NOTES ON QUOTIENT SPACES

SANTIAGO CANEZ

Let V be a vector space over a field F, and let W be a subspace of V. There is a sense in which
we can “divide” V by W to get a new vector space. Of course, the word “divide” is in quotation
marks because we can’t really divide vector spaces in the usual sense of division, but there is still
an analog of division we can construct. This leads the notion of what’s called a quotient vector
space. This is an incredibly useful notion, which we will use from time to time to simplify other
tasks. In particular, at the end of these notes we use quotient spaces to give a simpler proof (than
the one given in the book) of the fact that operators on finite dimensional complex vector spaces
are “upper-triangularizable”.

For each v € V, denote by v + W the following subset of V:

v+W={v+w|weW}

So, v+ W is the set of all vectors in V' we can get by adding v to elements of W. Note that v itself
isin v+ W since v = v+ 0 and 0 € W. We call a subset of the form v + W a coset of W in V.
The first question to ask is: when are two such subsets equal? The answer is given by:

Proposition. Let v, € V. Thenv+ W =o' + W if and only if v —v' € W.

Proof. Suppose that v + W = o' + W. Since v € v + W, v must also be in v + W. Thus there
exists w € W so that
v="1"+w.
Hence v —v' = w € W as claimed.
Conversely, suppose that v — v/ € W. Without loss of generality, it is enough to show that
v € v/ + W. Denote by w the element v — v of W. Then

/ /
V—0U =w, SOV =V +w.
Hence v € v/ + W as required. O

Definition. The set V/W, pronounced “V mod W7, is the set defined by
VIW={v+W |veV}
That is, V/W is the collection of cosets of W in V.

According to Proposition 1, two elements v and v' of V' determine the same element of V/W if
and only if v —v" € W. Because of this, it is also possible, and maybe better, to think of V/W as
consisting of all elements of V' under the extra condition that two elements of V' are declared to be
the same if their difference is in W. This is the point of view taken when defining V/W be the set
of equivalence classes of the equivalence relation ~ on V defined by

v~ ifo—0v e W.

For further information about equivalence relations, please consult the “Notes on Relations” paper
listed on the website for my previous Math 74 course. We will not use this terminology here, and
will just use the coset point of view when dealing with quotient spaces.

We want to turn V/W into a vector space, so we want to define an addition on V/W and a scalar
multiplication. Since we already have such things defined on V', we have natural candidates for the
required operations on V/W:
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Definition. The sum of two elements v + W and v' + W of V/W is defined by
(W+W)+ (@ +W):=(v+)+W.
For a € F, the scalar multiplication of @ on v + W is defined by
a-(v+W):=av+W.

Now we run into a problem: namely, these operations should not depend on which element of
v+ W we choose to represent v + W. Meaning, we know that if v —v' € W, then v+ W = v + W.
For the above definition of addition to make sense, it should be true that for any other v + W, we
should have

(W+W)+@"+W) =" +W)+ " +W).
After all, v + W and v + W are supposed to be equal, so computing sums with either one should

give the same result. Similarly, performing scalar multiplication on either one should give the same
result. Both of these requirements are true:

Proposition. Suppose that v+ W =o' +W. Then (v+ W)+ @0+ W) = (' + W)+ (v + W)
for any v" + W e V/W and a-(v+ W) =a- (v +W) for any a € F. Because of this, we say that
addition and scalar multiplication on V/W are “well-defined”.

Proof. We first show that addition is well-defined. Without loss of generality, it is enough to show
that (v+ W)+ (V" 4+ W) C (v + W)+ (v + W). To this end, let

we W+W)+ @ +W)=(v+")+W.
Then there exists w € W such that u = (v +v") + w. We want to show that
uwe (W +W)+@"+W)=@"+")+W.

Since v + W = v’ + W, we know that v — v’ € W. Denote this element by w’, so then v = v/ + w’.
Thus

u=@w+v")+w= (0 +w)+2")+w= w0 +")+ W +w),
showing that u € (v +v") + W since w' + w € W. We conclude that the sets
(v+0")+ W and (v +0")+ W

are equal, so addition on V/W is well-defined.
Now, let a € F. To show that scalar multplication is well-defined, it is enough to show that
a-(v+W)Ca- (v +W). So, let

uea-(v+W)=av+W.
Then v = av + w for some w € W. Again, denote by w’ the element v — v’ € W. Then
uw=av+w=a +w)+w=a'+ (aw +w) €av +W,
since aw’ +w € W as W is closed under addition and scalar multiplication. Thus the sets
a-(v+W)anda- (v +W)
are equal, so scalar multiplication on V/W is well-defined. ([

Note that the above depends crucially on the assumption that W is a subspace of V; if W were
just an arbitrary subset of V', addition and scalar multiplication on V /W would not be well-defined.
With these operations then, V/W becomes a vector space over F:

Theorem. With addition and scalar multiplication defined as above, V/W is an F-vector space
called the quotient space of V' by W, or simply the quotient of V' by W.
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Proof. All associative, commutative, and distributive laws follow directly from those of V. We only
have to check the existence of an additive identity and of additive inverses.
We claim that W = 0 + W is an additive identity. Indeed, let v+ W € V/W. Then

W+W)+W=w4+0)+W=v+Wand W+ (v+W)=0+v)+ W =v+ W,
which is what we needed to show. Also, given v + W € V/W, we have
W+W)+(—v+W)=(v—0)+W=0+W=W
and
(—v+W)+@w+W)=(—v+W)+W=0+W =W,

so —v + W is an additive inverse of v + W. We conclude that V/W is a vector space under the
given operations. ]

Just to emphasize, note that the zero vector of V/W is W itself, which is the coset corresponding
to the element 0 of W.

Now we move to studying these quotient spaces. The first basic question is: when is V/W
finite-dimensional, and what is its dimension? The basic result is the following:

Proposition. Suppose that V is finite-dimensional. Then V/W is finite-dimensional and
dim(V/W) = dimV — dim W.
So, when everything is finite-dimemsional, we have an easy formula for the dimension of the

quotient space. Of course, even if V is infinite-dimesionsal, it is still possible to get a finite-
dimensional quotient. We will see an example of this after the proof of the above proposition.

Proof of Proposition. We will construct an explicit basis for V/W. Let (wy,...,w,) be a basis of
W, and extend it to a basis
(w17"'7wn>v17-"7vk)
of V. Note that with this notation, dim W =n and dimV = n + k. We claim that
(v1 + W, o + W)
forms a basis of V/W. If so, we will then have
dim(V/W)=k=(n+k)—n=dimV —dim W
as claimed.
First we check linear independence. Suppose that
ar(vr + W) +---ap(vp + W) =W
for some scalars ay,...,ax. Recall that W is the zero vector of V/W, which is why we have W on
the right side of the above equation. We want to show that all a; are zero. We can rewrite the
above equation as
(a1vy + - - agvg) + W =W.
By Proposition 1 then, it must be that
aiv1 + - apvy € W,
so we can write this vector in terms of the chosen basis of W i.e.
ajvy + - agvg = bywy + - -+ + bpwy,
for some bq,...,b, € F. But then
aivy + - - apvg — bywy — -+ — byw, =0,

so all coefficients are zero since (w1, ..., wy,v1,...,vk) is linearly independent. In particular, all
the a; are zero, showing that
(v1 +W, .. v+ W)
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is linearly independent.
Now, let v+ W € V/W. Since the w;’s and v;’s span V', we know that we can write
v =aiwi + -+ apWp + b1v1 + - + brug

for some scalars a;,b; € F. We then have

v+ W = (aqwy + - + apwp, + byvg + - - + brvg) + W

= [(biv1 + -+ 4+ brvg) + (arwy + - -+ + apwy)| + W

= (byvr + -+ bpvg) + W

=bi(v1 + W)+ -+ bp(vp + W),
where the third equality follows from the fact that ajwi + - - - + a,w, € W. Hence

(v +W,...,0+ W)

spans V/W, so we conclude that this forms a basis of V/W. O
Example. Let W = {0}. Then two elements v and v' of V' determine the same element of V/W
if and only if v — " € {0}; that is, if and only if v = v'. Hence V/{0} is really just V itself.

Similarly, if W is all of V, then any two things in V' determine the same element of V/W | so we
can say V/V is the vector space containing one element; i.e. V/V is {0}.

Example. Let V = R? and let W be the y-axis. We want to give a simple description of V/W.
Recall that two elements (z,y) and (z',%') of R? give the same element of V/W, meaning (z,y) +
W = (2/,y') + W, if and only if

(,y) = (@ y) =@ -2 y—y)eW
This means that z — 2’ = 0 since W is the y-axis. Thus, two elements (z,y) and (z/,3’) of V
determine the same element of V/W if and only if x = a’.

So, a vector of V/W is completely determined by specifying the x-coordinate since the value of
the y-coordinate does not matter. In particular, any element of V/W is represented by exactly one
element of the form (z,0), so we can “identify” V/W with the set of vectors of the form (z,0) —
i.e. with the z-axis. Of course, the precise meaning of “identify” is that the map from V/W to the
z-axis which sends

(x,y) + W — (z,0)
is an isomorphism. We will not spell out all the details of this here, but the point is that it really
does make sense to think of the quotient V/W in this case as being the same as the z-axis.

Example. Let V = F* and let W be the following subspace of V:
W .= {(0,:82,.%3, .. ) ‘ x; € F}

As above, you can check that two elements of V' determine the same element of V/W if and only if
they have the same first coordinate. Hence an element of V/W is just determined by the value of
that first coordinate x;. This gives an identification of V/W with F itself (or, more precisely, with
the “rj-axis” of F*°). Note that in this case, even though V and W are infinite-dimensional, the
quotient V/W is finite-dimensional — indeed it is in fact one-dimensional.

Here is a fundamental fact which we can now prove:
Theorem. Let T : V — W be linear. Define a map S : V/nullT — rangeT, by
S(w+nullT) = Twv.

Then S is well-defined and is an isomorphism.
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Proof. As in the case of the definition of addition and scalar multiplication, we may have different
elements v and v’ of V' giving the same element of V/W. For S to be well-defined, we must know
that the definition of S does not depend on such v and v’.

So, suppose that v+null 7T = v'+null 7. Then v—v" € null T, so T'(v—v') = 0. Hence Tv = T/,
s0 S(v4+nullT) = S(v' 4+ null T'), showing that S is well-defined. Also, linearity of S follows from
that of T

Now, note that surjectivity of S follows from the fact that T is surjective onto its range. We
claim that S is injective. Indeed, let v + nullT" € null S. This means that

0=Sw+nullT)=Twv.

Hence v € null T, and thus v+null 7" = null T" is the zero vector of V//W, showing that null S = {0}.
Therefore S is injective, and we conclude that S is an isomorphism as claimed. ([l

To get a sense of the previous theorem, note that given any linear map 7' : V. — W, we can
construct a surjective linear map 7" : V — range Tl simply by restricting the target space. Now, this
new map is not necessarily invertible since it may have a nonzero null space. However, by taking
the quotient of V' by nullT, we are forcing the part that makes T possibly not injective to be zero.
Thus the resulting map on V/nullT should be injective. So, from any linear map 7 : V — W we
can construct an isomorphism between some possibly different spaces that still reflects many of the
properties of T'. In particular, since we know what the dimension of a quotient space is, one can
use this theorem (or more precisely the consequence that dim(V/nullT) = dimrangeT") to give a
different proof that when V' and W are finite dimensional, dim V = dimnull 7'+ dim range 7.

Now, given an operator T € L(V'), we can try to define an operator on V/W, which by abuse of
notation we will still denote by T', by setting

Tw+W):=Tv+W.

However, as should now be seen to be a common thing when dealing with quotient spaces, we must
check that this is well-defined . To see when this is the case, first recall that v + W = o' + W if
and only if v — v’ € W. Call this vector w. Then, we have v = v +w so

Tw+W)=To+W = (TV + Tw) + W,

which should equal Tv' + W. We see that this is the case only when Tw € W. Thus, for T to
descend to a well-defined operator on V/W, we must require that

Tw e W for any w e W.
In other words, we have shown:
Proposition. Let T € L(V). Define T : V/W — V/W by
Tw+W)=Tv+W foranyv+W e V/W.
Then T : V/W — V/W is a well-defined operator if and only if W is T-invariant.

One can also show that any operator on V/W arises in this way, so the operators on V/W come
from operators on V under which W is invariant.

Finally, we use this new fancy language of quotient spaces to give a relatively simple proof that
any operator on a finite-dimensional complex vector space has an upper-triangular matrix in some
basis.

Theorem. Suppose that V is a finite dimensional complex vector space and let T € L(V). Then
there exists a basis of V' with respect to which M(T') is upper-triangular.

Proof. Say dim V' = n. We know that T has at least one nonzero eigenvector, call it v;. This will
be the first element of our basis. The idea of the proof is to construct the rest of the basis by taking
eigenvectors of the operator induced by T on certain quotients of V. We proceed as follows.
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Since v; is an eigenvector of T', span(v;) is T-invariant. Thus 7" descends to a well-defined

operator
T : V/span(v1) — V/span(vy).
This quotient space is again a finite dimensional complex vector space, so this induced map also
has a nonzero eigenvector, call it vy + span(v;). Then if A is the eigenvalue of this eigenvector, we
have
T (vg + span(vy)) = A(vg + span(vy)).

Let us see what this equation really means. Rewriting both sides, we have

Tvse + span(vy) = Ave + span(vy),

so Tvy — Avg € span(vy). This implies that Tve € span(vy,va), so span(vy,vy) is T-invariant. Note
also that since this vy + span(v;) is nonzero in V/span(v;), va ¢ span(vi), so (vi,v2) is linearly
independent. This vy € V' gives us the second basis element we are looking for.

Now T gives a well-defined operator

T : V/span(v1,v2) — V/span(vy, v2).

Pick an eigenvector vz 4 span(vi,ve) of this, and argue as above to show that span(vi,va,v3) is
T-invariant and that (v1,vs,v3) is linearly independent. Continuing this process, we construct a
basis of V:

(Ul,UQ, ey Un),
with the property that for any k, span(vy,...,vx) is T-invariant. By one of the characterizations
of M(T) being upper-triangular, we conclude that M(T') is upper-triangular with respect to this
basis. g

Compare this proof with the one given in the book. There it is not so clear where the proof comes
from, let alone where the basis constructed itself really comes from. Here we see that this result is
simply a consequence of the repeated application of the fact that operators on finite dimensional
complex vector spaces have eigenvectors. The basis we constructed comes exactly from eigenvectors
of successive quotients of V.



