(nx) + i sin(nx), and group the term occuring for −n with the term
occuring for n, we get can rewrite this as

π2

3
+

∞!

n=−∞
n ∕=0

(−1)n
2

n2
einx =

π2

3
+

∞!

n=1

(−1)n
2

n2
(einx + e−inx) =

π2

3
+

∞!

n=1

(−1)n
4

n2
cos(nx),

20



which is the real Fourier series of f .

Partial sums. We now know how to compute Fourier series, real or complex, but we have not said
anything about whether these series actually converge, let alone what they converge to. Ideally we
would hope that the Fourier series of a function actually converges to that function itself, since the
entire point of this process was in trying to express a given function as a Fourier series. We know
that if a given function is expressible as a Fourier series, the only possible Fourier series that can
work is the one we’ve defined, but that’s different than saying that the series we get in this way
does in fact converge to our function.

Before we answer these questions, we first recall what convergence of a series actually means.
Given a series

>∞
n=1An, we say that it converges to S if the sequence of partial sums

SN = A1 +A2 + · · ·+AN

converges to S as N → ∞. That is, we look at the sequence formed by

S1 = A1

S2 = A1 +A2

S3 = A1 +A2 +A3

S4 = A1 +A2 +A3 +A4

...

and ask whether these values are converging as we add on more and more terms. In the case of a
Fourier series the partial sums looks like

a0
2

+

N!

n=1

(an cos
nπx
L + bn sin

nπx
L )

=
a0
2

+ a1 cos
πx
L + b1 sin

πx
L + a2 cos

2πx
L + b2 sin

2πx
L + · · ·+ aN cos Nπx

L + bN sin Nπx
L .

Specifically, this is called the N -th order partial sum of the Fourier series, and is an example of a
trigonometric polynomial, which in general refers to a linear combination of sines and cosines. If we
are looking at the Fourier series of a function f , the question is then whether these trigonometric
polynomials converge to f .

Fourier convergence. We will give the answer to the question above, which is easy to state, and
next time we’ll say something about why it’s true. The Fourier convergence theorem states the
following:

Suppose f is a piecewise C1 function, which means that it is piecewise continuous with
a piecewise continuous derivative. Then the Fourier series of f :

a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L ),

where

an =
1

L

$ L

−L
f(x) cos nπx

L dx and bn =
1

L

$ L

−L
f(x) sin nπx

L dx,
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converges to the function given by

f(x−) + f(x+)

2

where f(x−) = limt→x− f(t) is the limit of f as t approaches x from the left and
f(x+) = limt→x+ f(t) the limit as t approaches x from the right.

So, at any x, the value to which the Fourier series of f converges is the average of the left- and
right-hand limits of f at x. Note that if f happens to be continuous at x, the left- and right-hand
limits above both equal f(x), so this average value is just f(x) in this case. Hence at points x
where f is continuous, the equality

f(x) =
a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L )

does hold for an, bn as defined above.
There’s more to say about this, and in particular there are some subtleties behind what type of

“convergence” we actually mean here, but we’ll come back to this. Also, we’ll say something about
how the bad the “error” can be when approximating a function by its various Fourier partial sums.

Example. Consider the square wave function

f(x) =

)
0, −1 ≤ x < 0

1, 0 ≤ x < 1
; f(x+ 2) = f(x)

whose Fourier series we previously found to be

1

2
+

∞!

n=1

1− cosnπ

nπ
sinnπx.

Note that f is piecewise constant, so it is piecewise C1 as well. Thus the Fourier convergence
theorem applies, and says that this particular series converges at a point x to the average of the
one-sided limits at x.

For −1 < x < 0, f is continuous at x, so at these points this Fourier series converges to f(x) = 0.
For 1 < x < 0, f is again continuous at x, so here the series above converges to f(x) = 1. Now, f is
not continuous at, say x = 0, so here the Fourier series converges to the average of 0 (the left-hand
liimt at 0) and 1 (the right-hand limit), so it converges to 1

2 . This is also true at x = 1,x = −1, and
in fact at any integer value of x. Thus overall the Fourier series above converges to the function
defined by

g(x) =

%
&'

&(

0, −1 < x < 0
1
2 , x = −1, 0, 1

1, 0 < x < 1

and extended periodically. For example, at x = 1
2 , we thus have the following identity:

1 =
1

2
+

∞!

n=1

1− cosnπ

nπ
sin

nπ

2
=

1

2
+

∞!

n=0

2

(2n+ 1)π
sin

(2n+ 1)π

2
=

1

2
+

∞!

n=0

(−1)n
2

(2n+ 1)π
.

22



After rearranging terms, we can turn this into

π

4
=

∞!

n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+ · · · ,

which is a nice identity.
The function to which the series above converges has a graph which looks like:

This is exactly the graph of the original square wave function f , except for at the integer points
where f was not continuous. Now, we can also plot some of the Fourier partial sums to see the
convergence actually happening before our eyes. The 1-st order partial sum is

1

2
+

2

π
sinπx,

whose graph (super imposed on the triangular wave) is:

The 3-rd order partial sum
1

2
+

2

π
sinπx+

2

3π
sin 3πx

and 5-th order parital sum

1

2
+

2

π
sinπx+

2

3π
sin 3πx+

2

5π
sin 5πx

have the following graphs, respectively:
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We can literally see the convergence happening: as the order of the partial sum increases, so that
we add on more and more terms, we get even better approximations to the square wave:

In the limit, the steep jumps at the points at which the triangular wave is discontinuous become
the single points at heights 1

2 in the limit function.

Another example. The triangular wave function

f(x) =

)
−x −π ≤ x < 0

x 0 ≤ x < π
; f(x+ 2π) = f(x)

has Fourier series

π

2
+

∞!

n=1

2

n2π
(cosnπ − 1) cosnx =

π

2
−

∞!

n=0

4

(2n+ 1)2π
cos([2n+ 1]x).

In this case, f is continuous at all points, so the Fourier series converges to the value of f at all
points. Thus we have. for example,

−x =
π

2
−

∞!

n=0

4

(2n+ 1)2π
cos([2n+ 1]x) for − π ≤ x ≤ 0

and

x =
π

2
−

∞!

n=0

4

(2n+ 1)2π
cos([2n+ 1]x) for 0 ≤ x ≤ π.

At x = π then, this gives

π =
π

2
−

∞!

n=0

4

(2n+ 1)2π
cos([2n+ 1]π) =

π

2
+

∞!

n=0

4

(2n+ 1)2π
,

which after rearranging gives the following nice identity:

π2

8
=

∞!

n=0

1

(2n+ 1)2
= 1 +

1

32
+

1

52
+

1

72
+ · · · .

The first few nonconstant Fourier partial sums are

π

2
− 4

π
cosx,

π

2
− 4

π
cosx− 4

9π
cos 3x,

π

2
− 4

π
cosx− 4

9π
cos 3x− 4

25π
cos 5x,

whose graphs (superimposed on the triangular wave graph), respectively, look like;
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Again, these Fourier approximations just get better and better as we take more and more terms.
(This last one in particular is already pretty good!)

Lecture 6: More on Convergence

Warm-Up. The Fourier series of f(x) = x2,−π ≤ x ≤ π (extend periodically) is

π2

3
+

∞!

n=1

4 cosnπ

n2
cosnx.

We use this to find the value of ∞!

n=1

1

n2
.

(This is the value of what’s called the Riemnan zeta function at 2. This function is more generally
defined by ζ(s) =

>∞
n=1

1
ns and is an important function in number theory, complex analysis, and

elsewhere.) The key point is that since f is continuous everywehere, this Fourier series converges
to f(x) at all x, so that in particular

x2 =
π2

3
+

∞!

n=1

4 cosnπ

n2
cosnx for − π ≤ x ≤ π.

Set x = π, so that

π2 =
π2

3
+

∞!

n=1

4 cosnπ

n2
cosnπ =

π2

3
+

∞!

n=1

4

n2
.

Rearranging gives
∞!

n=1

1

n2
=

1

4

.
π2 − π2

3

/
=

π2

6

as the desired value.
We can see the convergence of the Fourier series in action by plotting a few Fourier partial

sums:

Pointwise vs uniform convergence. Now we clarify something we alluded to last time, namely
just what type of convergence we’re talking about when we say that a Fourier series convergence.
If you have not had a course in real analysis (specfically MATH 320-2 or MATH 321-2 at North-
western), you’ve probably never even heard that different types of convergence are possible, but
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understanding what is actually happenging will be important in order to clarify an earlier compu-
tation we performed—that of derviing the formula for the Fourier coefficients. Now, we will not
give formal definitions here, since after all having had an analysis course is not a prerequisite for
this course, so our aim is simply to give some intuitive sense behind what we are talking about.

We say that a sequence of functions gn converges pointwise to the function g if for any fixed
x, the number gn(x) (obtained by evaluating gn at the specific input x) converges in the usual
numerical sense to the number g(x). Then, a series of functions

>∞
n=1 fn converges pointwise to a

function f if the sequence of partial sums

f1 + · · ·+ fN

converges pointwise to f as N → ∞. We will look at an example in a bit, but ultimately this just
depends on the notion of convergence for numbers we’re already used to: plug in x, and look at
the behavior of the resulting sequence (or series) of numbers.

One point here is that, when considering pointwise convergence, the rate at which the conver-
gence occurs can vary as we move from point to point. We won’t give a precise definition of “rate”
here, but will use the following intuition: when considering convergence of a sequence of numbers
an, to say that they converge to the number a means that once we are far enough along the way in
our sequence, the numbers an are “close enough” to a. We can then intrepret the term at which
we do end up “close” enough to a as a measure of how quickly the convergence occurs, so that if
we have to go very far in our sequence in order to end up “close enough” to a, we think of the
convergence as occuring slowly. So, for a sequence of functions gn converging pointwise, for a fixed
x we have a certain rate of convergence for the numbers gn(x) to the number g(x), measured by
how large n must be to end up “close” to g(x), but this n might change if we change the x we are
considering. Maybe the convergence happens more slowly for some x (so we have to go further in
the sequence gn(x)) than it does for other x.

We say that the sequence of functions gn converges uniformly to the function g if this rate of
convergence can be chosen to be the same for all x at once. So, we can find a single n so that
gn(x) ends up “close enough” to g(x) no matter what x we plug in. (The name “uniform” comes
from the idea that this one n works “uniformly” across all x.) The same then applies to series of
functions:

>∞
n=1 fn(x) converges uniformly to f(x) if the partial sums converge uniformly to f .

(Again, there are precise definitions of “pointwise convergence” and “uniform convergence” that
we are skipping here.)

Example. To give a basic example of this distinction, consider the sequence of functions fn(x) = xn

for n ≥ 1 on the interval (0, 1). For any x in this interval, the numbers xn get closer and closer to
0 as n increases, so these numbers converge to 0, and hence the sequence of functions fn converges
pointwise to the constant zero function. Here is what this looks like visually:
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Again, note that for any 0 < x < 1, the values of xn (i.e. the heights of the corresponding points
on the graph) converge vertically down to zero as n increases.

But, we now ask, for a fixed x and measure of how close we want xn to actually be to zero, how
large must n be in order to make this happen? Consider vertical intervals around 0 at various x:

To end up within this distance away from 0 at the first x we have drawn, it appears that n = 3
works. But for the next x we have drawn, n = 3 does not put us within this same distance away
from zero, and indeed we need to use n = 4 in this case. This is a reflection of the fact that the
convergence of xn to 0 occurs more “slowly” at the second x as opposed to the first. For the third
x, we need an even larger value of n to put us within this prescribed distance away from zero, and
so on: as x gets closer and closer to 1, the value of n needed to put us within this range away
from 0 gets larger and larger, so there will be no one single value of n which puts xn within the
prescribed distance away from 0 for all x at once. Thus, the sequence of functions xn does not
converge uniformly to the constant zero function.

Imagine now that we do not care about the entire interval (0, 1), and only about x in the interval
(0, 12 ]. The sequence xn converges pointwise to the constant zero function on this interval, but now
we claim that the convergence is uniform. The key point is that for x in this particular interval,
we have

xn ≤
.
1

2

/n

=
1

2n
.

Thus, for a given measure of how close we want to end up to 0, as long as we pick an n large
enough to make 1

2n within this measure, we are guaranteed that xn will also be within this measure
regardless of x in (0, 12) is. This one n works uniformly for all x in this interval:

For example, if we want to end up with 0.01 away from 0, we can take n = 7 since 1
27

< 0.01;
and if we want to end up within 0.001 away from zero we can take n = 10 since 1

210
< 0.001. In

fact, as long as we fix any 0 < a < 1 and only consider x in the interval [0, a], we will have that
xn converges uniformly to 0 on [0, a]: since xn ≤ an for x in this interval, picking n large enough
(independent of x) to make an small enough will force xn to be small enough as well. This type
of reasoning does not work when we consider all of (0, 1) at once we the best bound we can find is
xn ≤ 1n = 1 for x in this interval, but we cannot make 1n small enough no matter what n is since
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1n is always exactly 1; so for example, we can never make xn be uniformly within 0.01 away from
zero for all x in (0, 1) at once.

The conclusion is that xn does not converge uniformly to 0 on all of [0, 1), but it does converge
uniformly to 0 on any smaller interval [0, a] for a fixed a < 1.

Why do we care? The reason for why uniform convergence is important in our case traces back
to a subtle point we made when discussing the derivation of the formula for the Fourier coefficients
of a function. Recall that we began with

f(x) =
a0
2

+

∞!

n=1

(an cos
nπx
L + bn sin

nπx
L ).

Then we multiplied both sides by, say, cos mπx
L and integrated the resulting expression. As part of

this, in order to integrate the infinite sum we exchanged summation and integration:
$ L

−L

0 ∞!

n=1

(an cos
nπx
L + bn sin

nπx
L )

1
dx =

∞!

n=1

4$ L

−L
(an cos

nπx
L + bn sin

nπx
L ) dx

5
.

This ability to exchange integration and summation is certainly always true for finite sums:
$

(f1(x) + · · ·+ fn(x)) dx =

$
f1(x) dx+ · · ·+

$
fn(x) dx,

but it turns out that in order to guarantee that this works for infinite sums as well actually requires
that the series question converge uniformly and not just pointwise! That is, the equation

$ 0
!

n

fn(x)

1
dx =

!

n

4$
fn(x) dx

5

is not automatically true if we only know that the series
>

n fn converges pointwise, but it is
definitely true if we know that the convergence is uniform. Thus, in order for our derivation of the
Fourier coefficients to in fact be valid, we have to know that our Fourier series converges uniformly.

(The same type of phenomena is also true for power series, where the method of integrating a
power series “term-by-term” depends on uniform convergence of a power series. A similar thing is
also true for differentiating power series and Fourier series, in that something like

2
!

n

fn

3′

=
!

n

f ′
n

for infinite series is only true under a type of uniform convergence assumption.)

Fourier convergence, more precisely. So, let us now state a more precise version of the Fourier
convergence theorem, which justifies that our formula for the Fourier coefficients was in fact valid:

Under the same setup as before, with f a 2L-periodic piecewise C1 function, we have
that the Fourier series of f converges pointwise to the function

f(x−) + f(x+)

2
.

Moreover, on any closed interval [a, b] on which f is actually continuous, the convergence
is uniform, so that the Fourier series converges to f uniformly on such intervals.

(There is still a bit of subtlety in terms of what happens at the endpoints [−L,L] of the interval
of integration in terms of whether f is continuous at them—since we need continuity to guarantee
uniform convergence—but suffice it to say that this can be dealt with in a way which guarantees
everything works as it should. Huzzah!)
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Lecture 7: Even/Odd Extensions

Warm-Up. Consider the functions defined by fn(x) =
1
n sin(nx). We argue that these functions

converge uniformly (as n increases) to the constant zero function. First we note that these function
do converge pointwise to the constant zero function: for any fixed x, the numbers sin(nx) are always
between −1 and 1 as n varies, so

lim
n→∞

1

n
sin(nx) = 0.

Now, to say that the fn converge uniformly to the constant zero function, we need to know that
no matter how close we want the value of 1

n sin(nx) to end up to 0, we can find one single n which
guarantees we do so regardless of what x actually is. In this case, the point is that since

----
1

n
sin(nx)− 0

---- ≤
1

n

for all x, we can pick n which makes 1
n within whatever “error” we want independent of x. For

example, if we want to end up within 0.1 away from the limit 0, we can pick n = 11 since 1
11 < 0.1.

Then for any x the value of 1
n sin(nx) will be within 0.1 away from 0 for any n ≥ 11. If we want

the value of fn(x) to be within 0.01 away from 0, then we can take n = 101, so the starting with
1

101 sin(101x) we will be within 0.01 away from 0 for all values of x. Since this is possible for any
desired “error”, fn does converge uniformly to 0.

The reason why this works, as in the xn on [0, 1/2] example last time, is because we can find a
bound on the error which is independent of x— 1

n in this case and 1
2n last time—and will approach 0

as n increases. Graphically, if we are given a “tube” around the graph of the constant zero function,
to say that 1

n sin(nx) converges uniformly to 0 is to say that once n is large enough, the graph of
1
n sin(nx) will lie completely within this tube:

As the “tube” shrinks perhaps we need to take n larger, but still we will eventually find such an n.

Back to partial sums. We can see the uniform convergence properties of Fourier series visually
if we consider some graphs. Take the Fourier series

1

2
+

∞!

n=1

1− cosnπ

nπ
sinnπx

of the square wave function

f(x) =

)
0, −1 ≤ x < 0

1, 0 ≤ x ≤ 1
; f(x+ 2) = f(x)

we’ve considered previously. Let us focus only the behavior for 0 < x < 1 to get a clearer picture.
For such x the Fourier series converges to f(x) = 1 since f is continuous on 0 < x < 1. Moreover,
we should have uniform convergence on any closed interval [a, b] sitting inside (0, 1).

To see this, take an “error tube” around the graph of the square wave:
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The graph of the 1-st order partial sum which is drawn does not fall within this tube, but if we
take a higher-order partial sum it does, at least on some closed interval:

If we take a smaller tube, this specific partial sum no longer works, so we need to take an even
higher-order partial sum to find one which does:

And so on, no matter how small of a tube we start with, we will find that eventually our partial
sums will have graphs that fall within this tube, whic his what uniform convergence requires. (The
fact that we always have points near 0 or 1 where the partial sum graph “jumps” out of the tube
is a reflection of the fact that f is discontinuous at these points, so that uniform convergence does
not extend to these.)

Dirichlet kernels. Let us say just a bit more about the errors obtained when trying to approximate
a function via its Fourier series. Take the N -th order Fourier partial sum of f :

(SNf)(x) :=
a0
2

+

N!

k=1

(ak cos
kπx
L + bk sin

kπx
L ).
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To simplify some notation, let us consider only the case of period 2L = 2π. We want to say
something about the difference/error

f(x)− (SNf)(x).

Now, using the integral formulas for a0, ak, bk, we can write (SNf)(x) as

(SNf)(x) =
1

2π

$ π

−π
f(y) dy +

N!

k=1

.
1

π

$ π

−π
f(y) cos(ky) dy

/
cos(kx)

+

N!

k=1

.
1

π

$ π

−π
f(y) sin(ky) dy

/
sin(kx)

Note that we are using y as the variable of integration in the formulas for the coefficients here, so as
to not confuse it with x, which is the value at which the partial sum is being evaluated. Since the
cos(kx) and sin(kx) terms are independent of y, they can each be brought inside the integrals they
are being multiplied by, and since all sums here are finite, we can certainly exchange summation
and integration. After doing so and combining some things we can put everything under one big
integral to obtain:

(SNf)(x) =

$ π

−π

2
1

2π
f(y) +

1

π

N!

k=1

[f(y) cos(ky) cos(kx) + f(y) sin(ky) sin(kx)]

3
dy.

We can manipulate once more by factoring out 1
π and f(y):

(SNf)(x) =
1

π

$ π

−π

2
1

2
+

N!

k=1

[cos(ky) cos(kx) + sin(ky) sin(kx)]

3
f(y) dy.

Finally, use the trigonometric identity cos(a− b) = cos(a) cos(b) + sin(a) sin(b) to rewrite this as

(SNf)(x) =
1

π

$ π

−π

2
1

2
+

N!

k=1

cos[k(x− y)]

3
f(y) dy.

Why did we go through all this trouble? The point is that we have now found a way to express
the partial sum SNf as an integral involving f and the function

DN (x− y) =
1

2
+

n!

k=1

cos[k(x− y)].

It turns out that understanding the convergence of these partial sums comes down to understanding
properties of these functions, and this is why having such an integral expression is useful. The
function DN (x) is called the N -th order Dirichlet kernel and looks like:

DN (x) =
1

2
+

N!

k=1

cos kx =
1

2
+ cosx+ cos 2x+ · · ·+ cosnx.

After making a change of variables u = x− y, and using periodicity, it turns out that we can write
the expression for (SNf)(x) as

(SNf)(x) =
1

π

$ π

−π
DN (x− y) f(y) dy =

1

π

$ π

−π
DN (u)f(x− u) du.
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Coming back to the error, it can be checked the Dirichlet kernels have the property that

1

π

$ π

−π
DN (u) du = 1,

and using this we can rewrite the value f(x) as

f(x) = f(x)
1

π

$ π

−π
DN (u) du =

1

π

$ π

−π
DN (u)f(x) du.

Thus, putting everything together gives the following expression for our error:

f(x)− (SNf)(x) =
1

π

$ π

−π
DN (u)[f(x)− f(x− u)] du.

This is the Fourier series analog of expressions you might have seen for Taylor remainders for
power series previously, and is the key to demonstrating convergence properties of Fourier series.
In particular, as mentioned earlier, the fact that this “error” approaches 0 as N → ∞ comes down
to properties of the Dirichlet kernel. We will not delve into this more in this course, but it is
something you would see more of in a course (second quarter) in real analysis. Our main goal here
was to show that there was a way to give a concrete expression for the Fourier series error term,
albeit one that depends on a new type of function, namely the Dirichlet kernels.

(The word “kernel” here is not used in the same way as you might have seen in linear algebra,
where there the kernel of a linear transformation refers to all input that result in the zero vector
upon applying said transformation. There is a relation between our usage of the word “kernel”
here and linear algebra, but we will save this discussion for when talk about the Fourier transform.
In short, the Dirichlet “kernel” can be viewed as an “infinite-dimensional” matrix, in a sense.)

Extensions. In the PDEs we will soon consider, we will only be given the data of a function
f(x) for x in some interval 0 < x < L. It does not make sense to talk about the Fourier series
of such a function just yet, since deriving a Fourier series requires integrating over a symmetric
interval [−L,L]. But, we can get around this essentially by just defining the value of function to
be whatever we want for −L < x < 0, and considering the Fourier series of this extension of f .

For example, take f(x) = x2 for 0 ≤ x ≤ π. To express this as a Fourier series requires knowing
values for −π ≤ x ≤ 0, so we can take the so-called even extension of f and consider the function
on −π ≤ x ≤ π which looks like

(The even extension is the one defined by enforcing f(−x) = f(x) to hold, so that its graph is
symmetric about the y-axis. In this case, all we are doing is simply noting that f(x) = x2 already
makes sense for −π ≤ x ≤ π as well, and the even extension is just given by f(x) = x2 itself.) The
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Fourier series of this extended function will then converge to f(x) = x2 at least on 0 ≤ x ≤ −π,
since f equals the extension on this interval and is continuous. (Again, in this case the even
extension has the same formula x2 on −π ≤ x ≤ 0 too, so the Fourier series also converges to x2

on this interval. This will not be true for even extensions of arbitrary functions, however.)
Now, the Fourier series of this even extension will not involve any sine terms, since the sine

coefficients bn all end up being zero because they involve the integral of an odd function (sine is
odd, and even times odd is odd) over a symmetric integral:

bn =
1

L

$ L

−L

odd; <9 :
f(x)9:;<
even

sin
nπx

L9 :; <
odd

dx = 0.

To be clear, the point is that if you break this integral up into two pieces:

$ L

−L
f(x) sin

nπx

L
dx =

$ 0

−L
f(x) sin

nπx

L
dx+

$ L

0
f(x) sin

nπx

L
dx,

the change of variables x *→ −x will turn the second integral into the negative of the first, since
the integrand is odd. Along similar lines, the a0, an coefficients all involve the integral of an even
function (cosine is even, and even times even is even) over a symmetric interval, and hence can be
written as twice the integral over only half of that interval:

$ L

−L
(even) dx =

$ 0

−L
(even) dx+

$ L

0
(even) dx = 2

$ L

0
(even) dx

since the change of variables x *→ −x turns the first integral in the middle into the second one in
the middle. Thus, the Fourier series of the even extension of f looks like

a0
2

+

∞!

n=1

an cos
nπx

L

where

an =
2

L

$ L

0
f(x) cos

nπx

L
dx.

This series converges to the original f on 0 < x < L (assuming f is continuous here), and is called
the Fourier cosine series of f . Again, the point is that we are only given the values of f originally
on 0 < x < L, and we obtain a way to express it as a Fourier cosine series on this interval by
computing the Fourier series of its even extension. For the example of f(x) = x2, 0 ≤ x ≤ π, the
Fourier cosine series is

2π2

3
+

∞!

n=1

4 cosnπ

n2
cosnx.

But of course, the even extension of f(x) = x2, 0 ≤ x ≤ π is not the only extension we could
have chosen. Let us also consider the odd extension, which is obtained by enforcing f(−x) = −f(x)
to be true, so that the graph is symmetric about the origin:
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The Fourier series of this odd extension will then converge to the original f(x) = x2 on 0 < x < π
(since f is continuous here), and will give an alternative way of writing x2 as a Fourier series as
compared to the cosine series above. In this case, all a0, an coefficients will be zero since they
each involving integrating an odd function (odd times even) over a symmetric interval, and the bn
coefficients (which involve the product of two odd functions, which is itself even) “double-up”. The
resulting Fourier series thus looks like

∞!

n=1

bn sin
nπx

L

where

bn =
2

L

$ L

0
f(x) sin

nπx

L
dx.

This is called the Fourier sine series of f on 0 < x < L. In the f(x) = x2, 0 < x < π example, the
Fourier sine series is ∞!

n=1

2[(2− π2n2) cosnπ − 2]

πn3
sinnx.

We thus now have two different ways of writing x2 for 0 < x < π as a Fourier series:

x2 =
2π2

3
+

∞!

n=1

4 cosnπ

n2
cosnx =

∞!

n=1

2[(2− π2n2) cosnπ − 2]

πn3
sinnx.

There are of course other extensions we could consider, say ones that are neither even nor odd:
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Any such random (let’s assume at least continuous) way of extending f to −L < x < 0 will result in
a Fourier series that converges to f on the original interval 0 < x < L. So, Fourier series expressions
on half-intervals like (0, L) are never unique, and only become unique once we specify what should
happen over (−L, 0) as well. The Fourier cosine and sine series, resulting from the even and odd
extensions, will be the most useful ones for the purposes of solving PDEs.

Lecture 8: Heat Equation

Warm-Up. We find the Fourier cosine and sine series of f(x) = 1 − x, 0 ≤ x ≤ 1. The Fourier
cosine coefficients are:

a0 =
2

1

$ 1

0
(1− x) dx = 1

an =
2

1

$ 1

0
(1− x) cos(nπx1 ) dx =

2(1− cosnπ)

π2n2
,

so the Fourier cosine series of f is

1

2
+

∞!

n=1

2(1− cosnπ)

π2n2
cos(nπx).

The Fourier sine coefficients of f are

bn =
2

1

$ 1

0
(1− x) sin(nπx1 ) dx =

2

nπ
,

so the Fourier sine series of f(x) = 1− x is

∞!

n=1

2

nπ
sin(nπx).

Both of these series converge to 1− x for 0 < x < 1. (We have to exclude the endpoints in the odd
case, since the odd extension of f will not be continuous at x = 0.)

But just for fun, we can also take the extension which is still defined by the same formula
f(x) = 1 − x, now for −1 < x < 0. Altogether the three extensions we’re using have graphs that
look like
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This new extension has Fourier series that looks like

1 +

∞!

n=1

2 cosnπ

nπ
sinnπx,

which is not a cosine series because of the sine terms, nor a sine series because of the constant term.
This too will converge to 1− x for 0 < x < 1.

Heat equation. We now come back, finally, to discussing PDEs, beginning with the heat equation.
Recall from the motivation we gave the first day of class that this is an equation characterizing the
function which models the temperature at different points and times in a thin rod. To be precise,
we assume our rod is of length L, and that the temperature of the circular cross section at some
horizontal position x is constant, so that the temperature u(x, t) only depends on that horizontal
position x and time t. We also assume our rod has insulated circular sides, so that that heat can
only escape or pass through the ends of the rod:

The heat equation states that at any position and time, the rate of change of the temperature with
respect to time has to be proportional to the second derivative of the temperature with respect to
position, so that u(x, t) satisfies

∂u

∂t
= α2∂

2u

∂x2
.

(We will come back to where this equation comes from later.) Here, α2 is a positive constant that
depends on the material the rod is made out of.

Our goal is to derive the explicit temperature function u(x, t) that satisfies this equation, subject
to some boundary and initial conditions we will soon impose. But first, in order to understand
something about the structure we can expect solutions to have, we note that the heat equation is
an example of a linear, homogeneous PDE. The correct context from which to view this is linear
algebra. Indeed, consider a vector space V of functions (we will restrict the types of functions we
consider later), and consider the map L : V → V defined by

L =
∂

∂t
− α2 ∂2

∂x2
, so that L(u) =

∂u

∂t
− α2∂

2u

∂x2
.

(So, we should assume our functions are such that at least the partial derivatives needed on the

right exist.) Such an L = ∂
∂t − α2 ∂2

∂x2 is what’s called a partial differential operator, since it is a
mapping from functions to functions made up out of partial differentiation operations. To say that
the heat equation is linear means that L is a linear transformation in the sense of linear algebra:

L(u1 + u2) = L(u1) + L(u2) and L(cu) = cL(u)
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where u1, u2 are functions and c a scalar. (These properties just come from the linearity properties
of derivatives.) The heat equation thus takes the form

L(u) = 0,

and the zero on the right is what makes the heat equation homogeneous. This in particular just says
that u is in the kernel or null space of L (in the linear-algebraic sense), so a linear homogeneous PDE
in general is one which arises from considering the kernel of a linear partial differential operator.

The fact that the heat equation describes the kernel of a linear map right away tells us that
the set of solutions of the heat equation is closed under addition and scalar multiplication, so
that it forms a subspace of our vector space of functions. (In other words, adding solutions of the
heat equation produces other solutions, and scaling solutions produces other ones.) This will be
important when we solve the heat equation, as producing new solutions from old ones in this way
will be crucial.

Boundary and initial conditions. Now we impose some conditions on the heat solutions we
want. First, we will require that the ends of the rod are held at zero temperature for all time:

u(0, t) = 0 and u(L, t) = 0.

Second, we will specify an initial temperature distribution along the entire rod, by saying that at
time t = 0 the temperature at x is given by a function f(x):

u(x, 0) = f(x).

The goal is then to find a solution of the heat equation which satisfies these given boundary and
initial conditions.

Will we succeed? In other words, do we have any kind of existence result? What about
uniqueness? We will see in our work that, if we impose some mild assumptions on the initial data
f(x), say for example that it should be C1, we will construct a valid solution satisfying the given
boundary and initial conditions, which gives existence. In fact, the solution we construct will be
the only one that can exist—so we do have uniqueness—but we will not able to prove uniqueness
in full in this course. (Later we will prove uniqueness for what’s called the Laplace equation, which
might give some sense of how some uniqueness arguments work.)

Separation of variables. Let’s get to work then and start trying to solve the heat equation. We
make the assumption (for the time being) that the solution we seek can be written as

u(x, t) = X(x)T (t)

for some functions X of x and T of t. That is, we assume the the x and t dependences in u can be
“separated” from one another. Such a solution is called a separated solution, and the method we
use here is called separation of variables. We do not know at the outset that all solutions of the
heat equation arise in this way, so this method will only seemingly produce some solutions.

The point of separation is that we can now derive from the heat equation PDE two separate
ODEs which X and T must satisfy individually. Indeed, to say that u(x, t) = X(x)T (t) satisfies
the heat equation ut = α2uxx is to say that

XT ′ = α2X ′′T
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holds, which is obtained simply by plugging u(x, t) = X(x)T (t) into the heat equation and com-
puting derivatives. We’ll assume that neither X nor T are zero, since otherwise u(x, t) = X(x)T (t)
is zero as well, which is not a very interesting solution. Thus we can rearrange the equation above
to get

T ′

α2T
=

X ′′

X
.

The punchline now is that both sides here must actually be constant, and in fact the same constant!
Indeed, if we put variables back then, this equation really says that

T ′(t)

α2T (t)
=

X ′′(x)

X(x)
.

If we hold t fixed and vary x, this says that the right side must be a constant function, and if we
fix x and vary t, so must the left side. (This comes down to the fact that the two sides depend on
different variables.) Thus, we get that for some constant λ:

T ′

α2T
= λ and

X ′′

X
= λ.

These are now the ODEs for X and T we want, which we can write as

T ′ = λα2T and X ′′ − λX = 0.

Solving these ODEs separately will give the possible functions X and T , and from these we can
then form a separated solution u(x, t) = X(x)T (t) of our heat equation.

Back to boundary conditions. Let us start with the equation X. Recalling some facts about
second-order ODEs shows that the form the solutions of X ′′ − λX = 0 take depends on whether λ
is positive, zero, or negative. First we consider λ > 0. The general solution of X ′′−λX = 0 is then

X = c1e
√
λx + c2e

−
√
λx.

(We are assuming that we know how to solve such equations already, from a previous course.) But
we have more data to work with, namely the boundary conditions

u(x, 0) = 0 = u(L, t)

we’re imposing. For our separated solution u(x, t) = X(x)T (t), these boundary conditions become
simply boundary conditions X(0) = 0 = X(L) for X, at least if we assume that T is nonzero. Thus
what we’re really doing is solving the following boundary value problem for X:

X ′′ − λX = 0, X(0) = 0 = X(L).

In the λ > 0 case above where X = c1e
√
λx + c2e

−
√
λx, these boundary conditions become the

requirements that
c1 + c2 = 0 and c1

√
λ− c2

√
λ = 0,

and some algebra shows that c1 and c2 must both be zero here. Thus X = 0 is the solution we get,
which we ignore since we are looking for nonzero solutions.

If λ = 0, the general solution of X ′′ − 0X = 0 (or simply X ′′ = 0) is

X = c1 + c2x,
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but again the boundary conditions X(0) = 0 = X(L) force c1 = c2, so that X = 0.
Thus, if we are looking for nontrivial solutions, we need only consider λ < 0. To make the

notation simpler, we set λ = −k2 < 0 for some positive number k. The general solution of
X ′′ − λX = 0, or equivalently X ′′ + k2X = 0, here is:

X = c1 cos kx+ c2 sin kx.

The boundary condition X(0) = 0 forces c1 = 0, but X(L) = 0 forces

c2 sin kL = 0,

which can be satisfied non-trivially! For c2 ∕= 0, this equality holds as long as sin kL = 0, so for

kL = nπ, or equivalently k =
nπ

L

where n is a positive integer. (Allowing n to be negative gives the same value of λ = −k2 = −(nπL )2

as for n positive, so we do not get any other new solutions this way. Also, n = 0 gives λ = 0, which
does not fall into the case of λ < 0.) Thus, we get a nontrivial solution to our boundary value
problem in the λ < 0 case when λ = −(nπL )2, when the solution is

X = 0 cos
nπx

L
+ c2 sin

nπx

L
= c2 sin

nπx

L

for c2 ∕= 0. We only need one such solution, so will simply take c2 = 1. To summarize, we have
found that the nontrivial solutions of

X ′′ − λX = 0, X(0) = 0 = X(L)

are Xn = sin nπx
L for λn = −(nπL )2 where n is a positive integer.

We will come back to find T and then our general solution next time, but hopefully you can
already start to see why a Fourier series might arise.

Lecture 9: Boundary Conditions

Warm-Up. We derive the ODEs satisfied by the factors of separated solutions of the PDE

uxx + uxt + ut = 0.

If u(x, t) = X(x)T (t) satisfies this PDE, then

X ′′T +X ′T ′ +XT ′ = 0.

We can rearrange terms to write this as

X ′′T = −(X ′ +X)T ′, so
X ′′

X ′ +X
= −T ′

T

if assume that certain things are nonzero. Since each side here depends on a different variables,
both sides be constant (the same constant!), so that

X ′′

X ′ +X
= λ = −T ′

T
,
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which results in the ODEs X ′′ = λ(X ′ +X) and T ′ = −λT .

Back to the heat equation. Recall that the separated solutions of the heat equation ut = α2uxx
satisfy the ODEs

X ′′ − λX = 0 and T ′ = λα2T.

The homogeneous boundary conditions u(x, 0) = 0 = u(L, t) (we call these homogeneous because
they are set to zero) then become the conditions X(0) = 0 = X(L) on X, and we saw last time
that the resulting boundary value problem

X ′′ − λX = 0, X(0) = 0 = X(L)

has nontrivial solutions only for λn = −n2π2

L2 , where n is a positive integer, with a nonzero solution
being Xn = sin nπx

L . (Other solutions are scalar multiples of these.)
Now, for the λ we have thus determined, we can consider the corresponding ODE for T :

T ′ = λnα
2T = −α2n2π2

L2
T.

This has nonzero solution given by

Tn = e−
α2n2π2t

L2 ,

which we have again indexed by n. The solutions for X and T we have found are called fundamental
solutions, and corresponding to each we thus get a “fundamental solution” to the heat equation
satisfying the given boundary conditions:

un(x, t) = Xn(x)Tn(t) = e−
α2n2π2t

L2 sin nπx
L .

Since the heat equation is linear and homogeneous, and since the boundary conditions are
homogeneous, linear combinations of solutions still produce solutions. So, we can take an “infinite
linear combination” of these fundamental solutions to get a more general solution:

u(x, t) =

∞!

n=1

cnun(x, t) =

∞!

n=1

cne
−α2n2π2t

L2 sin nπx
L .

There are convergence issues to mention, which we will come back to, so so far this is only a
“formal” solution of the heat equation. Note that naively taking a derivative with respect to t and
comparing to the second derivative with respect to x gives what we expect: the former gives an
extra coefficient of −α2n2π2

L2 , which is precisely α2 times the coefficient obtained from the latter,
exactly as the heat equation specifies.

Initial condition. The formal solution above satisfies the boundary conditions u(0, t) = 0 =
u(L, t), so now we consider our initial condition u(x, 0) = f(x). In order for this to be satisfied,
the following must hold:

f(x) = u(x, 0) =

∞!

n=1

cne
−α2n2π20

L2 sin nπx
L =

∞!

n=1

cn sin
nπx
L ,

where the exponential terms are all just e0 = 1. But this equation says precisely that the series on
the right should be the Fourier sine series of f (recall that initially f is only defined along the rod
for 0 < x < L), so that the unknown coefficients must be given by

cn =
2

L

$ L

0
f(x) sin

nπx

L
dx.
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Thus, the final conclusion is that

u(x, t) =

∞!

n=1

cnun(x, t) =

∞!

n=1

cne
−α2n2π2t

L2 sin nπx
L

where

cn =
2

L

$ L

0
f(x) sin

nπx

L
dx

is a (formal) solution of the heat equation ut = α2uxx satisfying the homogeneous boundary con-
ditions u(0, t) = 0 = u(L, t) and the initial condition u(x, 0) = f(x). Huzzah!

In order to remove the word “formal” throughout the discussion above requires knowing that
the series above defines an actual function, meaning that it converges. For the initial condition

f(x) =

∞!

n=1

cn sin
nπx
L

this requires f to be C1, or even just piecewise C1 (where we don’t quite get the series converging
exactly to f(x) at all points—only those where f is continuous—but this will not really affect the
“heat” interpretation anyway, so we ignore such minor details), and in fact if this is true, it turns
out that the full solution

u(x, t) =

∞!

n=1

cnun(x, t) =

∞!

n=1

cne
−α2n2π2t

L2 sin nπx
L

converges as well. (We will talk about this later, but essentially the exponential term decreases
rapidly enough as n increases to force convergence. Also, there are some things to say about
whether the convergence is uniform or not, as we’ll see.)

Example. Consider the heat equation ut = uxx (so α2 = 1) with boundary conditions u(0, t) =
0 = u(1, t) and initial condition u(x, 0) = 1− x. The solution is

u(x, t) =

∞!

n=1

cne
−n2π2t sin(nπx)

where the coefficients are the Fourier sine coefficients of u(x, 0) = 1 − x. We computed these in a
previous example to be

cn = 2

$ 1

0
(1− x) sin(nπx) dx =

2

nπ
,

so the solution of this specific heat problem is

u(x, t) =

∞!

n=1

2

nπ
e−n2π2t sin(nπx).

Now, consider what happens to this temperature as time goes on. In the limit t → ∞, we have
that e−n2π2t → 0, and this in fact will force the entire series to approach 0, at any x:

lim
t→∞

u(x, t) = 0.

This makes sense physically: as time goes on, heat escapes through the ends of the rod with no
new heat being introduced, so the temperature should decrease more and more, eventually “zeroing
out” at infinity. We can see this happening if we plot a few instances of u(x, t) at fixed values of t:
at t = 0 we have our initial temperature u(x, 0) = 1− x; at t = 1 we have a temperature that has
decreased at all x; at t = 2 is has decreased more; and so on as we increase t
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This phenomena occurs in general with homogeneous boundary conditions u(0, t) = 0 = u(L, t),
since in general it is true that heat will escape at all times, so that the temperature gets smaller
and smaller. Mathematically, this occurs because of the exponential term (with negative exponent)
in the general heat solution.

Insulated ends. Let us now consider a different set of boundary conditions, namely boundary
conditions describing the case of insulated ends. Here, we imagine that no heat passes through the
ends of the rod, which we can describe by the conditions

ux(0, t) = 0 = ux(L, t).

Note that this does not force the temperature at the ends to necessarily be zero, only that the rate
at which the temperature changes at the ends with respect to position is zero. The analysis here is
for the most part the same as for the boundary conditions we considered previously, with the only
difference coming in the boundary value problem for X, which now looks like

X ′′ − λX = 0, X ′(0) = 0 = X ′(L).

As in the previous case, for λ > 0 it turns out that there are no nontrivial solutions: we get

X = c1e
√
λx+ c2e

−
√
λx, and requiring X ′(0) = 0 = X ′(L) leads to c1 = c2 = 0. For λ = 0, however,

our solution (to X ′′ = 0) looks like
X = c1 + c2x,

and lo-and-behold we do get a nonzero solution now: X ′(0) = 0 = X ′(L) both force c2 = 0, but
there are no restrictions on c1. Thus we can take X0 = 1 to be a constant fundamental solution for
λ0 = 0. For λ = −k2 < 0, we again get

X = c1 cos kx+ c2 sin kx.

Here X ′(0) = 0 forces c2 = 0—so only the cosine term remains—and X ′(L) = 0 requires that

−c1k sin(kL) = 0.

Hence we get a nonzero solution when kL = nπ for a positive integer n, which gives Xn = cos nπx
L

as the fundamental solution for λn = −n2π2

L2 .
As for T , λ0 = 0 gives T ′ = 0T , so that T is constant and hence we can take T0 = e0 = 1 to

be a fundamental solution. For λn = −n2π2

L2 we get the same exponential fundamental solution we
had for the previous boundary conditions, so overall we get fundamental solutions of the form

u0(x, t) = T0(t)X0(x) = 1 and un(x, t) = Tn(t)Xn(x) = e−
n2π2t
L2 cos nπx

L .

The general solution is thus

u(x, t) =
c0
2
u0(x, t) +

∞!

n=1

un(x, t) =
c0
2

+

∞!

n=1

cne
−n2π2t

L2 cos nπx
L .
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(I took the constant term to be c0
2 instead of just c0 to match because of the what happens when

we impose our initial condition.) Imposing an initial condition u(x, 0) = f(x) (let’s assume that f
is piecewise C1) gives

f(x) = u(x, 0) =
c0
2

+

∞!

n=1

cn cos
nπx

L
,

so that now the coefficients cn must be the Fourier cosine coefficients of f . Thus, the solution to the
heat equation ut = α2uxx with insulated boundary conditions ux(0, t) = 0 = ux(L, t) and piecewise
C1 initial condition u(x, 0) = f(x) is

u(x, t) =
c0
2

+

∞!

n=1

cne
−n2π2t

L2 cos nπx
L

where

cn =
2

L

$ L

0
f(x) cos

nπx

L
dx.

The upshot is that the form the solution takes is determined by the boundary conditions.

Steady-states. In the insulated ends case, we get a different limit as t → ∞ than in the original
case:

lim
t→∞

u(x, t) =
c0
2
.

(Again, the exponential terms force everything else to approach 0.) Thus, in the limit the temper-
ature “evens out” to a nonzero constant. This makes sense physically: if no heat is escaping our
rod, then the total heat in the rod remains the same throughout but it it bounces around from
pieces of high temperature to pieces of low temperature until it settles down. (This constant can
also be interpreted as the average temperature throughout the rod at any time.)

Moreover, if our initial temperature had been this exact constant u(x, 0) = c0
2 , then we get

u(x, t) = c0
2 , so that the temperature never changes. Thus, this constant temperature is a “steady-

state” solution of the heat equation, which means a solution that does not change in time. Hence,
steady-state solutions are ones which satisfy ut = 0, so that the heat equation becomes simply
uxx = 0, which means that the potential steady-state solutions are of the form u(x, t) = A + Bx
(recall no dependence on t). In the case of insulated ends, the boundary conditions ux(0, t) = 0 =
ux(L, t) force B = 0, so the steady-state solution u(x, t) = A is indeed constant. We can interpret
the general solution

u(x, t) =
c0
2

+

∞!

n=1

cne
−n2π2t

L2 cos nπx
L

as the sum of the steady-state one and a “transient” term that characterizes the dependence on t.

Lecture 10: More on Heat Solutions

Warm-Up. Consider the heat equation with boundary conditions

u(0, t) = 0 = ux(L, t),

so that the left end of the rod is held at temperature zero while the right end is insulated. We
determine the form a series solution will take. As with previous examples, the key point is the
resulting boundary value problem for X:

X ′′ − λX = 0, X(0) = 0 = X ′(L).
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For λ > 0, we have X = c1e
√
λx+c2e

−
√
λx, and the boundary conditions force c1 = c2 = 0, so that’s

no good. For λ = 0 we have X = c1 + c2x, and again the boundary conditions force c1 = c2 = 0.
For λ = −k2 < 0, we have X = c1 cos kx+ c2 sin kx. The first boundary condition gives c1 = 0,

and the second then gives
c2k cos(kL) = 0.

We thus get a nonzero solution when kL is an odd multiple of π
2 , so that k = (2n−1)π

2L for a positive
integer n. Hence the given boundary value problem for X has a nonzero solution

Xn = sin
(2n− 1)πx

2L
for λn = −(2n− 1)2π2

4L2
.

The corresponding solutions for T are Tn = e−
(2n−1)2π2t

4L2 , so the fundamental solutions for u are

un(x, t) = e−
(2n−1)2π2t

4L2 sin (2n−1)πx
2L .

Hence the general solution is

u(x, t) =

∞!

n=1

cne
− (2n−1)2π2t

4L2 sin (2n−1)πx
2L .

If we then impose an initial condition u(x, 0) = f(x), we get the requirement that

f(x) =

∞!

n=1

cn sin
(2n−1)πx

2L .

This type of Fourier series showed up on the homework, where the coefficients cn are given by

cn =
2

L

$ L

0
f(x) sin (2n−1)πx

2L dx.

It arises from extending f into L < x < 2L for requiring f(2L − x) = f(x), and then extending
as an odd function into −2L < x < 0. The moral is that these different types of specific forms of
Fourier series arise from various types of boundary considerations.

Other boundary conditions. There are plenty of other types of boundary conditions we can
impose. For example, we can consider non-homogeneous boundary conditions like

u(0, t) = T1 and u(L, t) = T2,

where the ends of the rod are held at nonzero temperature. Here a solution can be found which is
of the form

u(x, t) = v(x) + w(x, t)

where v(x) is steady-state solution and w(x, t) a solution satisfying the homogeneous boundary
conditions u(0, t) = 0 = u(L, t). (Essentially, the non-homogeneous boundary conditions can
“absorbed” by the stead-state term by requiring V (0) = T1, V (L) = T2.) We will look at an
example along these lines next time, and you can also check the book for the general approach.

More general boundary conditions are found by assuming that the rate at which the temperature
changes with respect to position at the end should be proportional to the temperature itself:

ux(0, t) = (scalar)u(0, t) and ux(L, t) = (scalar)u(L, t).
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We will consider such boundary conditions later on from the perspective of Sturm-Liouville theory.
We can also consider the effect of an external heat or cooling source (so, not technically a boundary
condition), which affects the value of ut:

ut = α2uxx + (something else).

We will look at an example like this next time.

Behavior of solutions. Let us now say a bit more about the heat solutions we are finding. Much
of the behavior and structure of solutions comes from the fact that the heat equation is an example
of a parabolic PDE. (In fact, the heat equation is the prototypical model of a parabolic PDE.)
Here’s the definition: a second-order linear homogeneous PDE with constant coefficients

Auxx +Buxt + Cutt +Dux + Eut = 0

is parabolic if B2 − 4AC = 0. The name comes from the fact that this property characterizes when
the corresponding quadratic equation

Ax2 +Bxy + Cy2 +Dx+ Ey = 0

defines a parabola in R2.
Parabolic PDEs in general have the following two key properties:

• there are basic existence and uniqueness results under basic boundary and initial condition
assumptions, and

• solutions exhibit a type of “smoothing” behavior.

The second property essentially means that although the initial condition u(x, 0) = f(x) might
only be piecewise C1 with possibly many discontinuities, these discontinuities disappear in time, in
fact in a short amount of time. The flow of heat from high to low temperature areas thus causes
the overall heat distribution to “smooth out”.

For the first property, let us now come back to elaborate on our method for finding solutions
via separation. As we pointed out at the start of our whole heat discussion, we do not know at the
outset that separation of variables will find all solutions. But in fact after everything we’ve done
we now know that this method does in fact find all solutions subject to homogeneous boundary
conditions and piecewise C1 initial data: in this setting, our construction for sure produces a
solution, and so if we take the uniqueness property of parabolic PDEs for granted, this solution
we found must be the only one. (We will not be able to prove this uniqueness result here in full
generality, but will note that among solutions obtained via operation, uniqueness follows from the
uniqueness of Fourier series coefficients.)

But there is still one lingering issue, which is how we know that the solution we’ve constructed
is in fact a solution; that is, why does

u(x, t) =

∞!

n=1

cne
−α2n2π2t

L2 sin nπx
L

actually satisfy the heat equation ut = α2uxx? Naively we can simply try to compute ut and uxx:

ut =

∞!

n=1

−α2n2π2

L2 cne
−α2n2π2t

L2 sin nπx
L and uxx =

∞!

n=1

−n2π2

L2 cne
−α2n2π2t

L2 sin nπx
L
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and plug them in. However, and this is the subtle point, this computation depends on being able
to compute the derivative of a series by exchanging differentiation and summation; for example,

∂

∂x

2 ∞!

n=1

cne
−α2n2π2t

L2 sin nπx
L

3
=

∞!

n=1

cne
−α2n2π2t

L2
∂

∂x

+
sin nπx

L

,
.

We have previously spoken about how this requires uniform convergence of our original series, but
actually a bit more is required as well: we need to know that the series obtained after differentiating
in this way converges uniformly as well! The same applies to the series obtained by differentiating
with respect to x once more. In all of these cases, it is the presence of the exponential term
that guarantees everything converges uniformly and so everything works out nicely. Yes it is then
possible to verify that our proposed solution is in fact a solution (so no longer merely a “formal”
one) by differentiating term-by-term and seeing that the heat equation is satisfied. (This will not
be the case with the wave equation, however, and we will need a different approach in order to
verify that our proposed solution there is actually a solution.)

Heat equation elsewhere. The heat equation has applications beyond simply modeling temper-
ature distributions. Here are two examples of other ways in which it shows up. First, in finance
the Black-Scholes equation models the pricing of what are called options over time. If V denotes
the pricing function, the Black-Scholes equation states that

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

(I’ll ignore here what all the various symbols mean.) Solving the Black-Scholes equation then
gives the pricing function. The point is that, after some suitable (multiple) changes of variables,
the Black-Scholes equation becomes precisely the heat equation! If we accept that options pricing
should be a “diffusive” process, then it makes some sense that the behavior of such prices should
exhibit some “heat-like” qualities.

Second, the notion of Ricci flow in geometry (and possibly general relativity) also depends on
a version of the heat equation. Here we consider a geometric object which is initially curved in a
possibly random way:

The Ricci flow equation describes the evolution of the curvature of this surface, and says that in
time the curvature smooths out until we are left with a much simpler smoother surface:
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The point is that although the original surface might have been difficult to identity directly, after it
“smooths out” we’ll have an easier time of doing so. (The notion Ricci flow was used heavily in the
proof of what’s called the Poincaré conjecture, which gives a classification of certain 3-dimensional
geometric objects. It’s proof back in the mid 2000’s was a big deal at the time.)

In general, given any type of “diffusive” phenomena, where extreme behaviors in one location
are “smoothed out” towards less extreme behaviors elsewhere, there is a decent chance that there
is a version of the heat equation underlying those phenomena.

Two dimensions. The heat equation also shows up in higher-dimensions, say in describing the dis-
tribution of heat in a two-dimensional region, or in a three-dimensional region. The two-dimensional
heat equation is

∂u

∂t
= α2

.
∂2u

∂x2
+

∂2u

∂y2

/
,

where u(x, y, t) now depends on two space parameters. (In higher dimensions we simply add
another second-order derivative term on the right for each new spatial variable.) We will not solve
this equation in full (although you’ll see it a bit in discussion), but we will solve a special case of
it soon enough when we consider the Laplace equation.

The basic idea is the same: assume your solution is separated, and derive some ODEs. Here we
have u(x, y, t) = X(x)Y (y)T (t), so we get

XY T ′ = α2(X ′′Y T +XY ′′T ).

Separating gives
T ′

α2T
=

X ′′Y +XY ′′

XY
,

so that
T ′ = λα2T and X ′′Y +XY ′′ = λXY

for some constant λ. We can separate again in the second equation to get

X ′′

X
=

λY − Y ′′

Y
,

so that
X ′′ = µX and Y ′′ = (λ− µ)Y

for some other constant µ. Then we can solve after imposing some boundary conditions, such as
boundary conditions on a rectangle for example. Or we can consider boundary conditions on, say,
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a disk, but it turns out here that the separated form above is not so useful, and that it is better to
consider the heat equation in terms of polar coordinates and then use separation there. We’ll see
glimpses of these things in discussion and later. Good stuff!

Lecture 11: Wave Equation

Warm-Up. We solve the non-homogeneous heat equation

ut = uxx + 2,

with boundary conditions u(0, t) = 1, u(1, t) = 2 and initial condition u(x, 0) = x, 0 < x ≤ 1. This
equation characterizes a rod with an external heat source applied, increasing the temperature by a
constant rate of 2 at every point and time. Let us suppose that the solution we seek can be written
as

u(x, t) = v(x) + w(x, t),

where v(x) is a steady-state solution which is independent of time (so that ∂v
∂t = 0 and hence

0 = v′′ + 2) and satisfying the boundary conditions v(0) = 1, v(1) = 2. Note that then we have

wt = ut − 0 = uxx + 2 = (v′′ + wxx) + 2 = wxx

and
w(0, t) = u(0, t)− v(0) = 1− 1 = 0 and w(1, t) = u(1, t)− v(1) = 2− 2 = 0,

so that w(x, t) satisfies our usual homogeneous heat equation withe usual homogeneous bound-
ary conditions. Essentially, we are absorbing the external heat term and the non-homogeneous
boundary conditions u(0, t) = 1, u(1, t) = 2 into the steady-state term.

The heat equation for the steady-state solution is 0 = v′′ + 2, so v looks like

v = −x2 + c2x+ c1.

The boundary conditions on v then give

1 = c1 and 2 = −12 + c2 + c1,

so that c2 = 2. Thus the steady-state solution is

v = −x2 + 2x+ 1.

The remaining term w(x, t) has the form

w(x, t) =

∞!

n=1

ane
−n2π2t sin(nπx)

since w satisfies the homogeneous heat equation with usual homogeneous boundary conditions.
Since w(x, t) = u(x, t)− v(x), the initial condition for w is

w(x, 0) = u(x, 0)− v(x) = x− (−x2 + 2x+ 1) = x2 − x− 1.

Thus the coefficients an are the Fourier sine coefficients of x2 − x− 1:

an = 2

$ 1

0
(x2 − x− 1) sin(nπx) dx =

(2π2n2 + 4)(cosπn− 1)

π3n3
.
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The full solution to the given non-homogeneous heat boundary value problem is thus

u(x, t) = v(x) + w(x, t)

= −x2 + 2x+ 1 +

∞!

n=1

(2π2n2 + 4)(cosπn− 1)

π3n3
e−n2π2t sin(nπx).

Derivation of heat equation. ***TO BE FINISHED***

Wave equation. Consider an elastic vibrating string. We assume that each point on the string
can only move vertically, so that the vertical displacement (i.e., height) of a point on the string is
given by a function u(x, t) depending only on time t and the horizontal position x of the point:

The wave equation says that, under only the action of tension with no other external force, the
displacement function u(x, t) evolves according to

∂2u

∂t2
= a2

∂2u

∂x2
,

where a2 > 0 is a constant depending only on the string and what it is made of. We will talk about
the derivation of this equation from Newton’s laws next time. Like the heat equation, the wave
equation is an example of a linear homogeneous PDE: here the relevant linear partial differential
operator is

L =
∂2

∂t2
− a2

∂2

∂x2
,

and the wave equation says that L(u) = 0. Thus, being the kernel of a linear operator, we know
that the space of solutions is closed under addition and scalar multiplication.

As one might expect after having seen the heat equation, we can find solutions to the wave
equation via Fourier series methods. The presence of such series comes, as usual, from boundary
conditions. In this case, we impose the following basic boundary conditions:

u(0, t) = 0 = u(L, t),

which say that the ends of the string are tied down throughout all time. Later we will also consider
boundary conditions which say that the partial derivative ux should be 0 at an end, which allow
for one or both ends to move freely.

We will also impose initial conditions, where the first u(x, 0) = f(x) gives the starting position
of string. Since the wave equation is second-order in time (meaning it involves a second derivative
with respect to time), to single-out a solution requires that we also specify the first derivative with
respect to time, so we impose ut(x, 0) = g(x), which gives the starting velocity at any point along
the string. The goal is then to find the function u(x, t) satisfying the wave equation and the given
boundary and initial conditions.
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Fundamental and general solutions. Using separation of variables, for a separated solution
u(x, t) = X(x)T (t), we get the following ODEs:

T ′′ − λa2T = 0, X ′′ − λX = 0.

The boundary conditions u(0, t) = 0 = u(L, t) become X(0) = 0 = X(L), and the resulting
boundary value problem for X

X ′′ − λX = 0, X(0) = 0 = X(L)

is precisely the same one we had in the heat equation. Thus we get the same fundamental solutions
as before:

Xn = sin
"nπx

L

#
for λn = −n2π2

L

where n is a positive integer.
The ODE for T then becomes

T ′′ +
a2n2π2

L
T = 0.

Rather than the exponential solutions we got for the heat equation, here we get trigonometric
solutions:

Tn = cn cos

.
anπt

L

/
+ dn sin

.
anπt

L

/

where cn, dn are scalars. After multiplying this by Xn, we see that we get fundamental solutions
for un(x, t) which consist of terms involving

cos

.
anπt

L

/
sin

"nπx
L

#
and sin

.
anπt

L

/
sin

"nπx
L

#
,

and so the general (formal) solution is

u(x, t) =

∞!

n=1

4
cn cos

.
anπt

L

/
+ dn sin

.
anπt

L

/5
sin

"nπx
L

#
.

Now we impose initial conditions. For u(x, 0) = f(x) we get the requirement that

f(x) = u(x, 0) =

∞!

n=1

cn sin
"nπx

L

#
,

so the cn should be the Fourier sine coefficients of f . For ut(x, 0) = g(x), we get

g(x) = ut(x, 0) =

∞!

n=1

dn
anπ

L
sin

"nπx
L

#
,

so dn
anπ
L should give the Fourier sine coefficients of the initial velocity g(x), meaning that dn should

be this Fourier sine coefficient times L
anπ . Thus, the solution of the wave equation

utt = a2uxx

satisfying
u(0, t) = 0 = u(L, t), u(x, 0) = f(x), and ut(x, 0) = g(x)

50



is

u(x, t) =

∞!

n=1

4
cn cos

.
anπt

L

/
+ dn sin

.
anπt

L

/5
sin

"nπx
L

#

where

cn =
2

L

$ L

0
f(x) sin

"nπx
L

#
dx

and

dn =
L

anπ
· 2
L

$ L

0
g(x) sin

"nπx
L

#
dx =

2

anπ

$ L

0
g(x) sin

"nπx
L

#
dx

Example. Consider the string on [0,π] with initial position

so f(x) = x for 0 ≤ x < π
2 and f(x) = π− x for π

2 ≤ x ≤ π, and with initial velocity zero, evolving
according to utt = uxx. (So a2 = 1 in this case.) The Fourier sine coefficients of f are

cn =
2

π

$ π

0
f(x) sin(nx) dx =

2

π

0$ π/2

0
x sin(nx) dx+

$ π

π/2
(π − x) sin(nx) dx

1
=

4 sin(nπ2 )

πn2
,

and the Fourier sine coefficients ut(x, 0) = 0 are all zero. Hence the displacement of the string is
given by

u(x, t) =

∞!

n=1

4 sin(nπ2 )

πn2
cos(nt) sin(nx).

Note what happens as t increases—here are some plots for t = 0, 0.5, 1, 1.5, 2:

This exhibits the “wave-like” behavior we expect: the initial graph begins to move down as t
increases, eventually dipping below the x-axis. It will begin to do so until it reaches its minimal
(i.e. most negative) displacement at t = π (the graph will be the mirror image of the initial one),
after which the graphs begins to move back up, reaching the initial displacement again at t = 2π.
The point is that the wave equation truly does describe wave-like behavior!
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Lecture 12: More on Waves

Warm-Up. We solve the wave equation ut = 4uxx with boundary conditions

u(0, t) = 0 = u(1, t)

and initial conditions u(x, 0) = 10, ut(x, 0) = x2. The solution is

u(x, t) =

∞!

n=1

[cn cos (2nπt) + dn sin (2nπt)] sin (nπx)

where the cn are the Fourier sine coefficients of u(x, 0) = 10 and 2nπdn are the Fourier sine
coefficients of ut(x, 0) = x2. Thus we have

cn = 2

$ 1

0
10 sin(nπx) dx =

20(1− cosnπ)

nπ

dn =
1

nπ

$ 1

0
x2 sin(nπx) dx =

(2− π2n2) cosnπ − 2

π4n4
.

The solution we want is

u(x, t) =

∞!

n=1

4
20(1− cosnπ)

nπ
cos (2nπt) +

(2− π2n2) cosnπ − 2

π4n4
sin (2nπt)

5
sin (nπx) .

But note that care must be taken in order to know that this solution is indeed a solution, in the
sense that it gives a well-defined function. In other words, how do we know that this series in fact
converges? If it doesn’t converge it would make no sense to try to construct a candidate solution
from it, so this is an important issue. In particular, note that taking two partial derivatives with
respect to x (as required in the wave equation) will produce an n2 term, and it is not obvious that
a series with terms like ∞!

n=1

n
20[1− cosnπ]

π
cos(2nπt) sin(nπx)

(I’m omitting the second piece for now) will converge. This was not really an issue with the heat
equation because there we had an exponential term in our solution that decayed rapidly enough to
balance out any other term like “n” that grows, but there is no such exponential term here. We
will come back to this issue in a bit.

Visualizing velocity. ***TO BE FINISHED***

Derivation of the wave equation. ***TO BE FINISHED***

Convergence issues. ***TO BE FINISHED***

Hyperbolic PDEs. ***TO BE FINISHED***

Other boundary conditions. Other typical boundary conditions come from allowing one or
both ends of the string to move freely. For example, with

u(0, t) = 0, ux(L, t) = 0,
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we hold the end on the left always at zero but the right end can move. (This is a wave analog of
an “insulated end”.) This gives boundary conditions X(0) = 0 = X ′(L) for a separated solution,
which results in fundamental solutions

Xn = sin

.
(2n− 1)πx

2L

/
for λn = −(2n− 1)2π2

4L2
.

The case where both ends can move freely:

ux(0, t) = 0 = ux(L, t)

gives X ′(0) = 0 = X ′(L), which results in fundamental solutions

X0 = 1 for λ0 = 0, and Xn = cos
"nπx

L

#
for λ = −n2π2

L2
.

In this case initial conditions u(x, 0) = f(x), ut(x, 0) = g(x) require the use of Fourier cosine series
when deriving the unknown coefficients.

2D wave equation. ***TO BE FINISHED***

Lecture 13: Laplace Equation

Warm-Up. We show that the function

u(x, t) =

∞!

n=1

an cos

.
anπt

L

/
sin

"nπx
L

#
,

which describes the solution to the wave equation utt = a2uxx with boundary conditions u(0, t) =
0 = u(L, t) and initial conditions u(x, 0) = f(x), ut(x, 0) = 0, is 1

2(h(x − at) + h(x + at)) where h
is the odd extension of the initial condition u(x, 0) = f(x). This reflects a general fact about the
structure of wave solutions which we’ll clarify afterwards.

The odd extension h has Fourier series

h(x) =

∞!

n=1

an sin
"nπx

L

#

where the an are the Fourier sine coefficients of f . Using the angle-addition formula for sine:

sin(A+B) = cosA sinB + cosB sinA,

we get that

h(x− at) =

∞!

n=1

an sin

.
nπ(x− at)

L

/

=

∞!

n=1

an cos
"nπx

L

#
sin

.
−πnat

L

/
+

∞!

n=1

an cos

.
−nπat

L

/
sin

"nπx
L

#

and

h(x+ at) =

∞!

n=1

an sin

.
nπ(x+ at)

L

/
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=

∞!

n=1

an cos
"nπx

L

#
sin

.
πnat

L

/
+

∞!

n=1

an cos

.
nπat

L

/
sin

"nπx
L

#
.

Since cosine is even and sine is odd, when adding h(x − at) and h(x + at) we see that the terms
with sin

+
πnat
L

,
cancel out, so we are left with

h(x− at) + h(x+ at) = 2

∞!

n=1

an cos

.
nπat

L

/
sin

"nπx
L

#
.

Thus after dividing by 2 we get the desired claim:

u(x, t) =
1

2
(h(x− at) + h(x+ at)).

Superpositions and standing waves. Now, we can interpret this result as follows. First, note
that h(x− at) has the same graph as h(x), only shifted to the right, with the “shift” increasing as
t does. Similarly, h(x+ at) is the graph of h shifted to the left, more and more as t increase. Thus,
if we interpret h(x − at) as describing a rightward moving wave and h(x + at) a leftward moving
wave, the result

u(x, t) =
1

2
(h(x− at) + h(x− at))

in the case of no initial velocity says that any wave is a superposition of a rightward moving wave
with a leftward moving wave. The constant a then describes the speed of the moving wave.

If we go back to the form

u(x, t) =

∞!

n=1

an cos

.
anπt

L

/
sin

"nπx
L

#
,

we can also give an interpretation to each summand. The function sin(nπxL ) describes a standing
wave, since it does not depend on t. The nπ

L constant is then the frequency of this standing wave
and is inversely proportional to the period 2L. (The frequency tells you how many “peaks” there
are within a given interval.) The coefficient cos(nπatL ) describes an amplitude of the wave, so that
as time increases our standing wave remains “standing” only with varying amplitude:

The general solution

u(x, t) =

∞!

n=1

an cos

.
anπt

L

/
sin

"nπx
L

#

in the zero initial velocity case thus says that an arbitrary wave is a superposition of standing
waves, each corresponding to a certain frequency. (We will generalize this “frequency” perspective
a bit later to the case of a continuous range of frequencies when we discuss Fourier transforms.)
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Justifying wave solutions. Moreover, the form u(x, t) = 1
2(h(x − at) + h(x + at)) allows us to

formally justify the fact that the series above does give an actual solution to the wave equation.
Recall the issue we mentioned last time that even though

u(x, t) =

∞!

n=1

an cos

.
anπt

L

/
sin

"nπx
L

#

might converge, the series obtained by differentiating might not, and so it is not clear that we
can verify utt = a2uxx directly in such a situation. But now we have a way out: the function
u(x, t) = 1

2(h(x− at) + h(x+ at)) definitely exists and is definitely differentiable as much times as
we want (assuming h is), so we can verify by direct substitution that it satisfies the wave equation:

utt =
1

2
(a2h′′(x− at) + a2h′′(x+ at)) and uxx =

1

2
(h′′(x− at) + h′′(x+ at),

so utt = a2uxx is true. The upshot is that, although it may be the case that “term-by-term”
differentiation in

u(x, t) =

∞!

n=1

an cos

.
anπt

L

/
sin

"nπx
L

#

does not actually work, the function defined by this series satisfies the wave equation nonetheless
via alternative means. A similar thing is true when we include a nonzero initial velocity.

Laplace equation. The final PDE we consider is the Laplace equation, which in the two-
dimensional case is

∂2u

∂x2
+

∂2u

∂y2
= 0.

(This is the prototypical example of an elliptic partial differential equation.) This is a linear
homogeneous PDE, corresponding to the linear partial differential operator given by

∆ =
∂2

∂x2
+

∂2

∂y2
.

This is called the Laplacian operator, and with this notation the Laplace equation is ∆u = 0.
Solutions of the Laplace equation are known as harmonic functions, and show up in various

contexts. Perhaps the main one is in characterizing various types of potential functions in physics.
For example, the standard gravitational and electric potential and functions are harmonic. That
this might be a desirable thing to have comes from recognizing that being harmonic says that the
gradient of u is divergence-free:

∇u = (ux, uy) ⇝ div(∇u) =
∂(ux)

∂x
+

∂(uy)

∂y
= uxx + uyy.

Harmonic functions also show up in complex analysis as the real and imaginary parts of complex-
differentiable functions. That is, if f : C → C has a complex derivative (you’ll learn what this
means in MATH 382) and we write f as f = u + iv where u, v are both real-valued, it is a basic
fact that u and v must both be harmonic. (This follows from what are called the Cauchy-Riemann
equations, which is a system of PDEs you’ll see in a complex analysis course.)

But most relevant to things we’ve seen in this course is that the fact that the Laplace equation
describes steady-state solutions of the two-dimensional heat equation:

ut = α2(uxx + uyy).
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For a steady-state solution we require that ut = 0, which turns the steady-state heat equation into
precisely the Laplace equation.

Rectangular regions. The form which solutions of the Laplace equation takes depends heavily
on the region being considered. We will mainly be concerned with rectangular regions and, later,
disks. We begin by considering the Laplace equation on a rectangle

with boundary conditions

u(0, y) = 0 = u(a, y), u(x, 0) = 0, u(x, b) = f(x).

(There is no initial condition since there is no dependence on t.) Now, as usual, we separate our
solution and get some ODEs:

u(x, y) = X(x)Y (y) ⇝ X ′′ − λX = 0, Y ′′ + λY = 0.

The boundary conditions u(0, y) = 0 = u(a, y) on the left and right edges giveX(0) = 0 = X(a).
The equation X ′′ − λX = 0 with these boundary conditions is one we’ve solved already, where we
get nonzero solutions

Xn = sin
"nπx

a

#
for λn = −n2π2

a2
.

For these λn, the ODE for Y is Y ′′ − n2π2

a2
Y = 0, which has solution

Y = c1e
nπy/a + c2e

−nπy/a.

Now, the boundary condition u(x, 0) = 0 along the bottom edge gives Y (0) = 0, so c1 + c2 = 0.
Thus c2 = −c1, so

Y = c1(e
nπy/a − e−nπy/a).

After setting c1 we take
Yn = enπy/a − e−nπy/a

as a fundamental solution. In fact, this expression is precisely 2 times the hyperbolic sine function:
Yn = 2 sinh(nπya ). So then we can actually simply take Yn = sinh(nπya ) as a fundamental solution.

The general solution of the Laplace equation with these boundary conditions is then

u(x, y) =

∞!

n=1

cn sinh
"nπy

a

#
sin

"nπx
a

#
.
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The remaining boundary condition u(x, b) = f(x) along the top edge then gives

f(x) = u(x, b) =

∞!

n=1

cn sinh

.
nπb

a

/
sin

"nπx
a

#
,

which says that the cn sinh(
nπb
a ) should be the Fourier sine coefficients of f(x). Then our solution

is

u(x, y) =

∞!

n=1

cn sinh
"nπy

a

#
sin

"nπx
a

#

where

cn =
2

sinh(nπba )

$ a

0
f(x) sin

"nπx
a

#
dx.

Lecture 14: More on Laplace

Warm-Up. We solve the Laplace equation ∆u = 0 on the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b with
boundary conditions

u(0, y) = 0 = u(1, y), u(x, 0) = 0, u(x, 2) = 1− x.

As we derived last time, the solution is

u(x, y) =

∞!

n=1

cn sinh (nπy) sin (nπx)

where bn sinh(
nπb
a ) are the Fourier sine coefficients of u(x, 0). In this specific case we have

cn =
2

sinh(2nπ)

$ 1

0
(1− x) sin(nπx) dx =

2

nπ sinh(2nπ)
.

Hence our solution is

u(x, y) =

∞!

n=1

2

nπ sinh(2nπ)
sinh (nπy) sin (nπx) .

Here is a plot of the graph of u(x, y):
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If we interpret this as a steady-state solution of the heat equation, we see that, as expected from the
boundary conditions, the temperature of u(x, 2) = 1 − x along the top boundary “dissuses” away
and decreases as we move away from this boundary, reaching a temperature of zero along the other
pieces of the boundary. The diffusion occurs quite rapidly, meaning we don’t have to move away
from the top boundary by too much before we find that the temperature has fallen dramatically.

Other rectangular boundaries. Let us now consider the Laplace equation on the same rectangle
0 ≤ x ≤ a, 0 ≤ y ≤ b as before, but now with nonzero boundary condition on the left side and zero
on the other pieces of the boundary:

u(0, y) = g(y), u(a, y) = 0, u(x, 0) = 0 = u(x, b).

Here we end up with the following boundary value problems for Y :

Y ′′ + λY = 0, Y (0) = 0 = Y (b).

This has fundamental solutions

Yn = sin
"nπy

b

#
for λn =

n2π2

b2
.

For X we then get (imposing only u(a, y) = 0 for now)

X ′′ − n2π2

b2
X = 0, X(a) = 0.

The solution thus looks like
X = c1e

nπx/b + c2e
−nπx/b,

and X(a) = 0 forces c2 = −c1e
2nπa/b. Hence

X = c1e
nπx/b − c1e

2nπa/be−nπx/b.

To find a “nice” fundamental solution, we can rewrite this by factoring out a factor of enπa/b:

X = c1e
nπa/b(enπ(x−a)/b − e−nπ(x−a)/b).

The expression in parentheses is 2 sinh(nπ(x−a)
b ), so we can take

Xn = sinh

.
nπ(x− a)

b

/

as a fundamental solution.
Thus our solution looks like

u(x, y) =

∞!

n=1

cn sinh

.
nπ(x− a)

b

/
sin

"nπy
b

#
.

The remaining boundary condition u(0, y) = g(y) gives

g(y) =

∞!

n=1

−cn sinh
"nπa

b

#
sin

"nπy
b

#
,
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so that −cn sinh
+
nπa
b

,
must be the Fourier sine coefficients of g(y).

Now, for the problem where we have both a nonzero boundary condition on the top and left
sides of the rectangle, with zero boundary conditions on the other two sides, we can simply add
together the solutions we’ve found so far. That is, if u1(x, y) is the solution we had last time for
the case of a nonzero boundary condition f(x) on the to edge, and u2(x, y) is the solution above
with a nonzero boundary condition g(y) on the left edge, then

u(x, y) = u1(x, y) + u2(x, y)

still satisfies the Laplace equation (the Laplace equation is linear) and satisfies the boundary con-
ditions

u(0, y) = u1(0, y) + u2(0, y) = 0 + g(y) = g(y), u(x, b) = u1(x, b) + u2(x, b) = f(x) + 0 = f(x),

and zeroes on the other two edges. More generally, for a rectangle with nonzero boundary conditions
on all sides, we can first find the solutions with one nonzero boundary conditions at-a-time, and
then add these together to get the full solution. Thus, we can solve the Laplace equation on any
rectangular region.

Dirichlet vs Neumann boundary conditions. The boundary conditions give above, where we
specify the values of our solution on the boundary, are known as Dirichlet boundary conditions.
Alternatively, Neumann boundary conditions are ones where we specify instead the rate of change
in the “normal” direction of the solution along boundary. In the case of a rectangle, Neumann
boundary conditions thus looks like

ux(0, y) = f(y), ux(a, y) = g(y), uy(x, 0) = h(x), uy(x, b) = ℓ(x).

The process of solving Neumann boundary value problems is the same as Dirichlet problems (indeed,
we already saw some Neumann conditions with the heat equation, say with insulated ends), but
the structure of the solutions can be a bit different. You’ll see some examples on the homework.

Uniqueness. We now prove uniqueness of solutions to the Laplace equation on any region with
Dirichlet boundary conditions. (At least, any region nice enough to which Green’s theorem is
applicable!) This is one of the only uniqueness results we can definitely justify in this class, since
it just depends on Green’s theorem (more precisely, the divergence form of Green’s theorem) from
multivariable calculus. The upshot is that the behavior of harmonic functions is fairly restrictive:
the behavior along the boundary of a region completely determines the behavior through the entire
region, since there is only one possible function which those boundary values can give rise to. (You
will see a similar phenomenon show in complex analysis, which is no surprise given the connection
between harmonic functions and complex differentiable functions we mentioned last time.)

Suppose D is a nice two-dimensional region with boundary ∂D. (For example, “nice” could
mean that the boundary ∂D consists of piecewise smooth curves.) The claim is that if f and g are
two functions satisfying the Laplace equation on D which have the same values along the boundary
of D, then f = g on all of D. Note that f = g on D if and only if f − g is zero on all of D, and
f = g on ∂D if and only if f − g = 0 on ∂D, so it is enough to know that a harmonic function
which is zero along ∂D must then be zero on all of D.

So, suppose ∆u = 0 on D and u = 0 on ∂D. Consider the vector field u∇u. The divergence
form of Green’s theorem states that

$

∂D
u∇u · n ds =

$$

D
div(u∇u) dA
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when ∂D has the proper orientation. (The orientation won’t matter in this application. Also, the
left side is a line integral where we measure the extent to which the field u∇u flows “through” the
boundary, as indicated by the dot product with the unit normal vector n along the boundary. It’s
not important to go back and recall what this line integral actually means, since it will be zero in
our case.) Since u = 0 on ∂D, the vector field u∇u is zero on the boundary as well, so the left side
of the equation above is zero.

For the right side we first compute:

div(u∇u) = div(uux, uuy) =
∂(uux)

∂x
+

∂(uuy)

∂y
= uxux + uuxx + uyuy + uuyy.

Since ∆u = 0 on D, we have that uuxx + uuyy = u(uxx + uyy) = 0 on D, so the integral on the
right simplifies and we are left with

0 =

$$

D
[(ux)

2 + (uy)
2] dA.

But the integrand (ux)
2 + (uy)

2 is never negative, so in order for this integral to be zero we must
have (ux)

2 + (uy)
2 = 0 at all points of D. This forces ux and uy to be zero on all of D, which

implies that u must be constant on D. Since the value of u on ∂D is zero, this “constant” must
be zero, so u = 0 on all of D as desired. Thus, solutions of the Laplace equation on a region with
specified Dirichlet boundary conditions are unique.

Lecture 15: Polar Laplace

Warm-Up. We solve the Laplace equation on a rectangle with some Neumann boundary condi-
tions, say

ux(0, y) = f(y), ux(a, y) = 0, uy(x, 0) = 0 = uy(x, b).

As usual, we separate variables and for Y in particular we get

Y ′′ + λY = 0, Y ′(0) = 0 = Y ′(b).

This is the boundary value problem we saw previously when considering the heat equation with
insulated ends, and the fundamental solutions are

Yn = cos
"nπy

b

#
for λn =

n2π2

b2
, and Y0 = 1 for λ0 = 0.

Then for X and λn (n ∕= 0) we get

X ′′ − n2π2

b2
X = 0, X ′(a) = 0,

which has solution
X = c1e

nπx/b + c1e
2nπa/be−nπx/b.

We can express in terms of hyperbolic cosine via:

X = c1e
nπa/b(enπ(x−a)/b + e−nπx−a/b

9 :; <
2 cosh(nπ(x−a)/b

),
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so we take

Xn = cosh

.
nπ(x− a)

b

/

as the fundamental solution. For λ0 = 0, we have X = c1 + c2x, and X ′(a) = 0 gives X0 = 1.
Thus, our solution is

u(x, y) =
c0
2

+

∞!

n=1

cn cosh

.
nπ(x− a)

b

/
cos

"nπy
b

#
,

and the remaining boundary condition ux(0, y) = f(y) requires

f(y) = ux(0, y) =

∞!

n=1

−nπcn
b

sinh
"nπa

b

#
cos

"nπy
b

#
,

so that −nπcn
b sinh

+
nπa
b

,
should be the Fourier cosine coefficients of f(y). (In particular, the

constant Fourier cosine coefficient c0 should be zero since it does not appear in the series above, so
f should satisfy

* b
0 f(y) dy = 0 in order for there to be a solution at all.)

Laplace on a disk. The Laplace equation on other regions sides rectangles is not so easy to solve,
but at least we can also work out a general solution in the case of a disk. This will take quite a bit
more work than the case of a rectangle, and depends more heavily on some ODE material, but we
get a nice explicit form in the end.

The key point is that we can do all the required computations in polar coordinates. The Laplace
equation in polar coordinates is

urr +
1

r
ur +

1

r2
uθθ = 0.

(We briefly saw the left side a bit when considering the heat equation in polar coordinates.) We
consider a disk centered at the origin of radius a, with boundary condition

u(a, θ) = f(θ).

Since 0 = 2π in terms of values for θ on the disk, we must require that f be 2π-periodic. Moreover,
we will also assume that the solution u(r, θ) we seek is bounded on the disk. All of these (mild)
assumptions are necessary in order to derive an explicit solution.

After separating variables u(r, θ) = R(r)Θ(θ), we get

Θ′′ − λΘ = 0 and r2R′′ + rR′ + λR = 0.

Now, for λ > 0 we get

Θ = c1e
√
λθ + c2e

−
√
λθ.

But such a thing cannot be periodic on the boundary unless c1 and c2 are both zero, so we get no
nonzero solution here. For λ = 0, we get Θ = c1 + c2θ, and the periodic assumption forces c2 = 0,
so that Θ is constant. The ODE for R in this case becomes

r2R′′ = −rR′.

This can be solved by rewriting it as R′′

R′ = −1
r , integrating once to obtain

ln |R′| = − ln r + C,
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exponentiating to get

R′ = c2e
− ln r =

c2
r

for some constant c2,

and finally integrating once more to get R = c1 + c2 ln r. (I told you the case of a disk was more
involved than that of a rectangle!) But our solution is meant to be bounded, and ln r is unbounded
as r → 0 in the disk, so we must have c2 = 0 and thus R = c1 is constant as well. Thus, in the
λ = 0 case we get a constant solution for u, so u0 = 1 is our fundamental solution.

Finally, suppose λ = −k2 < 0. For Θ we get

Θ = c1 cos(kθ) + c2 sin(kθ),

and the 2π-periodic requirement forces k to be an integer. The equation for R is then

r2R′′ + rR′ − k2R = 0.

This is an example of an Euler equation, which you perhaps learned how to solve in a previous
course. The strategy is to search for solution of the form R = rn. If this is to be solution, then we
must have

n(n− 1)rn9 :; <
r2R′′

+ nrn9:;<
rR′

−k2rn = 0,

which requires that n(n− 1) + n− k2 = 0. Solving for n gives n = ±k as the possible values, so rk

and r−k are two solutions of this Euler equation, and we can write the general solution as

R = c1r
k + c2r

−k.

The requirement that u(r, θ) be bounded forces c2 = 0 since r−k blows up to infinite as r → 0, so
Rn = rn is our fundamental solution for R when λn = −n2.

After putting everything together, we thus get that our general solution is

u(r, θ) =
c0
2

+

∞!

n=1

(cnr
n cos(nθ) + bnr

n sin(nθ)).

The boundary condition u(a, θ) = f(θ) gives

f(θ) = u(a, θ) =
c0
2

+

∞!

n=1

(cna
n cos(nθ) + bna

n sin(nθ)),

so the cna
n and bna

n must be the Fourier coefficients (in the very first sense we considered in the
first week of class) of f(θ).

Lecture 16: Fourier Transform

Warm-Up. We solve the Laplace equation on the region 3 ≤ r < ∞ outside the disk r < 3, with
boundary values

u(3, θ) =

)
0, 0 ≤ θ < π

2π − θ, π ≤ θ < 2π.

Just like last time when considering the Laplace equation inside the disk, we look here for a bounded
solution u(r, θ) which is periodic on the boundary circle. Following the same analysis as last time,
the first minor difference comes in the λ = 0 case, where the solution of R is

R = c1 + c2 ln r.
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Previously we used the fact that ln r is unbounded as r → 0 to force c2 = 0, and here it the fact
that ln r is unbounded as r → ∞ that again forces c2 = 0. Thus we get a constant solution for
λ = 0, just as before.

The only other difference comes in the λ = −k2 < 0 case, where we again get

R = c1r
k + c2r

−k.

However, now it is the c1 coefficient which must be zero since rk → ∞ as r → ∞. Thus here we
get Rn = r−k as the fundamental solution, so the general solution is

u(r, θ) =
c0
2

+

∞!

n=1

[cnr
−n cos(nθ) + dnr

−n sin(nθ)].

The boundary condition u(3, θ) = f(θ) implies that 3−ncn and 3−ndn are the Fourier coefficients
of f(θ), so we get;

c0 =
1

π

$ 2π

0
f(θ) dθ =

1

π

$ 2π

π
(2π − θ) dθ =

π

2

cn =
3n

π

$ 2π

0
f(θ) cos(nθ) dθ =

1

π

$ 2π

π
(2π − θ) cos(nθ) dθ =

3n(cosπn− 1)

πn2

dn =
3n

π

$ 2π

0
f(θ) sin(nθ) dθ =

1

π

$ 2π

π
(2π − θ) sin(nθ) dθ =

3n cosπn

n
.

Thus our solution is

u(r, θ) =
π

4
+

∞!

n=1

4
3n(cosπn− 1)

πn2
r−n cos(nθ) +

3n cosπn

n
r−n sin(nθ)

5

Spherical Laplace. ***TO BE FINISHED***

Back to the heat equation. We now move to a new topic, that of the Fourier transform, but
will motivate its definition by returning to the heat equation. We seek to find a solution of the heat
equation

ut = α2uxx, u(x, 0) = f(x)

but now with no boundary conditions and modeling the temperature in a rod of infinite length. In
other words, we now want u(x, t) to be a function where x can take values on all of R, as opposed
to the type of bounded interval [0, L] we considered before. We will make one assumption, however,
namely that u(x, t) should be bounded as x varies in R.

Following the same method as before, we come to consider the ODE

X ′′ − λX = 0,

with no boundary conditions. For λ > 0 we have

X = c1e
√
λx + c2e

−
√
λx,

which, if nonzero, does not remain bounded as x → ±∞. If λ = 0, we get X = c1 + c2x, and the
bounded condition forces c2 = 0. So we get a nonzero solution X0 = 1 for λ0 = 0. Then we are left
with the λ = −k2 < 0 case, where now we write our solution in complex form as

X = c1e
ikx + c2e

−ikx.
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(Recall that expressing functions in terms of these complex exponentials is equivalent to expressing
in terms of sine and cosine.) This is always bounded since |eikx| = 1, so we have no further
restrictions, and in particular there is no restriction in this case that k must be an integer, so that
k is now any nonzero real number! (The integer restriction previously came from the boundary
conditions on [0, L].) So, we get a whole bunch of fundamental solutions eikx for nonzero k, and if
we allow k = 0 we get the one e0 = 1 we had for λ = 0.

From discrete to continuous. Thus, by analogy with the bounded string we had before, we
would expect (or, perhaps more precisely, hope) that our solution in this case should be end up
being a “sum” of scalar multiples of eikx, where k ranges among all real numbers:

!

k is real

cke
ikx.

But of course, such a sum does not quite make sense since we cannot actually “add”—in the
normal sense—such quantities together if there are “R-many” of them. But, the way out of this is
to interpret the “sum” as an integral over −∞ < k < ∞ instead, so that we want something like

$ ∞

−∞
c(k) eikx dk.

(The point is that an integral should be interpreted as a “continuous sum”, versus an infinite series,
which is still a “discrete sum”. We write the coefficient as c(k) instead of ck to make it look more
like a function since we are getting such a value for each real “input” k, but the idea is the same:
for each k, c(k) is a scalar coefficient.) As for the “coefficient function” c(k), again if we go purely
by analogy with the coefficients obtained in the “discrete” case before:

ck =
1

2π

$ π

−π
f(x)e−ikx dx,

we might expect to get something like

c(k) =
1

2π

$ ∞

−∞
f(x)e−ikx dx

The function (of k) defined by this integral
*∞
−∞ f(x)e−ikx dx (we’ll forget the constant 1

2π in front
for now) is thus a continuous analog of a Fourier coefficient, and will eventually give us a way to
express f as a continuous analog of a Fourier series.

Fourier transform. Motivated by the discussion above, we thus make the following definition:
the Fourier transform of a function f is the function f̂ defined by

f̂(s) =

$ ∞

−∞
f(x)e−isx dx.

We finish with an example, and compute the Fourier transform of the “pulse” function

f(x) =

)
1 −T ≤ x ≤ T

0 otherwise

where T > 0 is a constant. We have:

f̂(s) =

$ ∞

−∞
f(x)e−isx dx
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=

$ −T

−∞
0 · e−isx dx+

$ T

−T
1 · e−isx dx+

$ ∞

T
0 · e−isx dx

=

$ T

−T
e−isx dx

= − 1

is
e−isx

---
T

−T

= − 1

is
(e−isT − eisT )

= − 1

is
(−2i sin(sT ))

=
2 sin(sT )

s
.

Note that although this resulting function appears at first to be undefined at s = 0, since

lim
s→0

2 sin(sT )

s
= 2T

we can set its value at s = 0 to be 2T and still get a continuous (in fact C1) function on R. This
is reflective of a general idea we will highlight next time.

Lecture 17: More on Transforms

Warm-Up. We compute the Fourier transforms of the functions

f(t) =

)
0 t < 0

e−at t ≥ 0

and g(t) = e−a|t|, where a > 0 is a constant. For f we have:

f̂(s) =

$ ∞

−∞
f(t)e−ist dt

=

$ ∞

0
e−ate−ist dt

=

$ ∞

0
e−(a+is)t dt

= − 1

a+ is
e−(a+is)t

----
∞

0

=
1

a+ is
.

(Recall that to “evaluate” an improper integral at an infinite bound really means to take a limit as
the variable in question approaches that infinite bound, so that evaluating at the upper bound of
∞ in this case really means to compute

lim
t→∞

− 1

a+ is
e−(a+is)t = lim

t→∞
− 1

a+ is
e−ate−ist.

Here, the e−ist term is bounded and the e−at decays to 0 as t → ∞, so the entire limit, and hence
the “value” at ∞, is zero.) Thus the Fourier transform of f is f̂(s) = 1

a+is . Note that even though
f is real-valued here, its Fourier transform is complex-valued.
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For g we have:

ĝ(s) =

$ ∞

−∞
g(x)e−isx dx

=

$ 0

−∞
e−a(−t)e−ist dt+

$ ∞

0
e−ate−ist dt,

where in the first integral we use the fact that |t| = −t for t < 0. Now, we can compute each of
these in a similar way as we did for f above, but in fact we can directly use the result for f above
here. In particular, note that the second integral above is precisely the integral which gave f̂(s).
For the first integral we can make a change of variables t *→ −t to get:

$ 0

−∞
e−a(−t)e−ist dt =

$ ∞

0
e−ateist dt,

which is precisely the value of f̂ at the input −s instead of s. (We can also characterize this integral
as the conjugate of f̂(s).) Thus we have

ĝ(s) = f̂(−s) + f̂(s) =
1

a− is
+

1

a+ is
=

2a

a2 + s2

as the Fourier transform of g.

Functions vs their transforms. Let us graph the function g above (in green) and its Fourier
transform (in blue) for a = 1, 2, 3:

The key observation here is that g fails to be differentiable at 0 (notice the “cusp”), but ĝ is
perfectly nice and smooth at 0. The cusp gets worse as a increases, and in turn ĝ behaves in a
more controlled way. The idea is that taking the Fourier transform of a function can “smooth out”
any singularities it might have, making the Fourier transformed function a possibly nicer function
to work with. (Below we argue that we can always recover g from ĝ, so that we lose no information
when working with the Fourier transform instead.)

We see the same phenomenon with the example of the “pulse” function from last time, which
is 1 for −T ≤ x ≤ T and zero elsewhere:

(Here we take T = 1, 2, 3.) Now the original function has discontinuities, which disappear after
computing the Fourier transform, which is even differentiable!
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Fourier transforms and coefficients. We previously alluded to the idea of using Fourier trans-
forms to give “continuous” versions of Fourier coefficients, and now we make this precise. Indeed, we
claim that the process of computing the Fourier coefficients of a function is itself a type of Fourier
transform, only in a discrete setting. Given a 2π-periodic (possibly complex-valued) function f , we
can compute its (complex) Fourier coefficients

cn(f) =
1

2π

$ π

−π
f(x)e−inx dx.

(We use cn(f) here in order to emphasize the coefficients depend on the function f .) These coef-
ficients form a sequence (cn(f)) indexed by integers n ∈ Z, and we can view such a sequence as
giving a function Z → C by sending n ∈ Z to cn(f) ∈ C. Thus, we can interpret the operation
F of computing Fourier coefficients as one which maps periodic functions on R to complex-valued
functions on Z:

F : {2π-periodic functions R → C} → {functions Z → C}, F(f) = (cn(f))

The point is that the Fourier transform does the exact same thing, only where we now drop the
requirement of periodicity. Now we have the operation F , which sends a (complex-valued) function
on R to its Fourier transform, mapping the space of functions on R to itself:

F : {functions R → C} → {functions R → C}, F(f) = f̂ .

In other words, the Fourier transform is literally just the “continuous” analog of the “discrete”
Fourier coefficient construction above. It is thus no accident that the integral defining the Fourier
transform looks very similar to the one defining Fourier coefficients:

$ ∞

−∞
f(x)e−isx dx vs

1

2π

$ π

−π
f(x)e−inx dx,

since, after all, they are meant to be essentially the “same” construction. (The factor of 1
2π on the

right missing in the definition of the Fourier transform shows up elsewhere, as we will soon clarify.)

Fourier inversion. From the perspective above, we can interpret the construction of a Fourier
series as an “inverse” operation. Namely, consider the “inverse” transform F−1 in the discrete case:

F−1 : {functions Z → C} → {2π-periodic functions R → C}

defined by sending the sequence of coefficients (cn) to the series

∞!

n=−∞
cne

inx.

The Fourier convergence theorem can then be interpreted as saying that this F−1 is indeed the
inverse of F , at least for C1 functions:

f = F−1(F(f)) means f(x) =

∞!

n=−∞
cn(f)e

inx where cn(f) =
1

2π

$ π

−π
f(x)e−inx dx.

That is, from f , compute its Fourier coefficients, then form the Fourier series using these coefficients,
and you get back f . (If f is only piecewise C1 and not C1 everywhere, then F−1(F(f)) produces
the function 1

2(f(x
−) + f(x+)) of averages of left- and right-hand limits.)
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The analog of this in the continuous setting for

F : {functions R → C} → {functions R → C}, F(f) = f̂

is called the Fourier inversion theorem, or Fourier inversion formula. Define the inverse Fourier
transform F−1(g) of a function g to be

(F−1(g))(s) =
1

2π

$ ∞

−∞
g(x)eisx dx.

(There’s the 2π showing up in the definition of complex Fourier coefficients but missing in the
definition of the Fourier transform!) The Fourier inversion formula says that this is indeed in the
inverse of the Fourier transform operation F in the sense that

f(x) =
1

2π

$ ∞

−∞
f̂(s)eisx ds, or in other notation f = F−1(F(f)),

at least when f is C1. (For f only piecewise C1, you get 1
2(f(s

−) + f(s+)) on the left side of this
formula.) Thus, the inverse Fourier transform of the Fourier transform of f gives back f , so that
f can be recovered from its Fourier transform. We will give a rough justification of this inversion
formula later, but the upshot is that the function f̂ contains the exact same information as f
does, since we can recover f from f̂ . (In the discrete case, the coefficients cn(f) contain the same
information as f , since we can recover f from these coefficients via a Fourier series.)

Just as the Fourier transform f̂ can be viewed as the continuous version of the sequence of Fourier
coefficients (cn(f)), the expression given by the inverse Fourier transform is thus the continuous
analog of a Fourier series:

1

2π

$ ∞

−∞
f̂(s)eisx ds is the continuous version of

∞!

n=−∞
cne

inx,

and this is why we expect such a thing to be useful in solving the heat equation on R. Of course,
there is still that extra 1

2π we have to deal with in order to make this analogy complete. In the
discrete Fourier series case, the 1

2π shows up in the definition of the coefficients, while here we are
using it in the definition of the inverse transform. Ultimately it is just a matter of convention as
to where we put this factor. Many sources define the Fourier transform by

f̂(s) =
1

2π

$ ∞

−∞
f(x)e−ixs dx,

so that it truly mimics the definition of the coefficients cn(f), and in this case the inverse Fourier
transform would be

(F−1(f̂))(x) =

$ ∞

−∞
f̂(s)eisx ds,

which now closely mimics the Fourier series expression. Other sources “split the difference” and
put a factor of 1√

2π
in both the definitions of the Fourier transform and its inverse:

f̂(s) =
1√
2π

$ ∞

−∞
f(x)e−ixs dx, (F−1(f̂))(x) =

1√
2π

$ ∞

−∞
f̂(s)eixs ds,

so that a 1
2π appears when composing F−1(F(f)). It is also common to use a different exponential

in the definition of the Fourier and inverse Fourier transform:

f̂(s) =

$ ∞

−∞
f(x)e−i2πxs dx, (F−1(f̂))(x) =

$ ∞

−∞
f̂(s)ei2πxs ds,
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which eliminates the need to use any factor of 1
2π at all. We will stick with the convention we began

with, where we don’t use a 1
2π in the Fourier transform and instead use it in the inverse transform.

Frequency/momentum domain. We now give a “physical” interpretation of the Fourier trans-
form of f . To motivate this, again consider the discrete case of a Fourier series:

f ⇝ cn(f) ⇝
∞!

n=−∞
cn(f)e

inx.

Since einx = cos(nx) + i sin(nx), we see that n here is the frequency of the corresponding wave,
which is the number of “peaks” that occur within a unit time interval, assuming that x represents
time. The coefficients cn(f) can be viewed as a defining a function Z → C, which is thus to be
interpreted as a function of the frequency variable n and outputs the amplitude cn(f) of the portion
of the wave described the “frequency n” component einx. So, if f is a periodic function of time,
the “transformed” function Z → C describes the same phenomena as f , but as a function of the
frequency instead. If x represents position, then it turns out that the frequency can also essentially
be interpreted as the momentum of the wave, so cn(f) is a function of the momentum variable n.

The same interpretation holds for the Fourier transform: if f is a function of time, then f̂ is a
function of frequency since

f(t) =
1

2π

$ ∞

−∞
f̂(s)eist ds

says that f̂(s) gives the amplitude of the portion eist of the wave (formed as a “superposition”
of a continuous range of simpler waves) occurring at frequency s. We often say that the Fourier
transform shifts from the description of the phenomena being studied from the time domain to the
frequency domain. If x represents position, then the Fourier transform of f can also be thought of
as a function of momentum, so the transform moves us from the position domain to the momentum
domain. The overarching point is that a function and its Fourier transform in the end capture
the same information, only from different perspectives, and that shifting perspectives might make
certain things easier to study, as we’ll see.

Uncertainty priciple. Let us make one more observation from the graphs we had previously:

If we interpret the original function as a function of position (or time) and the Fourier transformed
function as a function of momentum (or frequency), we see that the better we can isolate the
position the worse we can isolate momentum, and vice-versa. In other words, in the first graph we
have better knowledge of where position is (between −1 and 1) as compared to the other two, but
the momentum is more “spread out” than the other two since the graph of the transform “wider”;
in the third graph, now the position is less known (between −3 and 3) than in the other two, but
in turn the momentum is more “localized” around the y-axis, so we can better determine its value
here (since more of the graph occurs near 0) than we can in the first graph.

The same is apparent in the other graphs we had above, and the upshot is that this is a reflection
of what is called the uncertainty principle in physics: the closer we are to determining the value
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of position (or time), the further we are from determining the value of momentum (or frequency),
and vice-versa. There is a restriction on how well we can know both position and momentum
simultaneously, and in general we can only pick or the other to compute experimentally.

Transforms and derivatives. Our original motivation in introducing the Fourier transform was
in wanting to solve the heat equation over all of R as opposed to an interval [0, L]. We will go
ahead and do this in detail next time, but the key tool we need to do so is the relation between
Fourier transforms and derivatives. That is, given a (say C1) function f , we want to know how the
Fourier transform of f ′ relates to the Fourier transform of f . It is this relation which allow us to
express the heat equation in the “frequency/momentum” domain, where it will be simpler to solve.
Fourier inversion will then allow us to recover our desired solution from the “frequency” solution.

We compute the Fourier transform of f ′ using integration by parts (!) as follows:

?f ′(s) =

$ ∞

−∞
f ′(t)e−ist dt

= f(t)e−ist
---
∞

−∞
−

$ ∞

−∞
−isf(t)e−ist dt.

The second term is precisely is times the Fourier transform of f ! To deal with the first term, we
use a fact we have glossed over so far, namely that in order for the improper integral defining the
Fourier transform to actually exist as a finite value requires that f have certain properties; that is,
it is not true that

*∞
−∞ f(t)e−ist dt exists for all functions f , but only for a certain class of functions.

To guarantee that this integral exists we will actually assume that f is absolutely integrable, which
means that $ ∞

−∞
|f(t)| dt < ∞.

We use the absolute value here instead of just f in order to guarantee that the integral is finite, not
because of some coincidental “cancellation” that occurs between positive and negative parts, but
rather as a result of the overall behavior of the function itself. The main practical consequence for
the computation at hand is that if a function is indeed absolutely integrable in this way, it must
be true that it decays to zero in both the positive and negative infinite directions:

$ ∞

−∞
|f(t)| dt < ∞ =⇒ lim

t→±∞
f(t) = 0.

(Otherwise the “area” under the graph of |f | would have no hope of being finite.) This then implies

that the “boundary” term f(t)e−ist
---
∞

−∞
in the computation above is zero, since “evaluating” at both

the upper ∞ and lower −∞ limits give zero. Thus we are left with

?f ′(s) = is

$ ∞

−∞
f(t)e−ist dt = isf̂(s).

The conclusion is thus that the Fourier transform of f ′ is the Fourier transform of f times i times
the variable of the transformed function. We summarize this by saying that Fourier transformation
turns differentiation into multiplication by (i times) the transform variable. As we will see with the
heat equation next time, this gives a way to essentially turns PDEs into ODEs, which will make
them easier to solve.
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Lecture 18: Yet More Fourier

Warm-Up. We determine the relation between the derivative of f̂ (assuming it exists) and f̂
itself, and then use this to compute the Fourier transform of the Gaussian function f(x) = e−ax2/2,
where a > 0. (Gaussians are ubiquitous in mathematics, mainly stemming from the fact that they
model “normal distributions” and “bell curves”.) The Fourier transform of f is

f̂(s) =

$ ∞

−∞
f(x)e−ixs dx.

To differentiate this respect to s we can “differentiate under the integral sign”:

(f̂)′(s) =
d

ds

$ ∞

−∞
f(x)e−ixs dx =

$ ∞

−∞

d

ds
[f(x)e−ixs] dx =

$ ∞

−∞
−ixf(x)e−ixs dx.

But the right side is −i times the Fourier transform of xf(x), so

(Ff)′(s) = −i

$ ∞

−∞
xf(x)e−ixs dx = −iF(xf(x)).

Thus the conclusion is that the derivative of a Fourier transform is −i times the Fourier transform
of the original function multiplied by the variable in question. Said another way, this gives

i(Ff)′(s) = F(xf(x)),

so Fourier transforms send “multiplication by x” to i times differentiation. This is a counterpart
to the relation (Ff ′)(s) = is(Ff)(s) we derived last time.

Now, we use this to compute the Fourier transform of f(x) = e−ax2/2, where a > 0. This Fourier
transform is defined by

(F(e−ax2/2))(s) =

$ ∞

−∞
e−ax2/2e−ixs dx =

$ ∞

−∞
e−(ax2/2+isx) dx,

and we can ask why we can’t just compute this integral directly? The answer is that we can, but
doing so requires some complex analysis, which in this course we do not have access to. We will
come back to this type of integral later to give some sense as to what’s required, and to give a hint
of some of the things you’ll see in MATH 382, the complex analysis ISP course, but in this course
we must find another way to compute this transform.

The key is that f(x) = e−ax2/2 satisfies the following ODE:

f ′(x) = −axf(x),

which you can check by differentiating f(x). We now take the Fourier transform of both sides of
this ODE, and use the relations between Fourier transforms and derivatives determined above and
last time:

(Ff ′) = −a(F(xf(x))) ⇝ isf̂(s) = −ia(f̂)′(s).

(We used the fact the Fourier transform operator F is in fact linear, so that in particular it preserves
scalar multiplication; this was needed in order to say that F(axf(x)) is the same as aF(xf(x)).
This can be seen from the integral definition directly, since integration is itself a linear operation.)
This says that the Fourier transform f̂ we want satisfies the ODE

(f̂)′(s) = −s

a
f̂(s),
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and solving gives
f̂(s) = Ae−s2/2a

for some constant A. This constant is the value of the Fourier transform at s = 0, which we can
compute directly:

f̂(0) =

$ ∞

−∞
f(x)ei0x dx =

$ ∞

−∞
e−ax2/2 dx =

@
2

a

$ ∞

−∞
e−u2

du,

where in the last step we made the change of variables u =
6

a
2x. This final integral is possibly

one you saw in a previous course as an application of using polar coordinates in double integrals
(ask me if you’ve never seen this computation before!), and its value is

√
π. Thus we get

f̂(0) =

@
2

a

$ ∞

−∞
e−u2

du =

@
2π

a
.

Hence the Fourier transform of f(x) = e−ax2/2 is f̂(s) =
A

2π
a e−s2/2a. The Fourier transform of a

Gaussian is another Gaussian!

Back to linear algebra. Note what happens above in the particular case where a = 1: we get
that the Fourier transform of e−x2/2 is

F(e−x2/2) =
√
2πe−x2/2.

(I’m using x as the transform variable on the right instead of s to make the relation between the
two sides clearer.) This says that the Fourier transform of e−x2/2 is a scalar multiple of e−x2/2, so
that e−x2/2 is in fact an eigenvector (!!!) for the Fourier transform operator! In this context, e−x2/2

is called an eigenfunction of F , which means an eigenvector in a vector space of functions.
Let us now provide the correct linear-algebraic context from which to view F . For a space X,

we define L1(X) to be the space of absolutely integrable complex-valued functions on X, meaning
functions f : X → C for which the integral of |f | exists and is finite:

L1(X) =

B
f : X → C

----
$

X
|f(x)| dx < ∞

C
.

(The superscript 1 relates to the fact that we are integrating the first power of |f(x)|. Soon we
will introduce L2(X)—an example of a Hilbert space—which consists of functions for which f(x)2

gives a finite integral value.) The space L1(X) is a vector space, since adding or scalar multiplying
absolutely integrable functions produces an absolutely integrable function. With this notation, the
operation sending an L1 function on R to its Fourier transform is then a linear transformation

F : L1(R) → L1(R),

and it is then this linear operator of which e−x2/2 is an eigenfunction. (Actually, this is not quite
correct as stated. The issue is that it is not true that the Fourier transform of an L1 function is
necessarily L1 itself, so F does not actually have codomain L1(R) has written above. Either we
have to enlarge the codomain to allow for non-absolutely integrable functions, or we have to shrink
the domain and consider only those functions f for which f̂ is indeed L1. We will sweep this all
under the rug in this course, but a graduate course in functional analysis like MATH 410-2 would
clear this all up if you were so inclined!)
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Even better, the discrete version of the Fourier transform we defined last time, sending a periodic
function to its sequence of complex Fourier coefficients, fits into this same exact framework! A key
observation is that a periodic function can be viewed as a function on a circle: for f defined
on [−L,L] with f(−L) = f(L), “gluing” the two endpoints of [−L,L] produces a “circle”, and
f(−L) = f(L) guarantees that f is perfectly well-defined on this circle. Thus, the Fourier transform
operator in this case looks like

F : L1(circle) → L1(Z), sending f to (cn(f)).

(Again, here we view the sequence (cn(f)) as defining a function Z → C.) As we highlighted last
time, Fourier series coefficients and Fourier transforms play the exact same role in all of this, where
the only difference is the type of space—R or a circle—we use. (One can ask why it is that for
R we use both L1(R) as the domain and codomain of the Fourier transform operator, whereas for
the circle we use domain L1(circle) and codomain L1(Z). The answer has to do with the concept
of what’s called Pontryagin duality, which is unfortunately way beyond the scope of this course.
In short, there is a notion of “Pontryagin dual” for certain types of spaces, and R is its own
Pontryagin dual where as the Pontryagin dual of a circle is Z. The concept of a Fourier transform
then generalizes to the setting of such duals. This all belongs to the subject of “harmonic analysis
on locally compact groups”, whatever that means.)

Integral kernels. As a brief aside, let us say one more thing in terms of context. The linear
transformation defined by the Fourier transform operator

F : L1(R) → L1(R)

(with the caveat we mentioned previously that technically the codomain is not quite L1(R)) is an
example of an integral transform, which refers to transforms (i.e. linear transformation) defined via
integration. One way to produce examples of integral transforms is to start with a function K(x, y)
of two variables, and define a transform T : L1(R) → L1(R) via

f *→ Tf given by (Tf)(x) =

$ ∞

−∞
K(x, y)f(y) dy.

In this setting K(x, y) is called the kernel of the integral transform T . (Note that this usage of
the word “kernel” is different from the usage in “kernel of a linear transformation” as things which
the transformations sends to zero.) In fact, the Fourier transform arises in this way, with kernel
function K(s, x) = e−isx:

f̂(s) =

$ ∞

−∞
e−isxf(x) dx.

We previously saw another example of an integral transform, namely the transform that sends
a 2π-periodic function f to its N -th order Fourier partial sum:

f(x) *→ SNf(x) =
a0
2

+

N!

n=1

(an cosnx+ bn sinnx).

Here, the kernel function was what we called the N -th order Dirichlet kernel DN , which satisfied

(SNf)(x) =

$ π

−π
DN (x− y)9 :; <

K(x,y)

f(y) dy.

73



(You can back to a previous lecture to see what this Dirichlet kernel looked like, but the explicit
expression is not important here.) In fact, it is (essentially) true that all integral transforms arise
in this way, so that every integral transform has an associated kernel. (This is not quite literally
true as stated, but can be made true if we are more careful about what type of object we allow to
serve as a “kernel”; concretely, we should allow kernels which are distributions, which is a concept
we will briefly mention in the next few days.)

Now, how does this all relate to the finite-dimensional linear algebra you’re already used to?
I claim that a kernel K(x, y) in this sense is nothing but the “continuous” analog of a matrix!
Indeed, consider ordinary matrix multiplication Ax:

D

EF
a(1, 1) · · · a(1, n)

...
. . .

...
a(n, 1) · · · a(n, n)

G

HI

D

EF
x(1)
...

x(n)

G

HI .

Here we write the entries of the matrix as a(i, j) instead of aij and the entries of the vector as x(j)
instead of xj to make the relation to K(x, y) and f(x) clearer. The i-th component of the resulting
product Ax is

(Ax)(i) =

n!

j=1

a(i, j)x(j).

In the case of an integral kernel, we instead have a “continuous” range of values of i and j—which
we denote by variables x and y instead—and we can interpret the integral transform definition

(Tf)(x) =

$ ∞

−∞
K(x, y)f(y) dy

as saying that the “x-th coordinate” of the result Tf is the “sum” of K(x, y)f(y) as y ranges
over all possible values, just as what happens in Ax above. So, an integral transform is just the
continuous analog of a matrix multiplication, and the kernel function is the continuous analog of a
matrix as claimed. The fact that every integral transform has an integral kernel is the continuous
analog of the fact that any linear transformation Rn → Rn is induced by a matrix.

Back to heat. After going off on that linear-algebraic tangent, we now return to something more
concrete. Our original motivation behind introducing the Fourier transform came from wanting to
study the heat equation on R, and so that is what we now begin to do. Our goal is to solve

ut = α2uxx, with initial condition u(x, 0) = f(x)

where now −∞ < x < ∞ is no longer constrained. The idea is to take the Fourier transform of both
sides with respect to x (so, leave t alone), which will end up eliminating the need to use derivatives
with respect to x.

Consider the Fourier transform of u(x, t) with respect to the variable x:

û(y, t) =

$ ∞

−∞
u(x, t)e−iyx dx.

According the relation between Fourier transforms and derivatives we have seen before, the Fourier
transform of ux is iy times the Fourier transform of u:

Jux(y, t) = iyû(y, t).
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Doing this once more gives that the Fourier transform of uxx picks up another factor of iy:

Kuxx(y, t) = (iy)(iy)u(y, t) = −y2û(y, t).

Thus, after taking Fourier transforms, the right side of the heat equation becomes

α2uxx ⇝ −α2y2û.

As for the left side, we use differentiation under the integral sign to get

?ut(y, t) =
$ ∞

−∞
ut(x, t)e

−iyx dx =
∂

∂t

$ ∞

−∞
u(x, t)e−iyx dx,

which is just the partial derivative of û with respect to t, so that:

?ut = ût.

(In other words, since the Fourier transform is being taken with respect to the x variable alone,
taking derivatives with respect to t doesn’t affect anything, so the Fourier transform of ut is the
t-derivative of the Fourier transform of u.)

Thus altogether, taking the Fourier transform of both sides of the heat equation gives

ût = −α2y2û.

What we have gained is that the x-derivatives are gone, so that what remains is simply an ODE
(not a PDE) for û! ODEs are simpler to solve than PDEs, so the strategy is to use this ODE to
determine û, which is not hard to do, and then to use Fourier inversion to recover u from û, which
is somewhat hard to do, but we’ll go ahead and do it in detail next time. Stay tuned!

Lecture 19: The Heat Kernel

Warm-Up. We find the Fourier transform of a solution u(x, t) of the wave equation utt = a2uxx
on R. (Imagine an infinitely long string.) As with the heat equation last time, we take the Fourier
transform of u(x, t) with respect to x:

û(y, t) =

$ ∞

−∞
u(x, t)e−ixy dx.

Taking the Fourier transform of both sides of the wave equation gives

ûtt = −a2y2û,

where for the right side we used the same computation as we did last time for the heat equation:

Kuxx = !(ux)x = iyJux = (iy)(iy)û = −y2û.

The resulting ODE ûtt + a2y2û = 0 for û has solution

û(y, t) = c1(y) cos(ayt) + c2(y) sin(ayt),

where we allow the coefficients to depend on y since when solving an ODE with respect to t alone,
“arbitrary constants” can depend on the other variable y. The explicit forms of c1(y), c2(y) then
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come from imposing initial conditions, which we will do later. Alternatively, we can express the
solutions of this ODE in complex form:

û(y, t) = d1(y)e
iayt + d2(y)e

−iayt,

where again d1(y), d2(y) are arbitrary functions of y which can be determined from initial conditions.

Solving the heat equation. We now return to the heat equation on R, and work through the
computation which determines the solution. Recall that we are considering

ut = α2uxx, u(x, 0) = f(x)

where −∞ < x < ∞. We saw last time that taking the Fourier transform of both sides with respect
to x gives

ût = −α2y2 û

where y is the transform variable. This is a first-order ODE for û, whose solution is

û(y, t) = A(y)e−α2y2t

for some “constant with respect to t” A(y). Now, the coefficient function A(y) should be the value
of the transform of u at t = 0:

û(y, 0) = A(y).

But û(y, 0) is obtained by taking the Fourier transform of u(x, 0), so our given initial condition
u(x, 0) = f(x) says that that A(y) = f̂(x), so that

û(y, t) = f̂(y)e−α2y2t

where f is our initial condition.
At this point we have completed the first step of our derivation: we have found an explicit

expression for the Fourier transform of the solution u(x, t) we want. The next step is to use an
inverse Fourier transform to recover u from û:

u(x, t) =
1

2π

$ ∞

−∞
û(y, t) eiyx dy.

After substituting the expression we found for û(y, t), we see that

u(x, t) =
1

2π

$ ∞

−∞
f̂(y)e−α2y2teiyx dy.

Our goal now is to express this solution in terms of the original f instead of f̂ .

Comparison with series methods. Let us take a brief aside to note the relation between the
solution we have found so far for the heat equation on R and the solution we found previously for
the heat equation on a bounded interval [0,π] with boundary conditions u(0, t) = 0 = u(π, t). In
this latter case, we saw that the solution is given by

u(x, t) =

∞!

n=1

cn(f) e
−α2n2t sin(nx)
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where cn(f) are the Fourier sine coefficients of u(x, 0) = f(x). Be expressing

sin(nx) = − i

2
(einx − e−inx)

in terms of complex exponentials, we see that we can write u(x, t) in the form

u(x, t) =

∞!

n=−∞
dn(f) e

−α2n2teinx.

The point is that this the same form that our solution on R takes:

u(x, t) =
1

2π

$ ∞

−∞
f̂(y)e−α2y2teiyx dy,

only that the series is the discrete version; the sum over n in Z becomes an integral over y in R,
and the Fourier coefficients dn(f) become the Fourier transform f̂(y). (The 1

2π in our solution on
R shows up in the formula for the Fourier coefficients dn(f) in the discrete case instead.) Thus, it
is no accident that we get something like

u(x, t) =
1

2π

$ ∞

−∞
f̂(y)e−α2y2teiyx dy,

since this is just the continuous version of what we had before.

Computing the inverse transform. We now compute

u(x, t) =
1

2π

$ ∞

−∞
f̂(y)e−α2y2teiyx dy

more explicitly. First, we can put in the definition of f̂(y):

u(x, t) =
1

2π

$ ∞

−∞

4$ ∞

−∞
f(s)e−isx ds

5
e−α2y2teiyx dy.

(Note we are taking care when introducing variables of integration: we use s for the integral defining
f̂ since x is already used elsewhere.) The resulting expression is an iterated double integral, and
we can switch the order of integration to write it as

u(x, t) =
1

2π

$ ∞

−∞

4$ ∞

−∞
f(s)e−isx ds

5
e−α2y2teiyx dy

=
1

2π

$ ∞

−∞
f(s)

4$ ∞

−∞
e−isxe−α2y2teiyx dy

5
ds,

where we have pulled f(s) out of the y-integral since f(s) does not depend on y. After combining
some exponentials we get

u(x, t) =
1

2π

$ ∞

−∞
f(s)

4$ ∞

−∞
e−α2y2te−i(s−x)y dy

5
ds

But what is the expression $ ∞

−∞
e−α2y2te−i(s−x)y dy
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in brackets? It is nothing but the Fourier transform of e−α2y2t only evaluated at s − x! (Recall
ĝ(z) =

*∞
−∞ g(y)e−izy dy, so here we have g(y) = e−α2y2t and z = s− x.) The function e−α2ty2 is a

Gaussian, so using the general computation we did last time of the transform of a Gaussian:

F(e−ay2/2)(z) =

@
2π

a
e−z2/2a

we get (with a = 2α2t in our case)

F(e−α2ty2)(z) =

@
2π

2α2t
e−z2/2(2α2t) =

@
π

α2t
e−z2/4α2t.

Thus, finally, we find that the solution u(x, t) we want is

u(x, t) =
1

2π

$ ∞

−∞
f(s)

4$ ∞

−∞
e−α2y2te−i(s−x)y dy

5
ds

=
1

2π

$ ∞

−∞
f(s)

@
π

α2t
e−(s−x)2/4α2t ds

=

$ ∞

−∞
f(s)

1√
4πα2t

e−(s−x)2/4α2t ds.

(An absolutely epic computation!)

The heat kernel. Our conclusion is thus that the solution of the heat equation ut = α2uxx on R
with initial condition u(x, 0) = f(x) is

u(x, t) =

$ ∞

−∞
f(s)

1√
4πα2t

e−(s−x)2/4α2t ds.

(This final form looks quite different than the types of series solutions we had before, but there is
a way to directly relate the two, which we will look at later.) Note here that the only dependence
on the initial condition in this solution comes from the f(s) factor, and that the exponential factor
does not depend on f at all.

The upshot is that there is one single function

1√
4πα2t

e−(s−x)2/4α2t

we can use to construct the solution of the heat equation on R with any initial condition: simply
multiply your initial condition by this particular function and integrate. This function is called the
heat kernel (more precisely, the one-dimensional heat kernel), and is of fundamental importance in
the study of the heat equation. The word “kernel” used here refers to the context we gave previ-
ously regarding integral transforms, where the heat kernel is something like an infinite-dimensional
“continuous” matrix. The linear transform defined by the integral transform corresponding to this
kernel is hence the one that sends an initial condition function f to the solution of the heat equation
with initial condition f .

If we introduce the function

h(z, t) =
1√

4πα2t
e−z2/4α2t,
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then the heat kernel is h(x− s, t). In this notation, the solution of the heat equation is

u(x, t) =

$ ∞

−∞
f(s)h(x− s, t) ds.

Integral expressions of this type were introduced on the last discussion problem set, and is called
the convolution of f with h (in the first coordinate, ignoring t). Thus, solutions of the heat equation
are produced by convolving (not sure that this an actual word, but I’m going with it) with h. This
h(z, t) is called the fundamental solution of the heat equation, since it is the solution from which
all others can be obtained, which is similar-in-spirit to how we used “fundamental solution” with
the Fourier series approach we considered previously.

But, if h(z, t) is in fact to be a “fundamental solution” of the heat equation, then what initial
condition does it actually satisfy? It is straightforward enough (but a bit tedious) to verify that

h(z, t) =
1√

4πα2t
e−z2/4α2t

does satisfy ut = α2uzz, but an attempt to find the appropriate initial condition u(x, 0) by plugging
in t = 0 fails since h(z, t) is undefined at t = 0! Thus, we have to be more careful about what we
actually mean by “initial condition” in this case; the answer will come from the notion of a delta
function, which we’ll talk about next time.

Lecture 20: Delta Functions

Warm-Up. We find the solution of the PDE

ut = uxx − ux, u(x, 0) = f(x)

on R. This is known as a diffusion-convection equation, where the ux term indicates a contribution
to the change in u coming from convection. (Think the heat in some liquid moving around, or a
chemical which “diffuses” when placed in a liquid.) In general we can allow coefficients in front of
the convection term, and the heat equation is the special case where this coefficient is zero. As in
our solution of the heat equation, we can take the Fourier transform of both sides with respect to
x to get

ût = −y2û− iyû, û(y, 0) = f̂(y).

The ODE ût = (−y2 − iy)û has solution

û(y, t) = A(y)e(−y2−iy)t,

and û(y, 0) = f̂(y) gives A(y) = f̂(y), so

û(y, t) = f̂(y)e(−y2−iy)t.

Now, to determine u(x, t) we can do what we did for the heat equation last time: use an inverse
transform to express u(x, t) in terms of an integral involving û(y, t), and then compute the resulting
integral. However, we can save some work here by using the exact result of the computation we
did last time. Note that we can rewrite û(y, t) above as

û(y, t) = f̂(y)e−iyte−y2t.
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Here, the factor f̂(y)e−iyt is precisely the Fourier transform of the “shift” f(x−t), as was computed
on a recent homework problem. That is, if we denote this shift by g(x) = f(x− t), then

ĝ(y) = e−iytf̂(y),

so that
û(y, t) = ĝ(y)e−y2t.

The point is that this expression is precisely the one we would have obtained by considering the
heat equation ut = uxx with initial condition u(x, 0) = g(x), so the explicit form of u(x, t) is exactly
the one given by the heat kernel integral and initial function g(x):

u(x, t) =

$ ∞

−∞
g(s)

1√
4πt

e−(s−x)2/4t ds =

$ ∞

−∞
f(s− t)

1√
4πt

e−(s−x)2/4t ds.

Thus, by exploiting the heat kernel computation from last time, we can save a bunch of work this
time. (This idea works for more general diffusion-convection equations as well.)

Finally, we make a change of variables to replace the integral involving the shifted f with one
involving the unshifted f . For p = s− t, we get

u(x, t) =

$ ∞

−∞
f(s− t)

1√
4πt

e−(s−x)2/4t ds =

$ ∞

−∞
f(p)

1√
4πt

e−(p+t−x)2/4t dp

as our final solution. (The particular PDE ut = uxx−ux thus has “fundamental solution” h(x, t) =
1√
4πt

e−(t−x)2/4t, from which all other solutions can be derived by convolution.)

The heat kernel at time 0. We now come back to determining the initial condition satisfied by
the heat equation’s fundamental solution

h(z, t) =
1√

4πα2t
e−z2/4α2t.

As pointed out last time, evaluating this function at t = 0 gives an undefined expression, so we
can’t do that. (Or can we?) To get a handle on what is happening, consider instead the limit of
h(z, t) as t → 0. Here are some plots for values of t approaching 0:

(Note that we if view these pictures in reverse, so as t increases, we get the diffusive type of behavior
we expect of a solution of the heat equation: the bump in the middle gets smoothed out as time
increases, due to the high temperature in the middle moving towards areas of low temperature.)

The key observation is that as t → 0, the bump gets concentrated more and more near x = 0,
and grows in magnitude more and more, and regions away from 0 get flattened out towards zero
more and more. In some sense, the limit as t → 0 should be “function” which is zero for x ∕= 0
and infinitely large at x = 0. Of course, it doesn’t make sense to say that the value of the limit at
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x = 0 should be ∞ (or does it?), but the situation is even stranger: it turns out that for any t > 0,
the integral of function

1√
4πα2t

e−z2/4α2t

over the entire real number line is actually 1! The limit of the constant 1 as t → 0 is still 1, so we
might expect that the “function” we get by taking t → 0 in h(z, t) should be one whose integral
over R is in fact 1. Thus, altogether, the initial condition we want (obtained by taking t → 0 in
h(z, t)) should be something which is zero for x ∕= 0, ∞ for x = 0, and yet has integral 1 over R.
There is absolutely no actual function that has all these properties, so it seems like we are just
talking nonsense.

Fourier transform of a constant. But we are not talking nonsense after all. The non-existent
“function” with the properties above does exist, and is called the Dirac delta function. Now, the
first thing you learn about the Dirac delta function is that it is not actually a function, since, after
all, as we said above no literal function having the desired properties exists. So, if the Dirac delta
function is not a function, then what is it?

Before answering this, we will look at a different problem first, namely the problem of deter-
mining the Fourier transform of the constant function 1. By definition, this Fourier transform is
defined as

1̂(s) =

$ ∞

−∞
1 · e−isx dx =

$ ∞

−∞
e−isx dx.

The trouble is that this integral does not exist! As x ranges over all of R, the complex numbers
e−isx move around the unit circle in the complex plane, and no “convergence” occurs. Or, said
another way, if we write this integral in terms of real and imaginary parts:

$ ∞

−∞
e−isx dx =

$ ∞

−∞
cos(sx) dx+ i

$ ∞

−∞
sin(sx) dx,

we get two divergent integrals. (Note that the constant function 1 is not in L1(R).) So, the constant
function of 1 does not have a Fourier transform in the usual sense.

But, we can start trying to give some meaning to 1̂ regardless by considering 1 to be a limit of
certain functions we considered previously: the “rectangular pulse” functions

fT (x) =

)
1 −T ≤ x ≤ T

0 otherwise.

As T → ∞, in some sense the functions fT (x) do “approach” the constant function 1, since the
interval over which the value of fT (x) is 1 gets larger and larger, eventually becoming all of R in
the limit. We computed the Fourier transform of this pulse function earlier:

f̂T (s) =
2 sin sT

s
,

so we can try to essentially define the Fourier transform of the constant 1 to be the limit of these
transformed pulse functions as T → ∞:

1̂(s)
?
= lim

T→∞
f̂T (s) = lim

T→∞

2 sin sT

s
.

The same problem from before still remains however: the limit on the right does not exist.
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Nevertheless, we can give this limit a precise meaning as follows. First we note the following
fact: for any T > 0 we have $ ∞

−∞

2 sin sT

s
ds = 2π,

which comes from making a change of variables x = sT in the integral
$ ∞

−∞

sinx

x
dx = π.

(The function sinx
x is called the sinc function, and this particular integral can be computed using

methods from complex analysis. We’ll say something about this in a bit to give a flavor of the
types of things you would see in a complex analysis course like MATH 382.) Now, for a function
f(s), consider the limit

lim
T→∞

$ ∞

−∞
f(s)

2 sin(sT )

s
dx.

It turns out that this limit does exist, and it has the value 2πf(0)! Proving this formally is beyond
the scope of this course, but we can give some pretty good intuition as follows. As T increases, the
functions 2 sin(sT )

s look like:

The point is that the values are becoming concentrated more and more near s = 0, with points
away from zero becoming more and more negligible. (There are still “peaks” away from zero, but
these get thinner and thinner, hence why they become more and more negligible too.) The net
areas under all of these graphs are 2π as stated above, so no area disappears as T increases, it
just gets more and more concentrated. Thus the product f(s) 2 sin(sT )

s also gets more and more
concentrated near s = 0 as T increases, with parts of f away from zero being “zeroed” out, so that
in the limit the only contribution to

lim
T→∞

$ ∞

−∞
f(s)

2 sin(sT )

s
dx

comes from the value of f(0), with the net area of 2π under the graph of 2 sin sT
s preserved throughout

the limit. Again, this is not a proof, but should hopefully make it plausible that

lim
T→∞

$ ∞

−∞
f(s)

2 sin(sT )

s
dx = 2πf(0).

Dirac delta function. Now working even more informally, we exchange limit and integration
above to get $ ∞

−∞
f(x)

.
lim
T→∞

2 sin sT

s

/
ds = 2πf(0).

As stated before, limT→∞
2 sin sT

s does not exist as a function, but if it did, this equation says that
it should be a “function” 2πδ(x) with the property that

$ ∞

−∞
f(x)[2πδ(x)] dx = 2πf(0).
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The notation δ(x) denotes what’s called the Dirac delta function, and this equation is precisely
how we define it: δ(x) is the object defined by requiring that

$ ∞

−∞
f(x)δ(x) dx = f(0).

(We incorporated 2π into 2πδ(x) when describing the limit of 2 sin sT
s above precisely so that it

would not show up in this defining expression.)
It is crucial to note, once again, that δ(x) is not an actual function here, but rather is merely a

symbol which acquires meaning only via the requirement that integrating f(x)δ(x) produces f(0).
But, it is natural to ask: if δ(x) is not a function, what actually is it? The answer is that it is
what’s called a distribution. (Distributions are often called generalized functions in physics.) A
distribution is nothing but a linear transformation

L1(R) → R.

(Linear transformation from a vector space to the scalar field are also called linear functionals, and
their study constitutes the subject of functional analysis.) The Dirac delta function is thus the
distribution defined by sending f(x) to f(0). But, in what sense is this a “generalized function”
and why do use integral notation to denote its effect on f(x), as we did above? The answer is that
actual functions do indeed give rise to distributions! Indeed, to an honest function g(x) (say L1)
we can associate the distribution L1(R) → R defined by

f(x) *→
$ ∞

−∞
f(x)g(x) dx.

The right side is simply a number in R, and this operation is linear since integration is linear, so
this does give a distribution. Because of this, we thus often use integration notation in general to
denote the effect of applying a distribution to a given function f(x), as in the definition of δ(x).

Back to fundamental solutions. So, using the notion of the Dirac delta function (a distribution,
not a function), we can give meaning to various things we considered leading up to this point. For
example, we say that

lim
T→∞

2 sin sT

s
= 2πδ(x),

not as an equality among functions, but as an equality among distributions instead; and we say
that the Fourier transform of 1 is 2πδ(x), or in other words

$ ∞

−∞
e−isx dx = 2πδ(x),

again not as an equality of functions but as an equality of distributions. (So, for example, something
like $ ∞

−∞
f(x)

4$ ∞

−∞
e−isp dp

5
dx,

which equals 2π
*∞
−∞ f(x)δ(x) dx, is, by definition, 2πf(0).)

Moreover, and finally, the “value” of

h(z, t) =
1√

4πα2t
e−z2/4α2t
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at t = 0 is δ(x), as a distribution. This is thus the initial condition we wanted, so that this
h(z, t)—which gives rise to the heat kernel—is the solution of the heat initial value problem

ut = α2uxx, u(x, 0) = δ(x).

This initial condition models the setup where we have the entirety of our initial heat—infinite in
value—concentrated all at x = 0, which then “diffuses” (quickly!) into the fundamental solution
h(z, t) above as t increases. (Good stuff!)

The integral of sinc. We will do more with the delta function next time, but we finish for now
with saying something about the integral of the sinc function:

$ ∞

−∞

sinx

x
dx = π.

This is an integral which cannot be easily computed using real-analytic methods alone, but is
precisely the type of thing which complex analysis makes doable. (Note that this integral involves
no complex numbers at all, so it may seem surprising that introducing complex numbers actually
makes things simpler! This is a phenomenon which occurs repeatedly in complex analysis.)

The key is to view sinx as the imaginary part of eix, so that the integral we want is nothing
but the imaginary part of $ ∞

−∞

eix

x
dx.

To compute this, we then consider the complex function eiz

z and integrate it over the following
curve ΓR,ε in the complex plane:

(We will not define what it means to integrate a complex function over a curve in the complex
plane here, but in some sense, it is somehow analogous to integrating a vector field over a curve.)
This curves follows the upper-half of a circle of radius R, then a segment along the real axis from
−R to −ε, then the upper-half a of circle of radius ε, and finally a segment on the real axis from ε
to R. (The small circle in the middle is there to make sure we avoid the singularity of eiz

z at z = 0.)
If we take the limit of the integral $

ΓR,ε

eiz

z
dz

as R → ∞ and ε → 0, the bounds on the x-axis approach those on the integral

$ ∞

−∞

eix

x
dx

we want, so the idea is that we can extract this integral we want by indeed taking the limit of the
complex integral above.
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By some crucial theorem in complex analysis (what’s called Cauchy’s theorem, which is in some

ways analogous to Green’s theorem for vector fields), the integral of eiz

z over ΓR,ε is zero, essentially
because the singularity of this function does not occur within the region bounded by this curve. But
the integral over the entire curves splits up into four pieces: the integral over the larger semi-circle,
the integral over the smaller semi-circle, and integrals over each segment on the x-axis. Thus we
get

0 =

$

ΓR,ε

eiz

z
dz =

$

large circle

eiz

z
dz +

$

small circle

eiz

z
dz +

$

segment 1

eiz

z
dz +

$

segment 2

eiz

z
dz.

The integrals over the two segments occur only along the real axis, so after rearranging we get

$ −ε

−R

eix

x
dx+

$ R

ε

eix

x
dx = −

$

large circle

eiz

z
dz −

$

small circle

eiz

z
dz.

In the limit as R → ∞ and ε → 0, the left side becomes precisely the integral we want

$ ∞

−∞

eix

x
dx,

while the integral over the larger circle turns out to go to zero (this is not obvious!) and the integral
over the smaller circle turns out to approach −iπ (also not obvious!). Thus we end up with

$ ∞

−∞

eix

x
dx = iπ,

and taking imaginary parts gives the sinc integral we wanted:
$ ∞

−∞

sinx

x
dx = π.

Hooray! (Again, you need a complex analysis course like MATH 382 to see what is really going
on here, namely in terms of how the complex integral is actually defined and why the limits of the
integrals over the two circles have the values we said they do. Using complex analysis to compute
many of the types of integrals which show up in Fourier analysis is one of the main practical
reasons why MATH 382 is required for ISP—that and understanding more properties of harmonic
functions, i.e. solutions of the Laplace equation, in terms of their complex-analytic interpretation
as the real and imaginary parts of complex-differentiable functions.)

Lecture 21: Fundamental Solutions

Warm-Up. We finally justify the Fourier inversion formula:

f(x) =
1

2π

$ ∞

−∞
f̂(p) eipx dp,

assuming that f is C1. (If f is only piecewise C1, the left side should be 1
2(f(x

−) + f(x+)).

Technically we should also assume f and f̂ are in L1(R).) This is now simply an exercise in
working with the delta function. First we can put in the definition of f̂ :

1

2π

$ ∞

−∞

4$ ∞

−∞
f(s)e−isp ds

5
eipx dp.
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After switching the order of integration in this double integral and rearranging terms we get

1

2π

$ ∞

−∞
f(s)

4$ ∞

−∞
e−i(s−x)p dp

5
ds.

Now, the inner integral $ ∞

−∞
e−i(s−x)p dp

is the Fourier transform of 1 evaluated at s − x, and as we argued last time this can be given
meaning as (2π times) the Dirac delta function at s− x:

$ ∞

−∞
e−i(s−x)p dp = 2πδ(s− x).

Thus the double integral above becomes

1

2π

$ ∞

−∞
f(s)

4$ ∞

−∞
e−i(s−x)p dp

5
ds =

1

2π

$ ∞

−∞
f(s)[2πδ(s− x)] ds.

The 2π’s cancel, and by the way in which the Dirac delta function behaves or is to be interpreted,
this final integral should pick out the value of f(s) at the value of s where the input s− x into the
delta function is zero, meaning at s = x:

$ ∞

−∞
f(s)δ(s− x) ds = f(x).

Thus we get
1

2π

$ ∞

−∞
f̂(p) eipx dp = f(x)

as the Fourier inversion formula claims.

More on delta. The fact we used above that
$ ∞

−∞
f(s)δ(s− x) ds = f(x)

is, as said, essentially just the definition of what δ(s − x) means: it is the “distribution” defining
the linear transformation which sends f(s) to f(x). This type of identity, and its use above, might
seem quite magical, and indeed in some ways it is. But, we emphasize again (as we described
last time when “constructing” the delta function) that what this identity really means is that the
following limit identity holds:

lim
T→∞

$ ∞

−∞
f(s)

4
2 sin((s− x)T )

s− x

5
ds = f(x).

(Last time we only wrote this down in the case where x = 0, but the same reasoning we outlined
there applies here simply by “shitfting” the center.) It is this identity that underlies all computa-
tions we do with the delta function, and in particular provides the formal approach to the Fourier
inversion formula. Working with the delta function as we did above is simply a convenient way to
work with this limit without having to mention it directly.
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Using the notion of convolution we gave on a previous discussion sheet, we can recast

$ ∞

−∞
f(s)δ(s− x) ds = f(x)

as the statement that f ∗ δ = f . It is also true that δ ∗ f = f , so this says that δ is something like
an “identity” for the convolution operation. If we consider the sequence of functions defined by

δn(s) =
sin(sn)

πs
,

then the statement that f ∗ δ = f is really the statement that

lim
n→∞

f ∗ δn = f.

Such a sequence of functions is called an approximate identity, since it becomes an “identity” in the
limit. The existence of such approximate identities is the key to making this all rigorous, and are
crucial component of the study of functional analysis. (Incidentally, the sequence of Dirchlet kernels
DN also form an approximate identity, which is essentially the reason why the Fourier convergence
theorem for Fourier series holds.)

Fundamental solutions of PDEs. Let us wrap up our discussion of PDEs on R and using
the Fourier transform to solve them by elaborating on the notion of a fundamental solution. To
be clear, a fundamental solution of a (linear) PDE is a solution satisfying an initial or boundary
condition given by a delta function. The point is that from such a solution we can construct every
solution via convolution. (A fundamental solution is also called a Green’s function for the PDE.)

We have already seen the fundamental solution

G(x, t) =
1√

4πα2t
e−x2/4α2t

for the heat equation ut = α2uxx on R, which satisfies the initial condition u(x, 0) = δ(x). To
be clear, the fact that this is indeed the appropriate initial condition for this solution is just the
statement that $ ∞

−∞
δ(s)G(x− s, t) ds = G(x, t).

(Here, G(x − s, t) is the heat kernel, which via our derivation of it turns the integral on the left
into the function satisfying the heat equation with particular initial function given by the function
we are multiplying by the heat kernel in this integral, which is the delta function in this.)

Let us check that we do indeed get every other solution by convolving with this one. Given
the initial condition u(x, 0) = f(x), the claim is that the convolution f(x) ∗ G(x, t) (with respect
to the x-coordinate) should given the solution of the heat equation satisfying this particular initial
condition. The convolution is

f(x) ∗G(x, t) =

$ ∞

−∞
f(s)G(x− s, t) ds.

Evaluating at t = 0 and using the initial condition for G(x, t) gives

f(x) ∗G(x, 0) =

$ ∞

−∞
f(s)G(x− s, 0) ds
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=

$ ∞

−∞
f(s)δ(x− s) ds

= f(x),

so that this convolution really does satisfy u(x, 0) = f(x).

Fundamental wave solution. Now we consider the fundamental solution of the wave equation
utt = a2uxx satisfying the initial conditions

u(x, 0) = f(x), ut(x, 0) = 0.

(The initial condition u(x, 0) = 0, ut(x, 0) = g(x) gives rise to its own fundamental solution, and
the fundamental solution for the general initial conditions u(x, 0) = f(x), ut(x, 0) = g(x) will be
a sum of these two.) Actually, you worked out a recent discussion sheet, using Fourier transform
methods, that the solution of the initial value problem above is

u(x, t) =
1

2
[f(x− at) + f(x+ at)].

This is just a generalization to R of something we saw previously on [0, L] using Fourier series
methods: the wave solution with given initial position and zero velocity is formed by taking the
average of a rightward moving wave with a leftward moving wave.

We claim that on R the fundamental solution can be taken to be

G(x, t) =
1

2
[δ(x− at) + δ(x+ at)],

which does satisfy the appropriate initial condition: G(x, 0) = δ(x). Let us convolve G with any f :

f(x) ∗G(x, t) =

$ ∞

−∞
f(s)G(x− s, t) ds

=
1

2

$ ∞

−∞
f(s)δ(x− s− at) ds+

1

2

$ ∞

−∞
f(s)δ(x− s+ at) ds

=
1

2
f(x− at) +

1

2
f(x+ at) =

1

2
[f(x− at) + f(x+ at)].

This thus agrees with the solution found in discussion.

Laplace fundamental solution. As a final example, let us describe a certain type of fundamental
solution for the Laplace equation. We consider the “radially symmetric” Laplace equation, where
we consider only functions that are independent of the polar variable θ. Our functions then can be
thought of as depending on the radial variable r alone, so the fundamental solution we want is the
one satisfying

∆u =
δ(r)

2π
.

(We will not explain here why the delta function takes the form 1
2π δ(r) in polar coordinates—

it comes from a change of variables computation. Also, since δ(r) “equals” 0 for r ∕= 0, this
fundamental solution will be a harmonic function away from the origin.) In polar form this equation
is

urr +
1

r
ur +

1

r2
uθθ =

δ(r)

2π
,
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but since u is assumed to be independent of θ in this case, this simplifies to

urr +
1

r
ur =

δ(r)

2π
.

The left side can be written as 1
r (rur)

′ (where the prime denotes a derivative with respect to r),
and

1

r
(rur)

′ =
δ(r)

2π

and then be solved for u by integrating a couple of times. The answer you get is

u(r) =
1

2π
ln r, or in other words u(x, y) =

1

2π
ln

6
x2 + y2.

This is the fundamental solution of the radially-symmetric Laplace equation.
Then given the PDE ∆u = f (this is called Poisson’s equation when f ∕= 0), the solution is

then obtained by convolving (in two variables) with the fundamental solution above:

u(x, y) =

$ ∞

−∞

$ ∞

−∞
f(s, t)

4
1

2π
ln

6
(x− s)2 + (y − t)2

5
ds dt.

Verifying that this does satisfy Poisson’s equation requires working with derivatives of delta func-
tions, which is indeed a thing (!), but beyond the scope of this course, so we leave it at that.

The heat kernel via Fourier series. Finally, we describe how the heat kernel on R can actually
be obtained via Fourier series methods, making the connection between Fourier series and Fourier
transforms clearer. Consider the heat equation ut = uxx (let us just take α2 = 1 to simplify
notation) on the interval [−L,L] with boundary conditions

u(−L, t) = u(L, t) and ux(−L, t) = ux(L, t).

(These just say that u, ux should be periodic.) Using separation of variables, the general solution
in complex form can be found to be

∞!

n=−∞
cne

−n2π2t
L2 e

inπx
L .

(The ODE X ′′ − λX = 0 for X in this case has no solutions for λ > 0, nonzero constant solutions

for λ = 0, and then nonzero solutions for λ = −n2π2

L2 < 0, all which are included above by the

complex exponentials e
inπx
L for varying integers n, including n = 0.) Given an initial condition

u(x, 0) = f(x), we can put in the formula for the Fourier coefficients cn to get

∞!

n=−∞

.
1

2L

$ L

−L
f(s)e−

inπs
L ds

/
e−

n2π2t
L2 e

inπx
L .

Now, in order to move from the interval [−L,L] to all of R, we take the limit as L → ∞. Note
that the integral from −L to L above will become an integral from −∞ to ∞, precisely the type
of thing showing up in solutions to the heat equation on R. To make this limit precise, let us set
yn = nπ

L . So far these only take on a discrete set of values, but as L → ∞ these discrete values
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start to fill up more and more of R, so that in the limit we expect these to cover all of R. The
change ∆yn in yn, i.e. the distance from one yn to the next is

∆yn = yn+1 − yn =
(n+ 1)π

L
− nπ

L
=

π

L
.

With this we can write the 1
2L term in the series above as

1

2L
=

∆yn
2π

,

and so in this notation the entire series expression above becomes

∞!

n=−∞

.
1

2π

$ L

−L
f(s)e−iyns ds

/
e−y2nteiynx∆yn.

But, this exact series is nothing but a Riemann sum for a certain integral! As we take L → ∞,
the yn’s fill out all values y in R, ∆yn becomes dy, the bounds −∞ to ∞ on n becomes bounds on
y, and the bounds on the inner integral become infinite, so that the limit gives

1

2π

$ ∞

−∞

.$ ∞

−∞
f(s)e−iys ds

/
e−y2teiyxdy.

If you go back and look at our derivation of the heat kernel, you will see that this is precisely
the integral we obtained there when recovering u(x, t) from its Fourier transform û(y, t). The
computation there then gives the integral involving the heat kernel, and that is the point: the heat
kernel integral arises by taking a limit of the solutino of the heat equation over a bounded interval
as that interval grows in size! The upshot is that Fourier series and Fourier transforms really are
two sides of the same coin, where the “continuous” transform arises from the “discrete” Fourier
coefficients simply by taking an appropriate limit.

Lecture 22: Eigenvalue Problems

Warm-Up. ***TO BE FINISHED***

Eigenvalue problems. We now head into our final topic of the quarter, where we will see, even
more clearly than before, how much of the study of linear differential equations really does amount
to infinite-dimensional linear algebra. Let us return to the heat equation on [0, L]. When solving
for the separated solution X we end up solving

X ′′ − λX = 0.

We can write this equation as X ′′ = λX, and so if we denote by L = d2

dx2 the linear operator that
sends a function to its second derivative, we see that the ODE for X takes the form

L[X] = λX.

But, in linear-algebraic terms, this equation says precisely that X is an eigenvector of L with
eigenvalue λ! If we impose boundary conditions, say, X(0) = 0 = X(L), then we are looking for
eigenvectors of L in the vector space

V = {functions on [0, L] such that X(0) = 0 = X(L)}.
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In this setting the eigenvectors are called eigenfunctions, and so the upshot is that solving the
boundary value problem

X ′′ − λX = 0, X(0) = 0 = X(L)

comes down to finding eigenfunctions of the linear operator L = d2

dx2 in V . We call such a boundary
value problem, where the goal is to determine the λ for which a nonzero solution exists and to
determine those nonzero solutions, an eigenvalue problem.

Examples. For the specific eigenvalue problem

X ′′ − λX = 0, X(0) = 0 = X(L),

the process we went through before in finding solutions shows that the eigenvalues are λn = −n2π2

L2

and corresponding eigenfunctions are Xn = sin(nπxL ). Any eigenfunction with eigenvalue λn is a
scalar multiple of this specific Xn, so this specific Xn spans the entire eigenspace corresponding to
λn and hence forms a basis for this eigenspace.

We previously also considered the eigenvalue problem

X ′′ − λX = 0, X(0) = 0 = X ′(L)

when looking at the heat equation with one insulated end. The analysis we went through before
showed the the eigenvalues where

λn = −(2n− 1)2π2

4L2

and corresponding eigenfunctions were

Xn = sin
(2n− 1)πx

2L
.

Each of these again spans the entire eigenspace for that eigenvalue.

Another example. Consider the eigenvalue problem

X ′′ − λX = 0, X ′(0) = 0 = X(1) +X ′(1).

These are not boundary conditions we have carefully considered before, so we run through our
usual analysis. First, for λ > 0 the general solution of the given ODE is

X = c1e
√
λx + c2e

−
√
λx.

The boundary conditions give

√
λ(c1 − c2) = 0 and (c1e

√
λ + c2e

−
√
λ

9 :; <
X(1)

) +
√
λ(c1e

√
λ − c2e

−
√
λ)9 :; <

X′(1)

= 0.

Thus c1 = c2, and then the second condition reduces to

c1(1 +
√
λ)e

√
λ = c1(

√
λ− 1)e−

√
λ.

Solving this further yields c1 = 0, so c2 = c1 = 0 as well and there are no nonzero solutions. Hence
the given problem has no positive eigenvalues. For λ = 0 we get X = c1 + c2x, and the boundary
conditions force X = 0, so that 0 is also not an eigenvalue.
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Finally, we consider λ = −k2 < 0, with k positive. Then

X = c1 cos(kx) + c2 sin(kx).

The boundary condition X ′(0) = 0 forces c2 = 0. Then X = c1 cos(kx), and the second boundary
condition gives

c1 cos k − c1k sin k = 0.

Hence k must satisfy k sin k = cos k, or in other words cot k = k. A sketch of y = cotx and y = x

shows that there are infinitely many such positive k, so if we denote these in increasing order by

k1 < k2 < k3 < . . . ,

then the eigenvalues for this problem are λn = −k2n, which occur in decreasing order

λ1 > λ2 > λ3 > · · · .

(Note that if had written our eigenvalue problem as X ′′ + λX = 0 instead of X ′′ − λX = 0, the
eigenvalues would change sign, so that for X ′′ + λX = 0 we would have eigenvalues λi = k2i in
increasing order. This is a minor point but will be important in clarifying an observation we’ll
make later.) The corresponding eigenfunctions are

Xn = sin(knx) = sin(
6

−λnx),

where we use −λn because our eigenvalues are negative. (If we use X ′′ + λX = 0 instead with
λn = k2n, the eigenfunctions are sin(

√
λnx.)

Self-adjointness. Now, was the existence of eigenvalues and eigenvectors in each of the boundary
value problems above a coincidence, or is there something deeper at play? The answer is, of course,
yes there is something deeper going on. If we think back to the setting of finite-dimensional linear
algebra and matrices, you might recall that a key way to guarantee that a matrix has “enough”
real eigenvalues and eigenvectors is to assume that is is symmetric, meaning that it equals its
own transpose. The spectral theorem says that any real symmetric n × n matrix is orthogonally
diagonalizable, which means that there exists a basis for Rn consisting of orthogonal eigenvectors
of that matrix. We claim that it is this type of result which accounts for the “eigen-observations”
in the boundary value problems above.

Namely, we claim that the linear differential operator L = d2

dx2 is “symmetric” in an appropriate
sense. To say what we really mean by this, we recall the following characterization of symmetric
matrices: A is symmetric if and only if

Ax · y = x ·Ay
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for all vectors x,y, where · denotes the standard dot product. The point is that in general it is the
transpose At of A that satisfies

Ax · y = x ·Aty,

so A being symmetric means that A = At itself satisfies this dot product equation. If you have
ever seen a proof of the spectral theorem for matrices, or of the ingredients which go into the proof
(we’ll see some of these later in the infinite-dimensional setting), you will notice that it is precisely
the property Ax · y = x ·Ay that makes everything work out.

But we know how to generalize the dot product to infinite dimensions, by considering the inner
product of functions defined on, say, [0, L]:

(f, g) =

$ L

0
f(x)g(x) dx.

Thus, to say that L = d2

dx2 is “symmetric” means that L should satisfy the same type of inner
product equation as symmetric matrices do, namely:

(L[f ], g) = (f, L[g]).

To be more precise, we only consider functions satisfying whatever boundary conditions we want,
say for example f(0) = 0 = f(L). The claim is that L = d2

dx2 , viewed as a linear operator
on the vector space of functions satisfying these boundary conditions, does indeed satisfy the
inner product equation above. For a general inner product on a vector space, we say that linear
operations satisfying this equation are self-adjoint, which is the general version of “symmetric”.
(Thus, symmetric matrices are ones which are self-adjoint with respect to the standard dot product
on Rn. The term “adjoint” refers to the linear operator L∗ satisfying

(L[f ], g) = (f, L∗[g])

in general, which is called the adjoint of L. Self-adjoint operators are thus ones which equal their
own adjoints. Adjoints are a generalization of matrix transposes.)

To see that L = d2

dx2 is self-adjoint, we first determine the adjoint of d
dx using integration by

parts. We have:

(f ′, g) =

$ L

0
f ′(x)g(x) dx

= f(x)g(x)
---
L

0
−

$ L

0
f(x)g′(x) dx

= 0 +

$ L

0
f(x)[−g′(x)] dx

= (f,−g′),

where the boundary term f(x)g(x)
---
L

0
vanishes due to the boundary conditions f(0) = 0 = f(L) we

are imposing. This says that the adjoint of d
dx is − d

dx , since we can replace the application of d
dx

in the first argument of (f ′, g) by an application of − d
dx in the second argument instead. But, now

we can apply this operator twice to get L, and each time we do we pick up an extra negative, so
that the negatives cancel out in the end:

(L[f ], g) = (d
2f

dx2 , g) = ( d
dx

"
df
dx

#
, g) = ( dfdx ,−

dg
dx) = (f,− d

dx(−
dg
dx)) = (f, d

2g
dx2 ) = (f, L[g]).
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Thus, L is self-adjoint with respect to this inner product as claimed. We’ll see that this the key
reason why we can expect to find eigenvalues and eigenfunctions for ODEs involving L, and other
more general operators.

Lecture 23: Sturm-Liouville

Warm-Up. We solve the following eigenvalue problem:

y′′ + y = λy, y(0) + y′(0) = 0 = y(π) + y′(π).

(In other words, we are finding the eigenvalues and eigenfunctions of L = d2

dx2 + 1 on the vector

space of functions satisfying the boundary conditions above, where d2

dx2 + 1 is linear operator that

computes a second derivative and adds on 1 times the input: L[y] = d2

dx2 y + 1y = y′′ + y.) Let us
rewrite our equation as

y′′ + (1− λ)y = 0.

For 1− λ = −k2 < 0, the general solution is

y = c1e
kx + c2e

−kx,

and a direct (a bit tedious, so we skip it) computation shows that this satisfies

y(0) + y′(0) = 0 = y(π) + y′(π)

only when c1 = c2 = 0, so there are no eigenvalues here. For 1− λ = 0, we have

y = c1 + c2x,

and again the boundary conditions force c1 = c2 = 0.
So, we assume 1− λ = k2 > 0, so that

y = c1 cos kx+ c2 sin kx.

The boundary condition y(0) + y′(0) = 0 gives

c1 + kc2 = 0,

and the boundary condition y(π) + y′(π) = 0 gives

c1 cos kπ + c2 sin kπ − kc1 sin kπ + kc2 cos kπ = 0.

(Careful: we do not yet know that k is an integer, so we cannot yet say that for instance sin kπ = 0.)
If we write this second condition as

(c1 + kc2) cos kπ + (c2 − kc1) sin kπ = 0,

we see that the first boundary requirement c + kc2 = 0 forces the first term above to be zero, so
that we are left with

(c2 − kc1) sin kπ = 0.

Thus either c2 − kc1 = 0 or sin kπ = 0, but in the first case we thus have the pair of requirements

c1 + kc2 and c2 − kc1 = 0,
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which are only satisfied by c1 = c2 = 0. This is no good, so we must instead have sin kπ = 0, which
says that k must indeed be a positive integer. Thus 1 − λ = n2 for some positive integer n, and
thus the eigenvalues are λn = 1− n2. The solution of our ODE in this case is

y = c1 cosnx+ c2 sinnx,

where the first boundary requirement still forces the condition that c1 + nc2 = 0. Taking c2 = 1 in
order to get a nontrivial solution then gives c1 = −n, so the eigenfunctions are given by

yn = −n cosnx+ sinnx.

(We will see that, just as functions can be written as, say, Fourier sine series expansions, they can
also be written as “expansions” in terms of these eigenfunctions above! This will give more general
types of “Fourier-like” series, suitable to study the specific boundary value problem at hand.)

Sturm-Liouville theory. The proper setting in which to discuss all of the eigen/self-adjoint
observations we made last time is that of Sturm-Liouville theory. Sturm-Liouville theory deals
with second-order linear differential equations of the form

(p(x)y′)′ + q(x)y = λr(x)y.

Here y is the unknown function (of x), and such an ODE is said to be in Sturm-Liouville form. We
will consider boundary conditions of the form

α1y(0) + α2y
′(0) = 0 = β1y(L) + β2y

′(L),

which are called separated boundary conditions since there is no interaction between the terms at
0 and the terms at L, so that the boundary points are “separated” from one another.

Here are two remarks. First, note that our sign conventions here are a bit different than the
book’s. The book writes the Sturm-Liouville ODE as

(p(x)y′)′ − q(x)y + λr(x)y = 0, or equivalently (p(x)y′)′ − q(x)y = −λr(x)y.

So, the signs of q(x) and λ in my version differ from that in the book. The different signs in q(x)
doesn’t matter at all (just replace what I’m calling q(x) by the function −q(x) instead), and the
change in λ just means that my eigenvalues will be the negative of those in the book (recall the
difference in eigenvalues of X ′′−λX = 0 vs X ′′+λX = 0 we mentioned last time), but importantly
the eigenfunctions will be the same either way. The convention we’re using here will just make the
connection to linear algebra simply to see, but in the end it has no real impact on the theory, apart
from changing the signs of the eigenvalues.

The second remark is that, although the Sturm-Liouville ODE form above might seem to be
quite restrictive at first, it in fact covers pretty much all second-order linear homogeneous ODEs.
Indeed, you will show on a discussion problem that essentially any second-order linear homogeneous
ODE

P (x)y′′ +Q(x)y′ +R(x)y = 0

can be put in Sturm-Liouville form, at least when the coefficient functions are “nice”. Certainly,
for most ODEs you will ever see in any real practical context this will be true. Second-order
ODEs arise all the times in physics and chemistry via Newton’s laws and other considerations, so
Sturm-Liouville theory is indeed quite broadly applicable.
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Operators on Hilbert spaces. Introduce the Sturm-Liouville operator:

L[y] = (p(x)y′)′ + q(x)y,

which is a linear differential operator acting on some vector space of functions. (Note again the
difference in signs here vs the book.) With this notation, the Sturm-Liouville ODE becomes

L[y] = λr(x)y.

This looks close to an eigenvector equation, except for the nonconstant r(x) term on the right. If
we assume that r(x) > 0, for example, then we can rewrite the Sturm-Liouville equation as

L[y]

r(x)
= λy,

which now is an eigenvector equation. The conclusion is that solutions of the Sturm-Liouville
equation

(p(x)y′)′ + q(x)y = λr(x)y

are precisely eigenfunctions of the modified Sturm-Liouville operator

L[y]

r(x)
=

(p(x)y′)′ + q(x)y

r(x)
,

at least when r(x) > 0. The case where r(x) > 0 is called the regular case of Sturm-Liouville
theory, or more precisely the regular case is when we assume that p, p′, q, r are all C1 and that p, r
are always positive. The positivity assumption on r(x) is the most important for us, and we will
clarify the role that r(x) > 0 plays in the theory later.

So, if L[y] = (p(x)y′)′ + q(x)y is the linear operator we care about, on which vector space is
it meant to act? Let us recall the notation L2(X) as denoting the space of all real-valued square-
integrable functions on X, which are functions f : X → R such that the integral of the square of f
over X exists and is finite: $

X
f(x)2 dx < ∞.

In the case at hand, we are working with L2([0, L]) (the second “L” is different than the first!), so

functions for which
* L
0 f(x)2 dx is finite. L2(X) is a vector space since adding and scalar multiplying

L2 functions results in an L2 function, and is the prototypical example of what’s called a Hilbert
space. What makes this a “Hilbert space” is the fact that L2(X) comes equipped with an inner
product

(f, g) =

$

X
f(x)g(x) dx,

and that it satisfies some type of convergence property, which we will say a bit about later. So, we
have our Sturm-Liouville operator L acting on some Hilbert space of functions L2([0, L]) (all three
“L”’s mean different things here!), and it in this setting that Sturm-Liouville theory takes place.
(Actually, we should restrict our domain to consider only those square-integral functions which are,
say, C1, in order to guarantee that their derivatives exist, as required in the very definition of the
operator L[y] = (p(x)y′)′ + q(x)y. This will be a standing assumption going forward, so we won’t
clarify it every single time we need it.)

Lagrange’s identity. We now want to show that the Sturm-Liouville operator L is self-adjoint,
at least on an appropriate subspace of our Hilbert space, since it is this property which will give
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rise to all the eigen-goodness we expect. We begin by determining the adjoint of L with respect
to our integral inner product. The computation again comes down to integration by parts. Recall
that our operator is defined by L[y] = (p(x)y′)′ + q(x)y.

For two functions u and v, we have:

(L[u], v) =

$ L

0
L[u]v dx

=

$ L

0
[(p(x)u′)′ + q(x)u]v dx

=

$ L

0
(p(x)u′)′v dx+

$ L

0
q(x)uv dx.

We will leave the second term as is, and integrate by parts in the first to “undo” the outer derivative
in (p(x)u′)′:

$ L

0
(p(x)u′)′v dx = p(x)u′v

---
L

0
−

$ L

0
p(x)u′v′ dx.

Now we group the p(x) and v′ terms in the second piece together and integrate by parts again:

$ L

0
p(x)u′v′ dx =

$ L

0
u′(p(x)v′) dx

= up(x)v′
---
L

0
−

$ L

0
u(p(x)v′)′ dx.

After putting this into the expression we obtained after the first integration by parts, and bringing
back in the

* L
0 q(x)uv dx term, we altogether get:

(L[u], v) =

$ L

0
(p(x)u′)′v dx+

$ L

0
q(x)uv dx

= p(x)u′v
---
L

0
−

$ L

0
p(x)u′v′ dx+

$ L

0
q(x)uv dx

= p(x)u′v
---
L

0
− up(x)v′

---
L

0
+

$ L

0
u(p(x)v′)′ dx+

$ L

0
q(x)uv dx

= p(x)(u′v − uv′)
---
L

0
+

$ L

0
u[(p(x)v′)′ + q(x)v] dx

= p(x)(u′v − uv′)
---
L

0
+

$ L

0
u[v] dx = p(x)(u′v − uv′)

---
L

0
+ (u, L[v]).

This final identity

(L[u], v) = p(x)(u′v − uv′)
---
L

0
+ (u, L[v])

is known as Lagrange’s identity. As we will see next time, the point is that the separated boundary
conditions we consider will force the “boundary term”

p(x)(u′v − uv′)
---
L

0

to be zero, so that Lagrange’s identity says that L will indeed be self-adjoint on the space of
functions satisfying these boundary conditions.
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Lecture 24: More on Sturm-Liouville

Warm-Up. We show that if L is a self-adjoint operator with respect to some inner product,
meaning

(L[u], v) = (u, L[v]),

then all eigenvalues of L are real and eigenvectors that correspond to different eigenvalues are
orthogonal. (You might recall that these same properties are true for symmetric matrices.) Of
course, we will apply this to the case of a Sturm-Liouville operator where the inner product is
given by some integral, but this is a general fact that works for other inner products as well. The
important properties needed are how inner products behave with respect to scalar multiplication,
and the fact that the inner product (u, u) of a vector with itself is always bigger than or equal to
zero (in particular, it is always real), and equals 0 only for u = 0. We should clarify here that we
are really considering a complex inner product, where we have

(λu, v) = λ(u, v) for a complex scalar λ, but (u,λv) = λ(u, v).

That is, when pulling a complex scalar out of the second argument, it becomes the conjugate
complex scalar. We can see that this is true for the complex integral inner product we considered
when discussing complex Fourier series:

(f, g) =

$ L

0
f(x)g(x) dx,

where λg(x) = λ g(x) results in “pulling out” the conjugate scalar as claimed. (We are then really
working in the Hilbert space of complex-valued functions on [0, L], of which the Hilbert space of
real-valued functions is a subspace.)

Thus, suppose λ is a complex eigenvalue of L, with (complex) eigenvector u. Since L is self-
adjoint, we have

(L[u], u) = (u, L[u]).

The left side is (λu, u) = λ(u, u), while the right side is (u,λu) = λ(u, u), so

λ(u, u) = λ(u, u).

Since eigenvectors are always nonzero, (u, u) > 0, so this forces λ = λ, and hence λ is real.
Now suppose u and v are eigenvectors corresponding to different eigenvalues λ and µ, respec-

tively. Then (L[u], v) = (u, L[v]), so
(λu, v) = (u, µv).

The left side is λ(u, v) and the right side is µ(u, v), but we already know that µ has to be real, so

λ(u, v) = µ(u, v).

Since λ ∕= µ, this forces (u, v) = 0, so u and v are orthogonal as claimed.

Self-adjoint Sturm-Liouville. Let us return to Lagrange’s identity:

(L[u], v) = p(x)(u′v − uv′)
---
L

0
+ (u, L[v]).

Now we impose our separated boundary conditions:

α1y(0) + α2y
′(0) = 0 = β1y(L) + β2y

′(L).
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Note that we expect at least one of α1,α2 to be nonzero, since otherwise the first boundary condition
is no condition at all, and similarly for β1,β2.

For functions satisfying these boundary conditions, we have

y′(0) = −α1

α2
y(0).

(At least, assuming α2 ∕= 0; if α2 is zero then we solve for y(0) in terms of y′(0) instead). Thus the
boundary term

p(x)(u′v − uv′)

in Lagrange’s identity upon evaluating at 0 becomes

p(0)(u′(0)v(0)− u(0)v′(0)) = p(0)

4
−α1

α2
u(0)v(0)− u(0)

.
−α1

α2

/
v(0)

5
= 0,

and the same happens when evaluating at L. (Again, perhaps we have to divide by β1 instead of
β2, or by α1 instead of α2 here depending on which scalars are nonzero, but the boundary term
vanishes either way.) Thus, among the functions in the subspace of L2([0, L]) carved out by our
separated boundary conditions, we have

(L[u], v) = (u, L[v]),

so L is self-adjoint on this subspace. Immediately we thus know that all eigenvalues of L on this
subspace are real and that eigenfunctions for different eigenvalue are orthogonal.

Changing the weight. Recall that using the operator L[y] = (p(x)y′)′+q(x)y, our Sturm-Liouville
ODE was

L[y] = λr(x)y.

As we mentioned before, this is not quite an eigenvector equation due to the nonconstant r(x),
but (assuming regularity) to fix this we instead consider the modified Sturm-Liouville operator
obtained by dividing by r(x):

L[y]

r(x)
= λy.

Solutions of the Sturm-Liouville ODE are then indeed eigenfunctions of L
r(x) .

If r(x) = 1 (as is true in all examples we’ve seen so far, as we’ll soon clarify), then this operator
is just L, which is self-adjoint with respect to the usual integral inner product. If r(x) ∕= 1,
however, we lose self-adjointness with respect to this usual inner product, but can recover it using
a “weighted” inner product instead. Indeed, we have

$ L

0
L[u]v dx =

$ L

0
uL[v] dx,

so if we divide and multiply both sides by r(x) > 0, we can rewrite this as

$ L

0
r(x)

.
L[u]

r(x)

/
v dx =

$ L

0
r(x)u

.
L[v]

r(x)

/
dx.

Thus if we introduce the weighted inner product

〈f, g〉 =
$ L

0
r(x)f(x)g(x) dx,
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we have L
L[u]

r(x)
, v

M
=

L
u,

L[v]

r(x)

M
,

so that L
r(x) becomes self-adjoint. The fact that r(x) > 0 (i.e. regularity) is needed here to guarantee

that this weighted inner product is still an inner product, meaning in particular that it still satisfies
〈u, u〉 ≥ 0 and 〈u, u〉 = 0 only for u = 0.

(Weighted inner products are used in finite-dimensions as well, although possibly not in your
previous linear algebra. For example, modifying the usual dot product on R2 by putting in some
weight terms like (x,y) = 2x1y1 + 3x2y2 also gives an inner product on R2. The idea here is that,
for whatever reason, perhaps we want to give more weight to the second coordinates of our vectors
instead of the first, and using weighted inner products gives a formal way to do so.)

Sturm-Liouville Spectral Theorem. Thus, finally, we have that solutions of a regular Sturm-
Liouville ODE

(p(x)y′)′ + q(x)y9 :; <
L[y]

= λr(x)y

with separated boundary conditions are the same as eigenfunctions of the “weighted” Sturm-
Liouville operator L

r(x) on the space of functions satisfying those boundary conditions, which is

self-adjoint with respect to an r(x)-weighted inner product. For matrices, it is the spectral theorem
that then gives the eigen-properties of symmetric matrices, so now we give our infinite-dimemsional
analog, which we call the Sturm-Liouville Spectral Theorem.

The claim is that, with the setup above, the following are true:

• L
r(x) has infinitely many real eigenvalues, which are discrete in the sense that they can be

arranged in (decreasing) order:
λ1 > λ2 > λ3 > . . . .

(Here is one place where the difference in sign convention between my Sturm-Liouville equa-
tion and the book’s pops up: with the book’s convention of using −λ instead of λ, the
eigenvalues are instead increasing. As we said before, this does not lead to any real material
difference, so we sweep it under the rug.)

• All eigenspaces of L
r(x) are one-dimensional, meaning that all eigenfunctions for a specific

eigenvalue are scalar multiples of a single nonzero one.

• Finally, and most importantly, eigenfunctions φn corresponding to the eigenvalues λn form
an orthogonal basis for the Hilbert space L2([0, L]), or at least the subspace of C1 functions
in this Hilbert space, meaning that any such f can be written as

f(x) =

∞!

n=1

cnφn(x)

for an appropriate choices of scalars cn. We call such a series expression the eigenfunction
expansion of f relative to this basis.

So, just as with symmetric matrices, self-adjoint Sturm-Liouville operators do give rise to a basis of
orthogonal eigenvectors of our vector space. In the first part, we already know that the eigenvalues
are real from the Warm-Up, so the important part is there are infinitely many of them and that they
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are discrete. The second part can be proven using the notion of the Wronskian of two functions,
but we will skips this since this part is not so crucial for our purposes.

The fact that the eigenfunctions in the third part are orthogonal is just what we showed in the
Warm-Up, so the real claim here is that they form a basis for our space. There are two remarks
we should make here. First, it is true that these give a basis for all of L2, not just the subspace of
C1 functions, but the meaning behind what the equality

f(x) =

∞!

n=1

cnφn(x)

actually means changes for L2 as opposed to the C1 case. We won’t go into the details since we only
really care about the C1 case, but this comes down to the type of “convergence” we care about.
(This is not about the distinction between pointwise vs uniform convergence—there is yet another
type of convergence, namely what’s called L2-convergence, we comes into play. For our purposes,
all that matters is that uniform convergence implies L2-convergence.) Note well that this applies
even if f does not satisfy our separated boundary conditions: any appropriately nice function can
be “eigenfunction expanded”. (In the case where f is only piecewise C1, the eigenfunction series
will converge to 1

2(f(x
−) + f(x+)) at points where f is not continuous—this possibly includes the

endpoints of [0, L]—just as we saw for Fourier series.)
The second remark is that we have to be a bit careful about what we mean by “basis” here.

In the standard linear-algebraic usage, when saying that a given vector is a linear combination of
basis vectors we always mean a linear combination of finitely many basis vectors, since “infinite
linear combinations” do not make sense in arbitrary vector spaces. But, in the third part of this
spectral theorem, we are indeed allowing infinite linear combinations expressed as an infinite series.
Technically, what we have here then is what’s called a Schauder basis for our space, which is the
name for bases where infinite linear combinations are used. The previous notion of basis you would
have seen, which only allows finite linear combinations, is called a Hamel basis. So, the third
part is really about the existence of a Schauder basis. In this setting, we also say that the set of
eigenfunctions forms a complete set of orthogonal eigenvectors for our Hilbert space.

Examples. Let us finish by putting previous examples we’ve seen now into the context of this
spectral theorem. The eigenvalue problem

y′′ − λy = 0, y(0) = 0 = y(1)

is in regular Sturm-Liouville form by taking p(x) = r(x) = 1 and q(x) = 0:

(1y′)′ + 0y = λ1y.

The eigenvalues λn = −n2π2 are discrete and decreasing

−π2 > −4π2 > −9π2 > . . .

(they would be increasing if we used the book’s convention with y′′ + λy = 0 where λn = n2π2

instead), and the eigenspace corresponding to λn is spanned by φn = sin(nπx). The fact these
eigenfunctions are orthogonal is just the orthogonality relations for Fourier series we saw back in
the first week (the inner product is not weighted in this case since r(x) = 1), and the corresponding
eigenfunction expansion of a function

f(x) =

∞!

n=1

cn sin(nπx)
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is just a Fourier sine series.
For y′′ − λy = 0 with separated boundary conditions y(0) = 0 = y′(1), the eigenvalues were

−π2 > −9π2 > −25π2 > . . . ,

or λn = −(2n − 1)2π2 in general, and the basis eigenfunctions were φn = sin( (2n−1)πx
2 ). The

corresponding eigenfunctions expansions are the specific sine series of the form

f(x) =

∞!

n=1

cn sin

.
(2n− 1)πx

2

/
,

which we saw come up in the heat equation, for example, with one insulated end. The moral of
the story is that given any nice enough ODE, we get a nice type of expansion uniquely suited
to that ODE to work with. We’ll soon put such expansions to use when solving general types of
non-homogeneous ODEs.

Lecture 25: Eigenfunction Expansions

Warm-Up. We find the normalized eigenvectors for each of the following eigenvalue problems:

y′′ + λy = 0, y′(0) = 0 = y(1) + y′(1)

and
y′′ + y = λy, y(0) + y′(0) = 0 = y(π) + y′(π).

Note that in both cases the weight function is r(x) = 1. Now, by normalized eigenvectors we mean
eigenvectors of norm 1, where the norm computed using the inner product: ‖f‖ =

6
(f, f). To

obtain a normalized eigenvector we simply take any eigenvector and divide it by its norm, just as
you would have done in a previous linear algebra course.

We saw in an earlier example that the eigenvalues of the first problem are the positive solutions
to cot

√
λ =

√
λ. For the n-th eigenvalue λn, a corresponding eigenfunction is

φn = cos(
6

λnx).

We have

(φn,φn) =

$ 1

0
φn(x)

2 dx =

$ 1

0
cos2(

6
λnx) dx =

1

2

.
1 +

sin(
√
λn) cos(

√
λn)√

λn

/
.

This can be cleaned up a bit using the fact that the eigenvalue satisfies cos
√
λ = λ:

cos(
√
λn)

sin(
√
λn)

=
6

λn =⇒ cos(
6

λn) =
6

λn sin(
6

λn),

so

(φn,φn) =
1

2
(1 + sin2(

6
λn)).

Thus the normalized eigenfunctions are

φn

‖φn‖
=

√
2 cos(

√
λnx)6

1 + sin2(
√
λn)

.
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We saw previously that the eigenvalues of the second problem are λn = 1 − n2, where n is a
positive integer, with eigenfunctions

φn = sin(nx)− n cos(nx).

Let us first emphasize that these eigenfunctions are orthogonal:

(φn,φm) =

$ π

0
[sin(nx)− n cos(nx)][sin(mx)−m cos(mx)] dx = 0

for m ∕= n. Of course this can be verified through a computation of these integrals, but the point
is that we know it is true without computation purely as a consequence of the fact that these
eigenfunctions arise from a self-adjoint operator. We also have

(φn,φn) =

$ π

0
[sin(nx)− n cos(nx)]2 dx =

π

2
(n2 + 1).

Thus the norm of φn is
6

π
2 (n

2 + 1), so the normalized eigenfunctions are

φn

‖φn‖
=

√
2[sin(nx)− n cos(nx)]6

π(n2 + 1)
.

Existence of eigenvalues. We will not be able to prove the Sturm-Liouville spectral theorem in
full in this course, but let us give a sense of what is needed in order to do so. To begin, we recall how
the proof of the spectral theorem for matrices works. If A is an n × n symmetric matrix, the key
facts we need are that A always has at least one real eigenvalue, and that A preserves orthogonal
complements of invariant subspaces. The first fact follows from the fact that eigenvalues are roots
of the characteristic polynomial: this polynomial for sure has a complex root, so A has a complex
eigenvalue, and then the fact that A is symmetric guarantees that this complex root is actually
real. By the second fact above we mean that if A sends every vector of a subspace into that same
subspace, then it also sends every vector in orthogonal complement of that subspace into that
orthogonal complement.

Here is how this works in the 3 × 3 case. First, A has at least one real eigenvalue, and so
an eigenvector v1. The orthogonal complement property stated above then says that A will send
anything in the plane orthogonal to v1 into that same plane:

But now A gives a symmetric linear transformation from this plane to itself, so the same reasoning
applies again: A has at least one eigenvector in this plane, call v2, and then A sends the space
orthogonal to the span of v1,v2 into itself. At this final step this remaining orthogonal complement
is a line, and a vector on this line gives a third eigenvector v3. These eigenvectors are all orthogonal
by construction (each came from some orthogonal complement to the previous ones), and so they
form an orthogonal eigenbasis of R3. The idea is that at each step we “break” off an orthogonal
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complement, which then contains a new eigenvector we can add to the list of eigenvectors we are
constructing, until we end up with three in total. This idea then works for larger matrices as well.

The details are not crucial to understand, but the upshot is that it is this same type of argument
which essentially works in infinite dimensions too. The orthogonal complement preservation prop-
erty above only depends on Ax · y = x · Ay, and so works for more general self-adjoint operators,
at least once we deal with some subtle issues that arise infinite dimensions. The real hard part in
infinite dimensions is in guaranteeing that any self-adjoint operator has at least one real eigenvalue.
The issue is that there is no analog of the characteristic polynomial in infinite dimensions, since we
cannot take the determinant of an “infinite” matrix. So, if want to guarantee the existence of an
eigenvalue we need a different approach.

The solution comes from another topic you saw in a previous course: the method of Lagrange
multipliers. The point is that there is another way to characterize eigenvalues (at least the largest
and smallest ones) of a symmetric matrix: they are precisely the maximal and minimal values of
the function

f(x) = x ·Ax

among all unit vectors! This can be shown by optimizing f(x) subject to the constraint ‖x‖ = 1
using Lagrange multipliers. Thus, even without using characteristic polynomials, we see that we
have another way to guarantee that A has an eigenvalue via optimization instead. It turns out that
this idea does work (essentially) in infinite-dimensions, and can be used to show that self-adjoint
operators do have eigenvalues. There is still much work needed in making the jump to infinite
dimensions here precise, but once we’ve done so, the proof of the spectral theorem works in a
similar way as in the finite-dimensional case.

Back to Hilbert spaces. Let us take a brief aside to finish off the definition of the term “Hilbert
space”. We previously said that a Hilbert space was a vector space equipped with an inner product
which satisfies some type of convergence property, with the key example being the space L2(X)
of square-integrable functions on some space X. The convergence property we need can be stated
in different ways, but here is one which likely the simplest to state: in a Hilbert space it should
be true that a series

>
φn converges whenever the series of norms

>
‖φn‖ converges. This latter

series is just a series of numbers and convergence of this means convergence in the usual sense
of calculus. The former series is a series in our Hilbert space, and convergence here really means
“L2-convergence”, whatever that means. But, uniform convergence is a special case, and that’s
really what matters for us.

We will not need the precise definition in the rest of this course, but it’s worth stating at least
once. Hilbert spaces are of fundamental importance in many areas of mathematics (and in quantum
mechanics!), essentially because they provide examples of infinite-dimensional spaces which behave,
in many many ways, in some sense like Rn. Take a course in “functional analysis” to learn more.

Weighted example. Let us now look at an example of a Sturm-Liouville problem with a weight.
We consider the following:

(xy′)′ +
1

x
y = λ

1

x
y, y(1) = 0 = y(e).

Note that this is in regular Sturm-Liouville form, with p(x) = x, q(x) = 1
x , and with weight function

r(x) = 1
x > 0. (Note that these are all C1 on the domain [1, e] in question.) With this weight then

we can rewrite our ODE as
(xy′)′ + 1

xy
1
x

= λy,
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so that we are considering eigenfunctions of the operator on the left.
This eigenvalue problem turns out to have eigenvalues λn = 1− n2π2 with eigenfunctions

φn = sin(nπ lnx).

That these λn are the correct eigenvalues can be verified simply by plugging in y = φn and com-
puting

(xφ′
n)

′ + 1
xφn

1
x

,

which (do it!) works out to be (1−n2π2)φn. These specific eigenfunctions can be found by actually
solving the ODE

(xy′)′ +
1

x
y = λ

1

x
y

with the given boundary conditions. Doing so is not hard, it just requires methods for solving what
are called Euler equations, or more precisely Euler equations with repeated roots. We won’t go
through the process of actually solving this to find φn here.

These eigenfunctions are then orthogonal with respect to the weighted inner product

(f, g) =

$ e

1

1

x
f(x)g(x) dx.

This means that for m ∕= n we have

(φn,φm) =

$ e

1

1

x
sin(nπ lnx) sin(mπ lnx) dx = 0.

(This can be verified by direct computation using a clever substitution and trig identity, but of
course we know it will be true because of general Sturm-Liouville results.) For n = m, we can
compute that

(φn,φn) =

$ e

1
sin2(nπ lnx) dx =

1

2
,

so that each φn has norm 1√
2
. Thus, normalized eigenfunctions are given by =φn =

√
2 sin(nπ lnx).

Eigenfunction expansions. Because of Sturm-Liouville theory, we know that eigenfunctions φn

above, or their normalized versions =φn, form an orthogonal (orthonormal in the normalized case)
basis for L2([1, e]). In particular, we know that any C1 function as an eigenfunction expansion of
the form

f(x) =

∞!

n=1

cnφn(x).

Of course, the coefficients cn can be derived just as we did for Fourier coefficients way back when.
(In fact, we phrased the problem of deriving the Fourier coefficients in terms of inner products back
in that first week precisely so that the same derivation would apply to any orthogonal basis.) The
point was to take the inner product (weighted in this case) of both sides of this equation with some
φm, and then use orthogonality to isolate cm and solve. The answer is

cn =
(f,φn)

(φn,φn)
,
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which as before is some projection coefficient. If we use the orthonormal eigenfunctions =φn instead,
the denominator becomes 1, so that

f(x) =

∞!

n=1

dn=φn(x) with dn = (f,=φn).

(The benefit of using normalized eigenfunctions is thus to get a simpler expression for the expansion
coefficient. However, note that we don’t really save any work in doing so, since either way we have
to compute (φn,φn): either it shows up in the formula for cn in the non-normalized case, or it

shows up in the expression for =φn in the normalized case. So, either way we get to the same point,
and so we won’t usually bother with requiring normalized eigenfunctions.) The overall point is
that these eigenfunctions expansions are just exactly analogs of Fourier series, only using other
types of “basis” functions. With the eigenfunctions in the weighted example above, we thus get
the “Fourier-like” series

f(x) =

∞!

n=1

cn sin(nπ lnx)

where

cn =
(f,φn)

(φn,φn)
=

* e
1

1
xf(x) sin(nπ lnx) dx

1
2

= 2

$ e

1

1

x
f(x) sin(nπ lnx) dx.

Back to weighted example. Let us see the eigenfunction expansion of f(x) = 1 in terms of these
weighted eigenfunctions. We have

cn = 2

$ e

1

1

x
sin(nπ lnx) dx =

2(1− cosnπ)

πn
.

Thus our expansion is

1 =

∞!

n=1

2(1− cosnπ)

πn
sin(nπ lnx).

(If we had used the normalized eigenfunctions, the 2 in front would be a
√
2, but then another

√
2

would show up as the coefficient of sin(nπ lnx), so that overall the same factor of 2 appears.) Note
that this equality really is only guaranteed to hold for 1 < x < e, since strange things can happen
at the boundary points 1 and e, where the convergence is actually to some average of right/left
limiting values.

This might seem like a crazy identity, but looking at a plot shows that it is in fact not so crazy:

(This is the 50th-order partial sum.) Sure enough, this very strongly suggests that this series
does in fact converge to the constant function 1, away from the endpoints. Such is the power of
Sturm-Liouville!
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Lecture 26: More on Expansions

Warm-Up. We determine the eigenfunction expansion of f(x) = x in terms of the orthogonal
eigenfunctions of

y′′ + y = λy, y(0) + y′(0) = 0 = y(π) + y′(π).

We have seen that these eigenfunctions are

φn(x) = sin(nx)− n cos(nx),

with eigenvalues λn = 1− n2. The eigenfunction expansion of x is

x =

∞!

n=1

cnφn

where

cn =
(x,φn)

(φn,φn)
.

The weight for this Sturm-Liouville problem is r(x) = 1, so we are using the standard inner product
and thus

cn = (x,φn) =

$ π

0
x[sin(nx)− n cos(nx)] dx =

1− (1 + π) cosnπ

n
.

We previously saw that ‖φn‖2 = (φn,φn) =
π
2 = (n2 +1), so the desired eigenfunction expansion is

x =

∞!

n=1

2[(1− (1 + π) cosnπ]

πn(n2 + 1)
(sinnx− n cosnx), for 0 < x < π.

(Careful at the endpoints!)

Solving driven equations. Let us now put eigenfunction expansions to good use, and solve the
nonhomogeneous boundary value problem given by

y′′ − 3y = x, y(0) = 0 = y(1).

We call x here the “driving term”, since it reflects some external factor that helps to “drive” the
behavior of the system. The strategy is to expand everything in sight, meaning the driving term x
and the unknown solution y, in terms of our eigenfunctions and see what we get. The eigenfunctions
to consider are those of the associated homogeneous eigenvalue problem

y′′ − λy = 0, or y′′ = λy, with y(0) = 0 = y(1).

We have seen that this has eigenvalues λ = −n2π2 and eigenfunctions φn = sin(nπx).
Now, expanding y gives

y =

∞!

n=1

cnφn

for some unknown coefficients, and expanding x gives

x =

∞!

n=1

−2 cosπn

πn
φn,
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where the coefficients here come from the inner product (x,φn) =
* 1
0 x sin(nπx) dx. The goal is

then to use the fact that these should satisfy our driven ODE in order to determine the unknown
coefficients cn. Once we know what cn is explicitly, we will know our solution y =

>
cnφn. The

benefit of expanding y in terms of eigenfunctions is that we can easily say what the result of plugging
y into our differential equation is: this specific equation comes from the Sturm-Liouville operator
L = d2

dx2 , and the fact that L[φn] = λnφn gives

y′′ = L[y] = L

0 ∞!

n=1

cnφn

1
=

∞!

n=1

cnL[φn] =

∞!

n=1

cnλnφn =

∞!

n=1

cn(−n2π2)φn.

Note that the third equality here is just the fact that L is a linear transformation:

L[c1φ1 + c2φ2 + · · · ] = L[c1φ1] + L[c2φ2] + · · · = c1L[φ1] + c2L[φ2] + · · · .

(As usual, there are some convergence/continuity issues lurking in the background needed to guar-
antee that this linearity property not only applies to finite sums but also infinite sums as well, but
we take this for granted.) Thus, in terms of eigenfunction expansions, our driven ODE y′′− 3y = x
thus becomes ∞!

n=1

cn(−n2π2)φn

9 :; <
L[y]=y′′

−
∞!

n=1

3cnφn

9 :; <
3y

=

∞!

n=1

−2 cosπn

πn
φn

9 :; <
x

.

The beauty of having this identity in terms of the orthogonal eigen-expansion is that now we
can directly compare coefficients on both sides: since eigenfunction expansions are unique, the
coefficient of φn on the left side must agree with the coefficient of φn on the right, so

cn(−n2π2)− 3cn = cn(−n2π2 − 3) = −2 cosπn

πn
.

Thus we find that cn = 2 cosπn
(n2π2+3)πn

, so the solution we desire is

y =

∞!

n=1

2 cosπn

(n2π2 + 3)πn
sin(nπx).

Essentially, phrasing everything in terms of an eigenfunction expansions turned all the calculus, i.e.
computing y′′, into algebra, i.e. finding cn!

Diagonalization. Let us recast what we have just done in the language of linear algebra, to make
a connection with a concept you have no doubt seen before. In our eigenfunction expansion of y:

y =

∞!

n=1

cnφn,

the point is that the cn should be viewed as the “coordinates” of y with respect to the basis φn.
We can encode these coordinates in an “infinite-dimensional” vector:

D

EEEF

c1
c2
c3
...

G

HHHI
.
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The fact that the φn are eigenvectors, so that

L[y] =

∞!

n=1

cnλnφn,

says that the coordinates of L[y] are λncn. Thus, L has the following effect on “coordinate” vectors,
where each coordinate is simply scaled by the appropriate eigenvalue:

D

EEEF

c1
c2
c3
...

G

HHHI
⇝

D

EEEF

λ1c1
λ2c2
λ3c3
...

G

HHHI
.

But this final expression can be written in terms of multiplication by an infinite-dimensional matrix:

D

EEEF

λ1c1
λ2c2
λ3c3
...

G

HHHI
=

D

EEEF

λ1

λ2

λ3

. . .

G

HHHI

D

EEEF

c1
c2
c3
...

G

HHHI
,

so the upshot is that the effect the operator L has on “coordinates” is given by this matrix, so that
L is represented by this infinite-dimensional matrix with respect to this particular eigenbasis.

And now the point: this is precisely what happens for a diagonalizable matrix! To say that a
matrix A is diagonalizable is to say that there is a basis of Rn consisting of eigenvectors of A, or
equivalently that A = SDS−1 for some diagonal matrix D and invertible matrix S, whose columns
give the eigenvector basis. The diagonal matrix D, whose diagonal entries are the eigenvalues,
then describes the effect which A has on coordinates relative to the eigenbasis, so that the effect
is simply to scale each coordinate by the appropriate eigenvalue. Thus, what we have done here
now is to essentially diagonalize (or better yet: orthogonally diagonalize) the infinite-dimensional
Sturm-Liouville operator L! From this perspective, solving L[y] − 3y = x amounts to solving for
the cn in the infinite-dimensional matrix equation

D

EEEF

λ1 − 3
λ2 − 3

λ3 − 3
. . .

G

HHHI

D

EEEF

c1
c2
c3
...

G

HHHI
=

D

EEEF

d1
d2
d3
...

G

HHHI

where the dn are the “coordinates” of x relative to the basis of eigenfunctions. But this matrix is
invertible since none of the eigenvalues equal 3, and its inverse is still diagonal with diagonal entries
being the reciprocals of the λn − 3, so we the solution we want is

D

EEEF

c1
c2
c3
...

G

HHHI
=

D

EEEF

λ1 − 3
λ2 − 3

λ3 − 3
. . .

G

HHHI

−1 D

EEEF

d1
d2
d3
...

G

HHHI
=

D

EEEF

1
λ1−3

1
λ2−3

1
λ3−3

. . .

G

HHHI

D

EEEF

d1
d2
d3
...

G

HHHI
.

This explains the values cn = dn
λn−3 we derived before, so being able to “diagonalize” L has now

allowed us to easily “invert” it in order to solve L[y]− 3y = x ⇝ y = (L− 3I)−1[x].
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Orthogonality constraints. Now consider the driven equation

y′′ − µy = x, y(0) = 0 = y(1)

for an arbitrary constant µ. We use the same eigenfunction expansions as before:

y =

∞!

n=1

cn sin(nπx), x =

∞!

n=1

sin(nπx), where dn = −2 cosπn

πn
.

Plugging in our ODE gives

∞!

n=1

−n2π2cn sin(nπx)−
∞!

n=1

µcn sin(nπx) =

∞!

n=1

dn sin(nπx),

and comparing coefficients gives
−cn(n

2π2 + µ) = dn.

As before, we would like to divide by −(n2π2 + µ) in order to find the unknown cn. The point is
that this is valid, as long as µ is not an eigenvalue of the corresponding Sturm-Liouville problem!
Indeed, if µ is not one of these eigenvalues −n2π2, then n2π2 + µ is never zero, and so

cn = − dn
n2π2 + µ

=
2 cosπn

πn(n2π2 + µ)

just as in the µ = 3 example. Then y =
>∞

n=1 cn sin(nπx) for these cn is the solution we want.
However, if µ is an eigenvalue, say µ = −m2π2, we have to be more careful. In this case the

defining relation for cm is
−cm(n2π2 + µ) = dm,

where the left side is zero since µ = −m2π2. Thus, in order for this relation to hold, we need dm
to be zero as well—if dm ∕= 0, for sure there is no solution to our driven ODE. In the specific case
at hand, we have

dm = −2 cosmπ

mπ
,

which is nonzero, so y′′ +m2π2y = x has no solution satisfying y(0) = 0 = y(1).
In the same way, for a general driving term f , the boundary value problem

y′′ +m2π2y = f(x), y(0) = 0 = y(1)

has a solution if and only if the inner product (f, sin(mπx))—which is the coefficient of φm =
sin(mπx) in the eigenfunction expansion of f—is zero. To say that (f,φm) = 0 means that f
should be orthogonal to the eigenfunction φm, which says also that f is orthogonal to the entire
eigenspace corresponding to the eigenvalue λm = −m2π2, since this entire eigenspace is spanned
by φm alone. Thus, in general, the boundary value problem

y′′ + µy = f(x), y(0) = 0 = y(1)

has a solution for sure if µ is not an eigenvalue of the associated Sturm-Liouville problem, and when
µ is an eigenvalue, there is a solution if and only if f is orthogonal to the eigenspace corresponding
to that eigenvalue. Thus, existence of solutions to these general nonhomogeneous ODEs comes
down to certainly orthogonality relating the driving term to the eigenspaces.
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If we phrase this in terms of trying to “invert” (L−µI)[y] = f(x) as in the infinite-dimensional
matrix approach mentioned above, the claim is that when µ is an eigenvalue of L, L − µI is not
invertible everywhere, but it becomes invertible when restricted to the orthogonal complement of
the eigenspace corresponding to µ. We will say more about this idea next time, and see how it
simply a reflection of some linear algebra you might have seen previously. In the case where the
correct orthogonality constraint is satisfied, the driven equation (L − µI)[y] = f(x) in fact has
infinitely many solutions, as we will see next time in an example. (The point is that the relation
you get for the coefficients in the eigenfunction expansions in general is

cm(λm − µ) = dm,

so that when f is orthogonal to the eigenspace corresponding to µ = λm, both sides here are
automatically zero regardless of what cm is. Thus any of the infinitely many choices for the specific
coefficient cm gives a valid solution.)

Lecture 27: Nonhomogeneous ODEs

Warm-Up. We determine the condition under which

y′′ + y = f(x), y(0) + y′(0) = 0 = y(π) + y′(π)

has a solution, and find the solution when it does. We saw previously that the Sturm-Liouville op-
erator L[y] = y′′+y with these boundary conditions has eigenvalues λn = 1−n2 with eigenfunctions
φn(x) = sin(nx)− n cos(nx). We expanding y and f in terms of these eigenfunctions:

y =

∞!

n=1

cnφn, f(x) =

∞!

n=1

dnφn.

Then

L[y] =

∞!

n=1

cnL[φn] =

∞!

n=1

cn(1− n2)φn,

so y′′ + y = f(x) becomes
∞!

n=1

cn(1− n2)φn =

∞!

n=1

dnφn.

Thus we require that cn(1− n2) = dn for each n. However, when n = 1 the left side is zero, so in

order for there to be a solution it must be the case that d1 = (f,φ1)
(φ1,φ1)

is zero, and thus we see that
our given problem has a solution if and only if

(f,φ1) =

$ π

0
f(x)(sinx− cosx) dx = 0.

Using the setup we described last time, the point is that if we write our ODE as

L[y] = 0y + f(x),

the fact that 0 is an eigenvalue of L (λn = 1 − n2 is zero for n = 1) places restrictions on what f
can be, so that f should be orthogonal to the eigenspace corresponding to 0. This is thus where
the requirement that (f,φ1) = 0 comes from.
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So, assuming that f is indeed orthogonal to φ1, we can then describe our desired solution as
follows. The requirement that

cn(1− n2) = dn

is trivial when n = 1 since both sides are zero. For n ≥ 2, we then get

cn =
dn

1− n2
.

Thus, it is for these coefficients that y =
>∞

n=1 cnφn gives a solution of our problem. (The dn’s are
determined by f(x), and so are known quantities given f .) Now, if we write the series expansion
of y as follows

y = c1φ1 +

∞!

n=2

cnφn,

we have that

y = c1(sinx− cosx) +

∞!

n=2

dn
1− n2

(sinnx− n cosnx)

is the desired solution. Here c1 is an arbitrary constant, and so we actually get infinitely many
solutions to y′′ + y = f(x), y(0) + y′(0) = 0 = y(π) + y′(π) when

* π
0 f(x)(sinx− cosx) dx = 0.

The form of the solution we get above makes sense from what you might recall about nonho-
mogeneous linear equations (either ODEs or systems of equations in the sense of linear algebra).
The point is that the first term c1(sinx− cosx) is actually the general solution of the homogeneous
equation y′′ + y = 0 with these boundary conditions, and the second term (the series starting at
n = 2) is a particular solution of our nonhomogeneous equation. Thus, the solution we have above
is simply a reflection of the fact that solutions of nonhomogeneous linear equations in general are
of the form

(general homogeneous solution) + (particular nonhomogeneous solution).

For example, for a matrix equation Ax = b, the general solution is formed by taking the general
solution of Ax = 0 and adding to it a particular solution of Ax = b.

If we had the equation y′′ + y = 2y + f(x) with these boundary conditions instead, then a
solution always exist for any f since 2 is not an eigenvalue of our Sturm-Liouville operator, and
the (unique) solution is

y =

∞!

n=1

dn
λn − 2

φn

where the dn are the expansion coefficients of f(x).

Fredholm alternative. The fact that L[y] = µy + f(x) has a solution in the case where µ is an
eigenvalue of L if and only if f is orthogonal to the eigenspace corresponding to µ is an instance
of something you might have seen in a previously linear algebra course. (Or maybe not! It might
depend on which linear algebra course you had. Certainly if you saw the method of least squares
in your prior linear algebra course, you likely saw what we’re about to describe here.) The basic
fact for matrices is that saying a linear equation Bx = y has a solution is the same as saying that
y is in the image of B, and the image of B in fact is the same as the orthogonal complement of the
kernel of BT :

imB = (ker(BT ))⊥.
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Thus, Bx = y has a solution if and only if y is orthogogonal to ker(BT ). The same is true in our
setting, so we have that

(L− µI)[y] = f(x) has a solution if and only if f is orthogonal to ker(L− µI)∗,

where ∗ denotes the adjoint. But L is self-adjoint in our case, so (L − µI)∗ = L − µI, and thus
our equation has a solution if and only if f is orthogonal to ker(L − µI), which is precisely the
eigenspace of L corresponding to µ!

The fact that we can characterize whether (L − µI)[y] = f(x) (or even just Bx = y) has a
solution or not in terms of an orthogonality condition on f (or y) is an instance of what’s called the
Fredholm alternative theorem. The general form of this theorem is more broad than what we are
describing here, but idea is the same: characterize existence of solutions in terms of orthogonality.
Thus, once again, we see that what we are really doing in this course is just infinite-dimensional
linear algebra!

Driven example with weights. For a final example before moving on to PDEs, we solve

(xy′)′ +
1

x
y =

1

x
, y(1) = 0 = y(e).

If we rewrite the ODE as
(xy′)′ + 1

xy
1
x

= 1,

we see that this is in weighted Sturm-Liouville form, with weighted operator

L[y] =
(xy′)′ + 1

xy
1
x

.

We saw before that the eigenvalues of L, with the given boundary conditions, are λn = 1 − n2π2,
with eigenfunctions φn = sin(nπ lnx). These are orthogonal with respect to the weighted inner
product

(f, g) =

$ e

1

1

x
f(x)g(x) dx.

Now, if we think of our ODE as

(xy′)′ + 1
xy

1
x

= 0y + 1,

since 0 is not an eigenvalue of L there will be a unique solution. The expansion of the driving term
1 in terms of the φn is

1 =

∞!

n=1

2(1− cosnπ)

πn
sin(nπ lnx),

as we worked out previously. Thus, a solution y =
>∞

n=1 cnφn should satisfy

∞!

n=1

cn(1− n2π2)φn

9 :; <
L[y]

=
2(1− cosnπ)

πn
φn

9 :; <
1

,

113



and so we need cn(1− n2π2) = 2(1−cosnπ)
πn . Hence the solution is

y =

∞!

n=1

2(1− cosnπ)

(1− n2π2)πn
sin(nπ lnx).

Nonhomogeneous heat equation. With all of this Sturm-Liouville theory built up, we now
come to applying it to solve nonhomogeneous versions of PDEs we saw previously, in particular the
heat and wave equations. As a first example, we take the following driven heat equation, which
actually showed up on the last set of discussion section problems:

ut = uxx + xt, u(0, t) = 0 = u(π, t), u(x, 0) = 0.

The driving term f(x, t) = xt here describes some external heat source. The appropriate Sturm-
Liouville problem for this equation is

X ′′ − λX = 0, X(0) = 0 = X(π),

which characterizes the separated solution X. This has eigenvalues λn = −n2 and eigenfunctions
φn = sin(nx), as we have seen countless times before.

The strategy is to expand everything in sight in terms of these specific eigenfunctions. So, we
expand the solution u(x, t) as

u(x, t) =

∞!

n=1

Un(t) sinnx

for some functions Un(t). (In other words, for each t expand the function u(x, t) of x in in terms
of our eigenfunctions.) The expansion of the driving term xt is

xt =

∞!

n=1

cn(t) sinnx

where

cn(t) =
2

π

$ π

0
xt sin(nx) dx = −2t cosnπ

n
.

(Again, think of t as fixed and expand xt to get coefficients cn(t) that depend on t.)
In order to satisfy ut = uxx + xt, we must have

∞!

n=1

U ′
n(t) sinnx =

∞!

n=1

−n2Un(t) sinnx+

∞!

n=1

−2t cosnπ

n
sinnx.

(The first term on the right incorporates the eigenvalues −n2 since this is the term obtained by
applying the Sturm-Liouville operator L[X] = X ′′.) We can rewrite this as

∞!

n=1

[U ′
n(t) + n2Un(t)] sinnx =

∞!

n=1

−2t cosnπ

n
sinnx.

Thus, by comparing coefficients we see that the unknown Un(t) should satisfy

U ′
n(t) + n2Un(t) = −2t cosnπ

n
.
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Now, at t = 0 we have

u(x, 0) =

∞!

n=1

Un(0) sinnx,

so in order to satisfy u(x, 0) = 0 we must have that this series is the Fourier sine series of zero, so
that Un(0) = 0 for all n. Thus we find that Un(t) must satisfy the initial value problem

U ′
n(t) + n2Un(t) = −2t cosnπ

n
, Un(0) = 0.

This can be solved using the method of integrating factors for first-order linear ODEs, and doing
so will produce the explicit Un(t) we need so that

u(x, t) =

∞!

n=1

Un(t) sin(nx)

will be a solution of our “driven” heat equation. We’ll wrap this up next time and look at more
examples of the same process in action.

Lecture 28: Driven Heat and Waves

Warm-Up. We derive the ODE satisfied by the coefficients in an eigenfunction expansion solution
of the driven heat conduction problem

ut = α2uxx + 3e−2t + x, u(0, t) = 0 = u(1, t), u(x, 0) = 0.

Actually, let us go ahead and describe the approach for a general driving term f(x, t) and initial
condition g(x), so

ut = α2uxx + f(x, t), u(0, t) = 0 = u(1, t), u(x, 0) = g(x).

(Different boundary conditions would just change the eigenfunctions we use, but otherwise the
method is the same.) The corresponding eigenvalue problem for the Sturm-Liouville operator
L[X] = X ′′ (which describes the homogeneous term on the right side of our PDE) has eigenfunctions

φn = sin(nπx) with eigenvalue λn = −n2π2.

We expand our desired solution and driving term in terms of these eigenfunctions:

u(x, t) =

∞!

n=1

Un(t)φn(x)

and

f(x, t) =

∞!

n=1

bn(t)φn(x)

where

bn(t) = 2

$ 1

0
f(x, t)φn(x) dx.

(Again, in each of these view t as fixed, so that the expansion is taken “with respect to x”.)
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Under these expansions our PDE becomes

∞!

n=1

U ′
n(t)φn(x)

9 :; <
ut

=

∞!

n=1

α2(−n2π2)Un(t)φn(x)

9 :; <
α2uxx

+

∞!

n=1

bn(t)φn(t)

9 :; <
f(x,t)

.

(The uxx expression comes simply from scaling each φn by the appropriate eigenvalue.) After
comparing coefficients we thus find that Un(t) must satisfy the non-homogeneous ODE

U ′
n(t) = −α2n2π2Un(t) + bn(t).

The final piece of data comes from the initial condition, which says that

g(x) = u(x, 0) =

∞!

n=1

Un(0)φn(x),

so that the Un(0) are the coefficients of g(x) in its eigenfunction expansion:

Un(0) = 2

$ 1

0
g(x)φn(x) dx.

Thus, Un(t) satisfies the initial value problem

U ′
n(t) = −α2n2π2Un(t) + 2

$ 1

0
f(x, t)φn(x) dx, Un(0) = 2

$ 1

0
g(x)φn(x) dx.

Now, in the specific problem

ut = α2uxx + 3e−2t + x, u(0, t) = 0 = u(1, t), u(x, 0) = 0,

we have

3e−2t + x =

∞!

n=1

bn(t)φn(x)

with

bn(t) = 2

$ 1

0
(3e−2t + x) sin(nπx) dx =

6e−2t(1− cosnπ)

nπ
− 2 cosnπ

nπ
.

The coefficients in the eigenfunction expansion of u(x, 0) = 0 are all zero, so we get the ODE

U ′
n(t) = −α2n2π2Un(t) +

6e−2t(1− cosnπ)

nπ
− 2 cosnπ

nπ
, Un(0) = 0.

This can be solved using the method of integrating factors for first-order linear ODEs from a
previous course (or using a computer), and the solution turns out to be

Un(t) =

.
2 cosnπ

α2n3π3
− 6(1− cosnπ)

nπ(−2 + α2n2π2)

/
e−α2n2π2t +

6e−2t(1− cosnπ)

nπ(−2 + α2n2π2)
− 2 cosnπ

α2n3π3
.

Thus the solution to our heat conduction problem is

u(x, t) =

∞!

n=1

4.
2 cosnπ

Kn3π3
− 6(1− cosnπ)

nπ(−2 +Kn2π2)

/
e−Kn2π2t +

6e−2t(1− cosnπ)

nπ(−2 +Kn2π2)
− 2 cosnπ

Kn3π3

5
sinnπx.
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Example from last time. Let us return to the final example from last time, and finish it off.
Recall that we were considering

ut = uxx + xt, u(0, t) = 0 = u(π, t), u(x, 0) = 0,

and found that the eigenfunction-expanded solution was

u(x, t) =

∞!

n=1

Un(t) sin(nx)

where the Un(t) satisfy

U ′
n(t) = −n2Un(t)−

2t cosnπ

n
, Un(0) = 0.

Here, the −2t cosnπ
n are the expansion coefficients of the driving term xt, −n2 is the eigenvalue, and

Un(0) = 0 are the expansion coefficients of u(x, 0) = 0. The solution of this first-order linear initial
value problem is

Un(t) = −2 cosnπ

n5
e−n2t +

2 cosnπ

n5
− 2 cosnπ

n3
t,

so that the solution of our heat conduction problem is

u(x, t) =

∞!

n=1

.
−2 cosnπ

n5
e−n2t +

2 cosnπ

n5
− 2 cosnπ

n3
t

/
sinnx.

Imagine if instead we had the problem

ut = uxx + u+ xt, u(0, t) + ux(0, t) = 0 = u(π, t) + ux(π, t),

with some initial condition. The only difference here is that in this case we use the Sturm-Liouville
problem

X ′′ +X = λX, X(0) +X ′(0) = 0 = X(π) +X ′(π)

due to the homogeneous terms uxx + u on the right side of our PDE. This gives the eigenfunctions

φn = sin(nx)− n cos(nx) with eigenvalues λn = 1− n2,

as we worked our previously, but after this the process of solving is exactly the same. (We won’t
work out the details here, but do it for practice!)

Driven wave example. The same approach as in the heat conduction examples above work just
as well for driven, nonhomogeneous wave equations. For example consider

utt = uxx + 6x, u(0, t) = 0 = u(1, t), u(x, 0) = 0, ut(x, 0) = 0.

We can view the 6x term as a contribution from an external motor, say, which affects the motion
of the string, so that even if the initial position and velocity are both zero, wave-like motion will
still occur. As before, we expand everything in terms of the eigenfunctions

φn(x) = sin(nπx) (eigenvalues λn = −n2π2)

of the corresponding Sturm-Liouville problem X ′′ = λX,X(0) = 0 = X(1). The driving term has
expansion

6x =

∞!

n=1

−12 cosnπ

nπ
sinnπx,
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where the coefficients come from

2

$ 1

0
6xφn(x) dx = −12 cosnπ

nπ
.

Thus for an expanded solution

u(x, t) =

∞!

n=1

Un(t)φn(x),

our PDE becomes
∞!

n=1

U ′′
n(t)φn(x) =

∞!

n=1

−n2π2Un(t)φn(x) +

∞!

n=1

−12 cosnπ

nπ
sinnπx,

so we get the requirement

U ′′
n(t) + n2π2Un(t) = −12 cosnπ

nπ
.

The initial conditions u(x, 0) = 0 and ut(x, 0) = 0 give Un(0) = 0 = U ′
n(0), we are left with the

second-order initial value problem

U ′′
n(t) + n2π2Un(t) = −12 cosnπ

nπ
, Un(0) = 0 = U ′

n(0).

This can be solved using standard methods for solving second-order ODEs with constant coefficients,
and the solution is

Un(t) =
12 cosnπ

n3π3
cosnπt− 12 cosnπ

n3π3
.

Hence the solution of our driven wave equation is

u(x, t) =

∞!

n=1

.
12 cosnπ

n3π3
cosnπt− 12 cosnπ

n3π3

/
sinnπx.

Dampled example. We can also now easily consider other variations of the PDEs we’ve been
seeing. For example,

utt = ut + uxx + 6x

is a damped driven wave equation, where the “damping” term ut on the right describes, for example,
the effect of “air drag” or some other medium through which the string moves. The process of
solving this is, of course, the same. With the same boundary and initial conditions as before, we
get

U ′′
n(t) = U ′

n(t)− n2π2Un(t)−
2t cosnπ

nπ
, Un(0) = 0 = U ′

n(0)

as the second-order ODE satisfied by the coefficients in an expand solution. Solving for Un(t) using
standard techniques (computer) will yield our desired solution.

Lecture 29: Spectral Theory

The final day was devoted to putting essentially everything we’ve done the entire quarter into the
context of spectral theory, which is the framework that puts Fourier series expansions and Fourier
transforms on equal ground. The difference comes only from the difference between the discrete vs
continuous spectrum of a linear operator, where the spectrum is some generalization of the set of
eigenvalues. I’ll include this all at some point later but will omit it for now since it is not required
material for the final. Thanks for reading!
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