
Linear Poisson Geometry
via Matrix Groups and Matrix Algebras

Written by Santiago Cañez

Contents

Introduction 1

Matrix Groups 2

Lie Algebras 3

Poisson Brackets 6

Adjoint Orbits 9

Dual Spaces 13

Coadjoint Orbits 16

Semisimplicity 18

Mechanics 21

Introduction

Linear Poisson geometry is the study of Poisson brackets which arise from Lie algebras, and provides
a setting where group theory, linear algebra, and geometry blend together nicely. The goal of these
notes is to give a crash-course introduction to this area and to the tools it requires. We will assume
familiarity only with basic group theory, abstract linear algebra (including abstract vector spaces
and linear transformations), and multivariable calculus. We will quite often be somewhat informal
and give definitions and results appropriate to the level of the prerequisites listed above, so we will
not phrase things in the most general “Lie-theoretic” and “differential-geometric” way possible.
We want to simply get to a point where we can do some real computations to get a feel for how
everything fits together, and because of this we will focus exclusively on matrix Lie groups.

Here is the basic setup. To a group of matrices G with real entries, we can associate a certain
vector space g called its Lie algebra. This Lie algebra comes equipped with a certain operation
known as the Lie bracket, which takes two matrices A,B as input and outputs a third matrix
[A,B]. The Lie algebra of G encodes much “infinitesimal” information about G, from which
“global” information about G can often be derived. To the Lie algebra g we can further associate
a space known as its dual space g∗, on which we can then consider the set C∞(g∗) of real-valued
smooth functions g∗ → R. (To be smooth simply means that all partial derivatives exist to all
orders.) On this set of functions one can construct what’s called a Poisson bracket, which takes two
functions f, g as inputs and outputs a function {f, g}. This Poisson bracket is constructed from
the Lie bracket on g, and in turn the Lie bracket can be recovered from the Poisson bracket.

We thus have the following correspondence:

G
group theory

 g
Lie theory

 C∞(g∗)
Poisson geometry

The overarching goal in this subject is to understand group-theoretic properties of G from the
linear-algebraic properties of g and from the Poisson-geometric properties of C∞(g∗). The main

result along these lines is that the orbits of the coadjoint action of G are precisely the symplectic
leaves of the Poisson bracket on g∗. We aim to build up enough material to understand what this
statement means, and to build up enough examples to get a feel for its validity.

Matrix Groups

We denote by GLn(R) the set of invertible n×n matrices with real entries, which is a group under
matrix multiplication. The “G” stands for “general”, so GLn(R) is called the general linear group.
We single out the following subgroups of certain GLn(R) as the main ones of interest:

• SO3(R) := {A ∈ GL3(R) | A is orthogonal of determinant 1} is the group of 3-dimensional
rotation matrices;

• SL2(R) := {A ∈ GL2(R) | detA = 1} is the group of 2-dimensional orientation- and area-
preserving matrices; and

• H :=
{[

1 a b
0 1 c
0 0 1

] ∣∣∣ a, b, c ∈ R
}

is what’s called the Heisenberg group and is a subgroup of

GL3(R).
These are all examples of Lie groups, which roughly means they are groups on which we can do
calculus. If nothing else, note that matrix multiplication of n × n matrices, viewed as a function
Rn2×Rn2 → Rn2

where we view a matrix as a long column vector, is infinitely differentiable, which
is part of what goes into the formal definition of “Lie group”. The letter “S” in the notation used
for the first two examples stands for “special”, and in general refers to the determinant 1 condition;
SO3(R) is thus called the 3-dimensional special orthogonal group, and SL2(R) the 2-dimensional
special linear group.

We will want to consider matrices with functions as entries, such as

A(t) =

[
cos(t) − sin(t)
sin(t) cos(t)

]
.

We can view this as defining a function R→ {matrices}, which we take to be a path in our space of
matrices. For example, the 2× 2 A(t) above defines a path in the group SO2(R) of 2-dimensional
rotation matrices. The derivative A′(t) is then the usual derivative of this function, and amounts
to simply computing the derivative of each entry of A(t); for example, with A(t) defined as above
we have

A′(t) =

[
− sin(t) − cos(t)
cos(t) − sin(t)

]
.

This matrix derivative operation satisfies the usual types of properties you would expect, such as

(A(t) + B(t))′ = A′(t) + B′(t), (cA(t))′ = cA′(t),

and the fact that the derivative of a “constant” matrix (one which is independent of t) is the zero
matrix. It also satisfies the product rule

(A(t)B(t))′ = A′(t)B(t) + A(t)B′(t).

Exercise. Justify the product rule above.

Exercise. Justify the fact that the derivative of the transpose of A(t) is the transpose of A′(t).

Exercise. Justify the fact that if A(t) is invertible, then

d

dt
(A(t)−1) = −A(t)−1A′(t)A(t)−1.

Hint: A(t)A(t)−1 = I for all t. (Compare this to (1/f)′ = −(1/f2)f ′ for scalar-valued functions.)

2

Lie Algebras

A Lie algebra is a vector space g equipped with an operation [,] : g× g→ g called the Lie bracket
which satisfies

• [c1u1 + c2u2, v] = c1[u1, v] + c2[u2, v] and [u, c1v1 + c2v2] = c1[u, v1] + c2[u, v2] for all c1, c2 ∈ R
and u1, u2, u, v1, v2, v ∈ g, which says that the bracket is linear in each entry;

• [u, v] = −[v, u] for all u, v ∈ R, which says that the bracket is skew-symmetric; and
• [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 for all u, v, w ∈ g, which is called the Jacobi identity.

The Jacobi identity is the most mysterious of these properties, but is also the most important one,
as we’ll see. Standard examples of Lie algebras are:

• any vector space V with bracket defined to always be zero (not so interesting),
• the space gln(R) of n× n matrices with bracket defined as [A,B] = AB −BA,
• R3 with the Lie bracket defined as the cross product: [u,v] = u× v.

Exercise. Verify that gln(R) and R3 are Lie algebras with the brackets defined above.

Certain Lie algebras arise as subalgebras of other Lie algebras. A (Lie) subalgebra of a Lie
algebra g is a vector subspace h of g which is closed under the Lie bracket, meaning [x, y] ∈ h for
all x, y ∈ h. Here are some examples:

• the space son(R) := {A ∈ gln(R) | AT = −A} of n × n skew-symmetric matrices with real
entries is a subalgebra of gln(R),

• the space sln(R) := {A ∈ gln(R) | trA = 0} of n× n matrices of trace zero with real entries
is a also subalgebra of gln(R).

Exercise. Verify that each example above is indeed a subalgebra of the given Lie algebra. (You
will need to use some properties of transposes and traces.)

The reason for the notations gl, so, and sl in the examples above comes from their relation to
the groups described previously. In general, to any matrix (Lie) group G we can associate a Lie
algebra in the following way. Consider a path A(t) of matrices in G which begins at the identity,
meaning that A(0) = I. The Lie algebra Lie(G) of G by definition consists of the derivatives of all
such paths at t = 0:

Lie(G) := {A′(0) | A(t) is a path in G such that A(0) = I}.

(In multivariable calculus, derivatives of paths give tangent vectors to paths, so in a certain sense
elements of Lie(G) are “tangent vectors” to G at the identity, and altogether make up what we
might call the “tangent space” to G at the identity.)

To turn Lie(G) into a Lie algebra, we must first turn it into a vector space, meaning we must
give meaning to addition and scalar multiplication in Lie(G). If A′(0) and B′(0) are two elements of
Lie(G), then by definition they are the derivatives at time 0 of two paths A(t) and B(t) in G which
begin at the identity. The product A(t)B(t) is then another path in G starting at A(0)B(0) = I,
and its derivative at time 0 is

d

dt

∣∣∣
t=0

A(t)B(t) = A′(0)B(0) + A(0)B′(0) = A′(0)I + IB′(0) = A′(0) + B′(0)

by the product rule, so the sum A′(0) + B′(0) is itself an element of Lie(G). Thus addition in
Lie(G) makes sense. Moreover, with A(t) as above, if c is any real scalar, then A(ct) is a path in
G starting at A(c0) = A(0) = I and

d

dt

∣∣∣
t=0

A(ct) = cA′(c0) = cA′(0),

3

so cA′(0) ∈ Lie(G) and scalar multiplication makes sense.
The final ingredient needed to turn Lie(G) into a Lie algebra is the Lie bracket, which we take

to be the one given by [A,B] = AB −BA. We will see later how this bracket indeed arises from G
as well so that this is not a definition we make by choice, but we postpone this discussion for now.
Note in particular that at this point it is not obvious that the space Lie(G) so defined should be
closed under this particular Lie bracket, but we will see why this is true in general soon enough.

The matrices

A(t) =

[
cos(t) − sin(t)
sin(t) cos(t)

]
define a path in SO2(R) starting at A(0) = I, and the derivative of this path at time 0 is

d

dt

∣∣∣
t=0

A(t) =

[
− sin(0) − cos(0)
cos(0) − sin(0)

]
=

[
0 −1
1 0

]
,

which is an element of so2(R) since it is skew-symmetric. This suggests that elements of so2(R)
comes from differentiating paths in SO2(R), which should mean that so2(R) is the Lie algebra of
SO2(R). Indeed, this is true for general n: Lie(SOn(R)) = son(R), and hence is the reason why we
use the notation so to refer to skew-symmetric matrices. To see this, take a path A(t) in SOn(R)
starting at A(0) = I. Then each A(t) is an orthogonal matrix so

A(t)A(t)T = I for all t.

Differentiating both sides at t = 0—making use of the product rule and relation between derivatives
and transposes on the left—gives

A′(0)A(0)T + A(0)A′(0)T = 0.

Since A(0) = I, this simplifies to A′(0) + A′(0)T = 0, or A′(0)T = −A′(0), which means that
A′(0) ∈ Lie(SOn(R)) is indeed skew-symmetric.

Technically this only shows that Lie(SOn(R)) is contained in son(R), and to finish we would need
to know that all skew-symmetric matrices arise from differentiating paths of orthogonal matrices
in this way. This is true, but we leave the details to an exercise. (One way to show this is to use
the notion of a matrix exponential, where for a given square matrix A, the exponential eA is defined
to be the infinite sum

eA := I + A +
1

2
A2 +

1

3!
A3 + · · · =

∞∑
n=0

1

n!
An.

Exponentials in general are used to go from Lie(G) back to G, and hence go from the “infinitesimal”
to the “global”.) Note also that in this construction we only used the fact that matrices in SOn(R)
are orthogonal, and not that they have determinant 1; in fact, the group On(R) of orthogonal
n × n matrices, allowing for the determinant to be −1 as well, also has son(R) as its Lie algebra.
Thus, different matrix groups can have the same Lie algebra, but this won’t be a big concern for our
purposes. (The difference in these examples is that SOn(R) is connected and On(R) is disconnected,
but this distinction won’t play a role for us.)

For SL2(R), a path A(t) starting at the identity has entries A(t) =
[
a(t) b(t)
c(t) d(t)

]
that satisfy

a(t)d(t)− b(t)c(t) = 1 and a(0) = 1 = d(0), b(0) = 0 = c(0).

Differentiating the first equation with respect to t and evaluating at t = 0, while making use of the
other equations, gives

a′(0)d(0) + a(0)d′(0)− b′(0)c(0)− b(0)c′(0) = 0 a′(0) + d′(0) = 0.

4

Thus A′(0) =
[
a′(0) b′(0)
c′(0) d′(0)

]
has trace zero and is hence in sl2(R).

Exercise. Show that the Lie algebra of SOn(R) is all of son(R). (Hint: Show that if A is skew-
symmetric, then eA is orthogonal, and consider the derivative of etA.)

Exercise. Show that the Lie algebra of SLn(R) is all of sln(R). You will need a formula for the
determinant of a general n× n matrix.

Exercise. Show that the Lie algebra of the Heisenberg group

H :=

1 a b

0 1 c
0 0 1

of upper-triangular 3× 3 matrices with diagonal entries 1 is the space

Lie(H) =

0 x y

0 0 z
0 0 0

of 3 × 3 upper-triangular matrices with diagonal entries 0. Verify also that this Lie(H) is closed
under the Lie bracket [A,B] = AB −BA.

It turns out that for the group GLn(R) of all invertible n× n matrices, there end up being no
constraints on what the entries of the derivative at time 0 of a path starting at the identity can be,
so the Lie algebra Lie(GLn(R)) = gln(R) consists of all n× n matrices.

Certain Lie algebras appear to be different at first, but turn out to be the “same” when viewed
in the right way. This is captured by the notion of a Lie algebra isomorphism: an isomorphism
between two Lie algebras g and h is a linear isomorphism T : g→ h (i.e. an invertible linear map)
which preserves the bracket in the sense that

T ([x, y]) = [T (x), T (y)] for all x, y ∈ g.

(To be clear, the bracket [x, y] on the left is the one on the Lie algebra g, and the bracket [T (x), T (y)]
on the right is the one on h.) The main example for us is the isomorphism between so3(R) and
R3, where we consider R3 as a Lie algebra with the cross product as the Lie bracket. A 3 × 3
skew-symmetric matrix looks like 0 x y

−x 0 z
−y −z 0

 ,

and hence by associating to this the vector
[
x
y
z

]
, for example, we do get a linear isomorphism

between so3(R) and R3 as vector spaces. However, this does not quite preserve the Lie bracket in
the sense given above, but it almost does.

Exercise. Show that with the linear isomorphism T : so3(R)→ R3 given above, we have

T ([A,B]) = −(T (A)× T (B)),

where T (A)×T (B) is the cross product (i.e., Lie bracket) of T (A), T (B) ∈ R3. So, we do not quite
get the requirement T ([A,B]) = [T (A), T (B)] of preserving the Lie bracket. But then find a slight
modification of the linear isomorphism T : so3(R) → R3 that does preserve Lie brackets, thereby
showing that so3(R) and R3 are isomorphic Lie algebras.

5

Poisson Brackets

A Poisson bracket is a Lie bracket that in addition satisfies a “product rule” property. This
product rule—or what is more precisely called the Leibniz rule—requires that we be able to multiply
elements in our set, so this is not a definition we can give on a general Lie algebra. Rather, we
restrict ourselves to considering sets of infinitely-differentiable, i.e. smooth, functions on Rn. (For
our purposes, “infinitely-differentiable” or “smooth” just means that all partial derivatives of the
functions in question exist to all orders.) We denote the set of all such smooth functions Rn → R
by C∞(Rn), where the ∞ refers to the fact we are considering infinitely-differentiable functions.
On this set C∞(Rn), we can make sense of adding functions, multiplying functions by a scalar, and
multiplying two functions together.

A Poisson bracket on C∞(Rn) is a Lie bracket we’ll denote using braces {, } that in addition to
satisfying all the properties in the definition of Lie bracket also satisfies the Leibniz rule:

{fg, h} = {f, h}g + f{g, h}.

(Skew-symmetry of the Lie bracket implies the Leibniz rule is also satisfied for {f, gh} where we
multiply in the second entry instead.) If we think of the operation of Poisson-bracketing with h as
a mapping f 7→ {f, h}, the Leibniz rule says that this mapping behaves like a “derivative” since it
satisfies the product rule: “differentiating” fg, by which we mean Poisson-bracketing with h, is the
same as “differentiating” f and leaving g alone plus leaving f alone and “differentiating” g. The
standard example of a Poisson bracket is

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

for f, g ∈ C∞(R2), or more generally

{f, g} =
∑
i

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
for functions on R2n where we take (x1, . . . , xn, y1, . . . , yn) as the variables on R2n. The fact that
Poisson brackets satisfy the Leibniz rule implies that they are always given by expressions involving
partial derivatives, so that any Poisson bracket on Rn looks like

{f, g} =
∑
i,j

aij
∂f

∂xi

∂g

∂xj

for some aij ∈ C∞(Rn). The motivation for Poisson brackets comes from physics, which we will
briefly touch upon in the final section just to provide some context behind all that we will develop.

Exercise. Show that if D : C∞(Rn) → C∞(Rn) is a linear map that satisfies the Leibniz rule
D(fg) = D(f)g + fD(g), then D(1) = 0 (where 1 denotes the constant function 1) and D is of the
form

D(f) =
∑
i

ai
∂f

∂xi

for some ai ∈ C∞(Rn). (Such a map D is called a derivation, and the point is that derivations
are just given by ordinary partial derivatives.) For this you will need a multivariable version of
Taylor’s theorem from calculus.

6

Exercise. Use the exercise above to show that Poisson brackets are always of the form

{f, g} =
∑
i,j

aij
∂f

∂xi

∂g

∂xj

for some aij ∈ C∞(Rn). (In fact, these functions aij are themselves Poisson brackets of coordinate
the coordinate functions xi, xj .) Moreover, use the skew-symmetry of the Poisson bracket to show
that aij = −aji and hence that the sum above can be written as

{f, g} =
∑
i<j

aij

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
where now the sum is taken only over indices i < j.

It is true that the Poisson bracket of any function with a constant function is always zero,
which we can see from the derivative interpretation for example. We say that a Poisson bracket
is non-degenerate, or symplectic, if it is only constant functions that have this property: {, } is
non-degenerate if {f, g} = 0 for all g implies that f is constant.

Exercise. Show that the standard Poisson brackets on R2 and R2n described above are non-
degenerate. Hint: What does the condition {f, g} = 0 for all g say about f when you take g to be
coordinate functions?

A Lie bracket on Rn induces a Poisson bracket in the following way. (The description we give
here is fairly ad-hoc, but will start to give us the insight we need. Later we will return to this and
see the true way of constructing a Poisson bracket from a Lie bracket in the context of dual spaces.)
First, take the standard basis e1, . . . , en of Rn and compute the Lie bracket between any two of
these:

[ei, ej] =
∑
k

ckijek

for some constants ckij . We define the Poisson bracket of the corresponding coordinate functions
x1, . . . , xn ∈ C∞(Rn) via

{xi, xj} =
∑
k

ckijxk.

In effect, we are just literally just viewing the given Lie bracket as a Poisson bracket, where instead
of working with vectors ei we work with the corresponding coordinate functions xi. The resulting
Poisson bracket is said to be linear since the bracket of any two linear functions, such as the
coordinate functions xi and xj , is still linear.

Next we can extend the Poisson bracket to quadratic functions like x21 and x2x3 using the
Leibniz rule: in order for the Leibniz rule to hold, it must be true that {x21, x2x3}, for example, is
given by

{x21, x2x3} = {x21, x2}x3 + x2{x21, x3}
= [{x1, x2}x1 + x1{x1, x2}]x3 + x2[{x1, x3}x1 + x1{x1, x3}]

where we think of x21 as x1x2. All remaining Poisson brackets deal with only linear terms, and these
we already know how to compute from above. Similarly, we can then extend to cubic functions
using the Leibniz rule, and so on: we get a unique Poisson bracket on all polynomial functions which

7

extends the one we defined above on coordinate functions. To jump to a Poisson bracket defined
for all smooth functions on Rn, such as ex1x2 for example, we then use the fact that polynomials
are dense in the space of all smooth functions, or more simply that all smooth functions can be
approximated to whatever accuracy we want using polynomials. We won’t need the details here,
but this will imply that there is only way to go from the Poisson bracket on polynomials to a
Poisson bracket on all smooth functions via some type of “limiting” procedure.

Exercise. Verify that there is only one way to define the Poisson bracket of arbitrary smooth
functions in a way that extends the bracket on polynomial functions described above.

In the case of so3(R), which we now identity with R3 with the cross product as the Lie bracket,
we have

e1 × e2 = e3, e2 × e3 = e1, and e3 × e1 = e2.

In terms of the coordinate functions x, y, z on R3, this translates into the following Poisson bracket
relations:

{x, y} = z, {y, z} = x, and {z, x} = y.

The Poisson bracket for general smooth functions on R3 is then given by

{f, g} = z

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
+ x

(
∂f

∂y

∂g

∂z
− ∂f

∂z

∂g

∂y

)
+ y

(
∂f

∂z

∂g

∂x
− ∂f

∂x

∂g

∂z

)
,

as you can verify.

Exercise. Verify this formula for the Poisson bracket of functions on so3(R) ∼= R3.

Exercise. A 2 × 2 matrix of trace zero is of the form
[x y
z −x

]
, and hence can be characterized by

a vector
[
x
y
z

]
in R3. The Lie bracket on sl2(R) can then be turned into a Lie bracket on R3 by

declaring the bracket of two vectors x and y to be the vector which corresponds to the Lie bracket
of the matrices that correspond to x and y: if T : sl2(R) → R3 is the linear isomorphism sending
a matrix to a vector described above, we define [x,y] by

[x,y] = T ([T−1(x), T−1(y)]),

where T−1 : R3 → sl2(R) sends a vector back to a matrix.
Compute this Lie bracket on R3 explicitly, in particular by computing the Lie bracket between

the standard basis vectors e1, e2, e3. Then determine the corresponding Poisson bracket of functions
on R3 explicitly, in particular by computing the Poisson bracket of the coordinate functions x, y, z.

Exercise. A matrix in the Heisenberg Lie algebra is of the form
[
0 x y
0 0 z
0 0 0

]
, and hence can be

characterized by a vector
[
x
y
z

]
in R3. Thus the Lie bracket on this Lie algebra can be transformed

into a Lie bracket on R3. Compute this Lie bracket explicitly, and describe the corresponding
Poisson bracket on C∞(R3).

Given a degenerate Poisson bracket on C∞(Rn), meaning one for which there are non-constant
functions C satisfying {C, f} = 0 for all f , we can look for the regions in Rn on which it becomes
non-degenerate. For a function C as above satisfying {C, f} = 0 for all f , the level sets of C give
such regions since on such regions C becomes constant, so “{C, f} = 0 for all f implies that C is

8

constant” is true when all functions considered are restricted to these level sets. The maximal such
regions are called the symplectic leaves of the Poisson bracket.

For example, recall that the Poisson bracket of functions on so3(R) ∼= R3 equipped with the
cross product is given by

{f, g} = z

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
+ x

(
∂f

∂y

∂g

∂z
− ∂f

∂z

∂g

∂y

)
+ y

(
∂f

∂z

∂g

∂x
− ∂f

∂x

∂g

∂z

)
.

If a function C is to satisfy {C, f} = 0 for all f , then in particular it will satisfy this when f is a
coordinate function, so

{C, x} = −z ∂C
∂y

+ y
∂C

∂z
= 0, {C, y} = z

∂C

∂x
− x

∂C

∂z
= 0, and {C, z} = x

∂C

∂y
− y

∂C

∂x
= 0.

In turn, if these equations all hold, then via the Leibniz rule we get that {C, f} = 0 for all polynomial
functions f , and this implies that {C, f} = 0 for all smooth functions. Thus, functions C satisfying
{C, f} = 0 for all f are characterized by the three equations

y
∂C

∂z
= z

∂C

∂y
, z

∂C

∂x
= x

∂C

∂z
, and x

∂C

∂y
= y

∂C

∂x
.

The first equation suggests that differentiating C with respect to z should should result in an
expression with z in it still, and differentiating with respect to y should result in an expression
with y in it still. Similarly, we can derive information about what C should look like based on the
remaining equations as well.

Exercise. Show that C = x2 + y2 + z2 satisfies {C, f} = 0 for all f in the example above.

The level sets of C = x2+y2+z2 (spheres!) thus give regions of R3 on which the Poisson bracket
in the so3(R) case becomes non-degenerate, so the symplectic leaves of this Poisson bracket are
spheres in R3. Note that each sphere is indeed a “maximal” region on which the Poisson bracket
becomes non-degenerate, since including any more points not that on specific sphere makes is it so
that C = x2 + y2 + z2 is no longer constant on that region. This function is also constant on, say,
the upper half of a given sphere, but such upper-halves are not “maximal” since they are contained
on the full sphere on which C is still constant.

Exercise. Find the simplest non-constant function C you can in the sl2(R) ∼= R3 case satisfying
{C, f} = 0 for all f , and hence describe the symplectic leaves of this Poisson bracket in R3.

Exercise. Find the simplest non-constant function C you can in the Heisenberg case satisfying
{C, f} = 0 for all f , and hence describe the symplectic leaves of this Poisson bracket in R3.

In each exercise above, the symplectic leaves should be recognizable geometric subsets of R3.
(Spoiler alert: in the Heisenberg case the symplectic leaves are planes!)

Adjoint Orbits

Back to groups. There are certain actions associated with a matrix group G that are of main
interest. First, we consider the action of G on itself by conjugation:

A ·B := ABA−1.

9

This is the simplest action we can write down of G on itself that makes use of the group multipli-
cation which preserves the identity element.

The fact that this preserves the identity element guarantees that we can differentiate this action
to get an action of G on its Lie algebra g. To be clear, given a Lie algebra element B′(0) ∈ g which
arises from a path B(t) in G starting at B(0) = I, we define the adjoint action of A ∈ G on
B′(0) ∈ g by

A ·B′(0) :=
d

dt

∣∣∣
t=0

A ·B(t).

That is, we act by A on each element of the path B(t), and then differentiate at time 0 to get a
Lie algebra element as the result. Since A ·B(t) is just conjugation and AB(0)A−1 = AIA−1 = I,
A · B(t) is still a path in G starting at the identity, which is why differentiating at time 0 is
guaranteed to give an element of g. (This would not be true if we simply took the initial action of
G on itself to be just multiplication, since the path AB(t) in G would start at AB(0) = AI = A
instead of I. Differentiating this does not give an element of the Lie algebra.) Moreover,

d

dt

∣∣∣
t=0

A ·B(t) =
d

dt

∣∣∣
t=0

AB(t)A−1 = AB′(0)A−1

by the product rule since A is constant with respect to t, so the adjoint action of G on g just ends
up being conjugation again. The only difference is that now we are conjugating arbitrary matrices
by A ∈ G, not just invertible ones as was the case with the initial action of G on itself.

We denote the adjoint action of G on g by Ad, so that for A ∈ G and X ∈ g, the adjoint action
of A on X is

AdAX = AXA−1.

This is an action by linear transformations, meaning that for each A ∈ G the map AdA : g → g
given by acting by A is linear. Moreover, these linear transformations all preserve the Lie bracket.

Exercise. Show that for any A ∈ G and X,Y ∈ g, AdA[X,Y] = [AdAX,AdAY].

To get the adjoint action of G on g we differentiated the initial action of G on G in the term
being acted upon, meaning that in A · B(t), A was fixed and B(t) varied. Now we can vary the
element A which is acting and differentiate in this term instead. To be clear, fix a Lie algebra
element B′(0) ∈ g as above, and now take a path A(t) ∈ G starting at the identity. Acting on B′(0)
by each element in the path A(t) gives a path in g, and we can differentiate this path with respect
to t at t = 0, giving what we interpret as an action of A′(0) ∈ g on B′(0):

A′(0) ·B′(0) :=
d

dt

∣∣∣
t=0

A(t) ·B′(0).

We call this the adjoint action of g on itself and denote it by a lowercase ad. Since the adjoint
action of G on g is just given by conjugation A(t) ·B′(0) = A(t)B′(0)A(t)−1, we have

adA′(0)B
′(0) =

d

dt

∣∣∣
t=0

A(t) ·B′(0) =
d

dt

∣∣∣
t=0

A(t)B′(0)A(t)−1.

By the product rule, this becomes

adA′(0)B
′(0) = A′(0)B′(0)A(0)−1 + A(0)B′(0)

(
d

dt

∣∣∣
t=0

A(t)−1
)
.

Using the formula for the derivative an inverse derived on a previous exercise, we get

adA′(0)B
′(0) = A′(0)B′(0)A(0)−1 + A(0)B′(0)

(
−A(0)−1A′(0)A(0)−1

)
,

10

which finally after using the fact that our paths begin at the identity becomes

adA′(0)B
′(0) = A′(0)B′(0)−B′(0)A(0).

The conclusion is that the adjoint of action of g on itself is nothing but the Lie bracket [A′(0), B′(0)]
we defined for matrices. Indeed, this is where this definition of the Lie bracket of matrices comes
from: it arises by differentiating adjoint actions and ultimately from conjugations. That is, the
Lie bracket of matrices is the “infinitesimal” analog of conjugation and is thus the simplest way to
infinitesimally capture the group multiplication.

Exercise. Derive the Jacobi identity via differentiation. (A PRECISE STATEMENT OF THIS
EXERCISE IS STILL TO COME.)

For now we are interested in understanding the orbits of the adjoint action of G on g. That
is, for a fixed X ∈ g, we want to determine the set of all possible AdAX ∈ g as A ∈ G varies. In
the example of SO3(R), we can be very explicit. First, recalling that so3(R) is isomorphic as a Lie
algebra to R3 equipped with the cross product, we wish to determine what the adjoint action of
SO3(R) on so3(R) becomes when thought of as an action of SO3(R) on R3 instead.

Exercise. Show that there exists an isomorphism so3(R) → R3 of Lie algebras such that the
adjoint action AdAX = AXA−1 of SO3(R) on so3(R) becomes the usual action A · x = Ax of
SO3(R) on R3 by matrix multiplication. At some point it will likely help to recall (or look up) the
formula for the inverse of a matrix in terms of its adjugate matrix.

Since the adjoint action of SO3(R) on so3(R) ∼= R3 is just usual matrix multiplication, the
orbits are simple to describe: for a fixed nonzero x ∈ R3, the orbit {Ax | A ∈ SO3(R)} consists of
all vectors obtained by rotating x in all possible ways, and is thus a sphere of radius given by the
length of x. The key observation is that these orbits are (drum roll please) precisely the symplectic
leaves of the corresponding Poisson bracket on so3(R) ∼= R3 described previously! It is no accident
that this is true in this case, as we will see.

The same phenomenon occurs in the SL2(R) case, if we are careful about how to interpret the
claim. A previous exercise asked to determine the symplectic leaves of the Poisson bracket derived
from sl2(R), and it turns out that these symplectic leaves are hyperboloids (some one-sheeted, some
two-sheeted), or a (double) cone. The orbits of the adjoint action of SL2(R) on sl2(R) ∼= R3 (using
a previous exercise to write down a Lie bracket on R3 that is isomorphic to the one on sl2(R)) turn
out to also be hyperboloids/cones, although not of the exact same shape as the symplectic leaves.
Let us dive into this a bit more.

The adjoint action of
[
a b
c d

]
∈ SL2(R) on

[x y
z −x

]
∈ sl2(R) is given by

Ad[a b
c d

] [x y
z −x

]
=
[
a b
c d

] [x y
z −x

] [
d −b
−c a

]
=

[
adx + bdz − acy + cbx −abx− b2z + a2y − abx
cdx + d2z − c2y + cdx −adx− bdz + acy − cbx

]
,

where we use the fact that
[
a b
c d

]−1
=
[

d −b
−c a

]
since elements of SL2(R) have determinant 1. Under

the isomorphism sl2(R) ∼= R3 where
[x y
z −x

]
corresponds to

[
x
y
z

]
, the adjoint action of SL2(R) on

sl2(R) ∼= R3 thus looks like

Ad[a b
c d

] [xy
z

]
=

[
adx+bdz−acy+cbx
−abx−b2z+a2y−abx
cdx+d2z−c2y+cdx

]
.

11

Let us take, for instance, the action on the vector
[
1
0
0

]
:

Ad[a b
c d

] [10
0

]
=
[
ad+bc
−2ab
2cd

]
.

Note that
[
1
0
0

]
satisfies yz + x2 = 1. We can check that the vector

[
x
y
z

]
=
[
ad+bc
−2ab
2cd

]
in the orbit of[

1
0
0

]
also satisfies this same equation:

(−2ab)(2cd) + (ad + bc)2 = −4abcd + a2d2 + 2adbc + b2c2

= a2d2 − 2abcd + b2c2

= (ad− bc)2 = 1,

where again we use the fact that
[
a b
c d

]
∈ SL2(R) has determinant ad − bc equal to 1. This shows

that the entire orbit containing
[
1
0
0

]
lies on the surface yz+x2 = 1, which is indeed a (one-sheeted)

hyperboloid. The orbits through points other than
[
1
0
0

]
will make up other hyperboloids, or a

double cone in one case. (Actually, the orbit through the zero vector consists of only the zero
vector, so this orbit is just a point. In the discussion above we really only care about non-origin
orbits. In the “double cone” case we technically get a double cone with the origin removed.)

Exercise. Verify that the orbits of the adjoint action of SL2(R) on sl2(R) ∼= R3 are hyperboloids
or a double cone, by showing that the value of yz + x2 is the same for all points in an orbit.

So we do get hyperboloids/cones as orbit for SL2(R), although not the same hyperboloids/cone
as the symplectic leaves. (In other words, the symplectic leaves are given by an equation similar to
yz+x2 = k, but not literally this exact equation.) However, the hyperboloids/orbits we get in each
case can easily be related by some map R3 → R3 which transforms the one type of hyperboloid/cone
to the other. The orbits of the adjoint action of SL2(R) are thus, as we say, diffeomorphic (a
“diffeomorphism” is a bijective smooth map whose inverse is also smooth) to the symplectic leaves
of the corresponding Poisson bracket, so the relation between adjoint orbits and symplectic leaves
still holds here as it did for SO3(R).

Exercise. Find the (bijective) map R3 → R3 which sends the orbits of the adjoint action of SL2(R)
to the symplectic leaves of the Poisson bracket derived from sl2(R).

Alas, the relation between adjoint orbits and symplectic leaves breaks down when we get to the
Heisenberg group and its Lie algebra, even if we allow for spaces that are only “diffeomorphic” and
not literally the same.

Exercise. Use the identification of the Heisenberg Lie algebra with R3 given in a previous exercise
to determine the orbits of the adjoint action of the Heisenberg group. You should find that these
orbits are actually lines, and not planes as the symplectic leaves were.

The reason for this discrepancy has to do with a difference in the structure of the Heisenberg
Lie algebra as compared to either so3(R) and sl2(R): the Heisenberg Lie algebra is not what’s
called semisimple, whereas so3(R) and sl2(R) are semisimple. We will discuss semisimplicity and
see what it has to do with describing the relation between adjoint orbits and symplectic leaves
later. But first we must recast everything we’ve done so far in the “correct settting”, where the

12

relation between orbits and symplectic leaves always holds, even for the Heisenberg case. This
correct setting comes from considering the coadjoint action of a group instead of its adjoint action,
and to discuss coadjoint actions we need to first discuss “dual spaces”.

Dual Spaces

The dual space of a vector space V is the space V ∗ of all linear transformations from V to R:

V ∗ := {f : V → R | f is linear}.

(Such linear transformations which map into R are often called linear functionals, so V ∗ is the
space of all linear functionals on V .) The dual space is itself a vector space under the operations
of addition of functions and scalar multiplication of functions. If V is finite-dimensional, then V ∗

is also finite dimensional and of the same dimension as V .

Exercise. Let e1, . . . , en be a basis for V . Define the linear functionals f1, . . . , fn : V → R by
specifying that

fi(ej) = 1 when i = j and 0 when i 6= j,

which by linearity determines the value of fi on any element of V . Show that these f1, . . . , fn form
a basis for V ∗, which we call the dual basis of e1, . . . , en.

For example, take V = Rn with elements thought of as column vectors. A linear functional
Rn → R is then given by a 1× n matrix: for instance, the 1× 3 matrix

[
1 2 3

]
gives the linear

functional R3 → R defined by xy
z

 7→ [
1 2 3

] xy
z

 = x + 2y + 3z.

(Technically the result of the product in the middle is a 1×1 matrix, but we just think of this is an
element in R.) So, the dual space of Rn is the space of all 1× n matrices, which we can also think
of as Rn only with elements viewed as row vectors instead of column vectors. The standard basis
e1, . . . , en of Rn then gives the dual basis eT1 , . . . , e

T
n (the transpose turns each column vector into

a row vector) of (Rn)∗ ∼= Rn. In this case, the linear functional eTi picks out the i-th coordinate of

a vector: if x =

[x1

...
xn

]
, then eTi (x) = xi.

The same is true more generally for any dual basis: if c1, . . . , cn are the coordinates of v ∈ V
relative to the basis e1, . . . , en, so that

v = c1e1 + · · ·+ cnen,

then the corresponding dual basis vector fi picks out the coordinate ci corresponding to ei:

fi(v) = fi(c1e1 + · · ·+ cnen) = c1fi(e1) + · · ·+ cnfi(en) = ci

where we use the defining property of fi as evaluating to 1 at ei and to 0 at any other ej . In terms
of the dual basis, the expression for v above can thus be written as

v = f1(v)e1 + · · ·+ fn(v)en.

13

Elements in the dual basis can hence be thought of as “coordinate functions”, and indeed elements
of V ∗ in general should be viewed as types of “coordinate functions”. The upshot is that the dual
space of V in general gives a way to work with all possible coordinate functions on V without
having to pick out any one specific basis of V . For various reasons this is desirable, since it leads
to constructions which are “coordinate independent”.

Given a linear map T : V → W , we can define a linear map T ∗ : W ∗ → V ∗ going between the
dual spaces of V and W (but in reverse order!) in the following way: for g ∈ W ∗, we define T ∗g
to be the composition g ◦ T . To be clear, g ∈ W ∗ is a map g : W → R, so the composition g ◦ T
maps from V to R, just as an element of V ∗ should be. As an element of V ∗, T ∗g takes as input
v ∈ V and outputs the scalar (T ∗g)v = g(T (v)), which makes sense since T (w) is an element in the
domain W of g ∈W ∗. We call the map T ∗ : W ∗ → V ∗ defined in this way the dual map of T .

Exercise. Show that the dual map T ∗ : W ∗ → V ∗ of T : V → W is indeed linear, and that
(ST)∗ = T ∗S∗ where S : W → Z is a linear map and ST denotes the composition of S and T .
Note that the two dual maps on the right T ∗ and S∗ are being composed in the order opposite to
that of S and T .

Here’s an example. Take T : R3 → R2 to be the linear map defined by the matrix

A =

[
1 2 3
−1 0 1

]
.

The dual map T ∗ should take an element of (R2)∗ as input and output an element of (R3)∗. If we
view these two dual spaces as consisting of row vectors, then

T ∗
[
a b

]
should be a 1× 3 row vector.

As an element of (R3)∗, this T ∗
[
a b

]
takes

[
x
y
z

]
∈ R3 as input and outputs the scalar

(T ∗
[
a b

]
)

xy
z

 =
[
a b

]T

xy
z

=
[
a b

][1 2 3
−1 0 1

]xy
z

=
[
a b

] [x + 2y + 3z
−x + z

]
= ax + 2ay + 3az − bx + bz.

This scalar can be written as

(T ∗
[
a b

]
)

xy
z

 =
[
a− b 2a 3a + b

] xy
z

 ,

so concretely the dual map T ∗ sends
[
a b

]
to
[
a− b 2a 3a + b

]
. This can also be seen by noting

that the composition gT , where g is the linear functional corresponding to
[
a b

]
, defining T ∗g is

given by the matrix

gT =
[
a b

] [1 2 3
−1 0 1

]
=
[
a− b 2a 3a + b

]
.

14

Continuing with this same example, we now seek to the represent T ∗ : (R2)∗ → (R3)∗ as a
matrix relative to the dual bases of (R2)∗ and (R3)∗ which correspond to the standard bases of R2

and R3. Let’s unwind what this means. The standard basis of R2 and R3 give the dual bases[
1 0

]
,
[
0 1

]
for (R2)∗ and

[
1 0 0

]
,
[
0 1 0

]
,
[
0 0 1

]
for (R3)∗.

In terms of this bases,
[
a b

]
is written as[

a b
]

= a
[
1 0

]
+ b

[
0 1

]
and T ∗

[
a b

]
=
[
a− b 2a 3a + b

]
is[

a− b 2a 3a + b
]

= (a− b)
[
1 0 0

]
+ 2a

[
0 1 0

]
+ (3a + b)

[
0 0 1

]
.

We want the matrix that has the effect of sending the coordinate vector of
[
a b

]
relative to the

dual basis to the coordinate vector of T ∗
[
a b

]
relative to the dual basis, which means the matrix

satisfying

(matrix)

[
a
b

]
=

 a− b
2a

3a + b

 .

The matrix which does this is 1 −1
2 0
3 1

 ,

so this is the matrix which represents T ∗ relative to the dual bases. The key observation is that
this is nothing but the transpose of the matrix

A =

[
1 2 3
−1 0 1

]
which originally defined T . Indeed, this is true in general.

Exercise. Suppose e1, . . . , en is a basis for V and u1, . . . , um is a basis for W . Let T : V → W
be a linear map, whose matrix relative to these basis is A. Show that the matrix of the dual map
T ∗ : W ∗ → V ∗ relative to the corresponding dual bases is AT .

Thus, when everything is expressed in terms of matrices relative to chosen bases, taking the
dual map just corresponds to taking the transpose. The fact that dual maps satisfy (ST)∗ = T ∗S∗

then just corresponds to the analogous fact (AB)T = BTAT for transposes.
Finally, we return to the construction of the Poisson bracket, which as we said when we outlined

it previously was fairly ad-hoc. Now we have the tools needed to give the “correct” definition. In
actuality, given a Lie algebra g, the corresponding linear Poisson bracket should in fact be a bracket
on C∞(g∗). (The definition we gave previously as a Poisson bracket on C∞(Rn) comes from picking
a basis with which to identify g∗ and Rn, and indeed this is how we define “smooth” for a function
on g∗: take an isomorphism g∗ ∼= Rn and say that g∗ → R is smooth if the corresponding Rn → R
is smooth.) A Poisson bracket on C∞(g∗) should take two smooth functions g∗ → R as inputs and
output a third. Note first that any element of g can be viewed as defining a function g∗ → R: for
v ∈ g, the corresponding function on g∗ takes f ∈ g∗ as input (recall that f is itself then a linear
function f : g → R) and outputs f(v). In other words, in the expression f(v) where v ∈ g and
f ∈ g∗, where we normally think about f as the fixed function and v the thing that varies, we

15

instead think about v as the fixed thing and f as the thing that varies. In this way, we can thus
think about elements of g as giving specific elements of C∞(g∗).

The Poisson bracket on C∞(g∗) is then defined by taking the Lie bracket on g ⊆ C∞(g∗) as a
starting point, so that for v1, v2 ∈ g viewed as elements of C∞(g∗), we define their Poisson bracket
to be their Lie bracket:

{v1, v2} := [v1, v2].

The result is an element of g, which can still be viewed as a function on g∗. Using the Leibniz rule
we then we get something like

{v21, v2} = {v1v1, v2} = 2v1{v1, v2}

where v21 = v1v1 is now an element of C∞(g) that is not in g. (As a function on g∗, v21 is the square
of the function v1, so it sends f ∈ g∗ to f(v1)

2.) In this way we can extend the Poison bracket
on g ⊆ C∞(g∗) to polynomials, and then to all smooth functions using denseness. The symplectic
leaves we defined previously are thus really subsets g∗, where we go from here to subsets of R3 as
in the sl2, so3, and Heisenberg examples by using an isomorphism g∗ ∼= R3.

Coadjoint Orbits

The coadjoint action of a group G is an action of G on the dual g∗ of its Lie algebra. To define
this, for each g ∈ G take the linear map Adg : g→ g defined by the adjoint action of G on g. The
dual map is then a linear map Ad∗g : g∗ → g∗, so these maps can be taken as defining an action of
G on g∗. But actually it is typical to take a slightly different approach, and define the coadjoint
action by g ∈ G on g∗ to be the dual of the adjoint action by the inverse of g on g:

Ad∗g := the dual of Adg−1 .

Explicitly, this gives
(Ad∗gf)v = f(Adg−1v)

for f ∈ g∗ and v ∈ g. To unpack this, Ad∗gf should be an element of g, and this says that the value
of this functional on v is the value of the functional f on Adg−1v ∈ V . The coadjoint orbits of G
are the orbits in g∗ of the coadjoint action.

Exercise. The reason for using g−1 instead of just g when defining the coadjoint action stems from
the fact that taking the dual of a product swaps order in the sense that (ST)∗ = T ∗S∗, whereas an
action of G on g∗ should satisfy the typical property

g1 · (g2 · x) = (g1g2) · v

required of groups actions. Show that if we try to define Ad∗g : g∗ → g∗ to be the dual map of
Adg : g → g, the property above is not satisfied, but that it is satisfied if we take Ad∗g to be the
dual map of Adg−1 : g→ g instead as in the actual definition of the coadjoint action.

Let us compute some examples. Recall that for SO3(R) the adjoint action on so3(R) ∼= R3

(using the right isomorphism) is just matrix multiplication: for A ∈ SO3(R) and x ∈ R3, we have

AdAx = Ax,

so that the matrix of AdA relative to the standard basis is just A. We identify R3 with its dual
space using the dual standard basis, so that the coadjoint action of SO3(R) on so3(R)∗ can also be

16

viewed as an action on R3. The matrix of this coadjoint transformation Ad∗A is the matrix of the
dual map of AdA−1 by the definition of the coadjoint action, and the matrix of AdA−1 is A−1, so by
what we learned about dual maps and transposes earlier we get that the matrix of the dual map is
(A−1)T . Thus Ad∗A is the linear map corresponding to the matrix (A−1)T , so the coadjoint action
of SO3(R) on so3(R)∗ ∼= R3 is

Ad∗Ax = (A−1)Tx.

But in this case A ∈ SO3(R) is an orthogonal matrix, so A−1 = AT and hence (A−1)T = A. Thus
Ad∗Ax = Ax, meaning that the adjoint and coadjoint actions are the same in the SO3(R) case.
Hence the coadjoint orbits of SO3(R) are the same spheres we saw before when computing the
adjoint orbits, and thus agree with the symplectic leaves in g∗ ∼= R3.

We computed previously that the adjoint action of SL2(R) on sl2(R) ∼= R3 was given by

Ad[a b
c d

] [xy
z

]
=

[
adx+bdz−acy+cbx
−abx−b2z+a2y−abx
cdx+d2z−c2y+cdx

]
.

The matrix of the adjoint action by
[
a b
c d

]
relative to the standard basis of R3 is thus

Ad[a b
c d

] =

ad + bc −ac bd
−2ab a2 −b2
2cd −c2 d2

 .

The coadjoint action by
[
a b
c d

]
is then given by multiplication by the transpose of the inverse of this

matrix. Instead of working with this inverse transpose, we will instead stick with the transpose of
the matrix above. This transpose thus actually gives the coadjoint action by the matrix

[
a b
c d

]−1
instead of by

[
a b
c d

]
, so that what we are applying is

Ad∗[
a b
c d

]−1 =

ad + bc −2ab 2cd
−ac a2 −c2
bd −b2 d2

 instead of Ad∗[a b
c d

],

but this does not matter when determining the orbits since we run though all elements of SO3(R)
when compute Ad∗Ax anyway, and both A and A−1 show up as such elements. (In other words,
computing all possible Ad∗A−1x for all possible A still gives the entire orbit.) Elements in the orbit

of x =
[
x
y
z

]
are thus of the form

Ad∗[
a b
c d

]−1x =

ad + bc −2ab 2cd
−ac a2 −c2
bd −b2 d2

xy
z

 =

adx + bcx− 2aby + 2cdz
−acx + a2y − c2z
bdx− b2y + d2z

 .

Take for example x =
[
1
0
0

]
. The orbit through point consists of all things of the form

Ad∗[
a b
c d

]−1

[
1
0
0

]
=
[
ad+bc
−ac
bd

]
.

The point
[
1
0
0

]
satisfies 4yz + x2 = 1, and indeed so does any point in this specific coadjoint orbit:

4(−ac)(bd) + (ad + bc)2 = a2d2 + b2c2 − 2abcd = (ad− bc)2 = 1

17

since ad − bc = 1. Just as we saw for the adjoint orbits, we get that the coadjoint orbit through[
1
0
0

]
is a hyperboloid, only this time with equation 4yz + x2 = 1 as opposed to yx + x2 = 1 as was

the case for the adjoint orbit before.

Exercise. Show that all coadjoint orbits are given by equations of the form 4yz + x2 = k, which
are hyperboloids or in one case a cone. (Exclude the case where we take the coadjoint orbit of the
zero vector, which is just a point.)

The difference between this coadjoint orbit example and the previous adjoint orbit example for
SL2(R) is that now the coadjoint orbits 4yz +x2 = k are exactly the same as the symplectic leaves
of the corresponding Poisson bracket on sl2(R)∗ ∼= R3! A previous exercise asked to determine these
symplectic leaves, and the answer turns out to be precisely the surfaces of the form 4yz + x2 = k,
which are also the coadjoint orbits. For the adjoint orbits we still saw that the adjoint orbits—
described by equations yz + x2 = k—were diffeomorphic to the symplectic leaves, but for the
coadjoint orbits they are literally the same.

Exercise. Compute the orbits of the coadjoint action of the Heisenberg group on the dual of its
Lie algebra, which we identify with R3 as in previous exercises. The answer should be exactly the
same as the symplectic leaves computed in a previous example.

Thus we have the main theorem in this subject: for any matrix group G with Lie algebra g,
the orbits of the coadjoint action of G on g∗ are the symplectic leaves of the Poisson bracket on
C∞(g∗) induced from the Lie bracket.

Semisimplicity

We now focus on understanding the relation between the adjoint and coadjoint orbits a bit better,
and in particular to understanding why in the so3(R) and sl2(R) cases they were essentially the
same (literally the same for so3(R), and “diffeomorphic” for sl2(R)) but not in the Heisenberg case.
The key notion to grasp is that of semisimplicity.

First, we define a bilinear pairing on a Lie algebra g called the Killing form as follows. This
pairing will take two Lie algebra elements X,Y as inputs and output a real number that we denote
by B(X,Y). To define this, consider the linear transformations adX , adY : g→ g that are given by
the (lowercse) adjoint actions of X and Y :

adXZ := [X,Z] and adY Z := [Y,Z].

The composition of these linear transformations is also a linear transformation adX ◦ adY : g→ g,
and we define B(X,Y) to be the trace of this composition:

B(X,Y) = tr(adX ◦ adY).

(Recall that the trace of a linear transformation is the trace of the matrix that represents that
transformation with respect to any basis.) The Killing form is bilinear: for fixed X ∈ g the
mapping Y 7→ B(X,Y) is linear, and for fixed Y ∈ g the mapping X 7→ B(X,Y) is linear. When
g is the Lie algebra of a group G, the Killing form is also Ad-invariant in the sense that

B(AdgX,AdgY) = B(X,Y)

for any g ∈ G and X,Y ∈ g.

18

Exercise. Justify the Ad-invariance property of the Killing form. You will need to use the fact
that similar matrices have the same trace.

For SO3(R), the adjoint transformation adX : so3(R)→ so3(R) for X =

[
0 x y
−x 0 z
−y −z 0

]
∈ so3(R) is

given by

adX

[
0 a b
−a 0 c
−b −c 0

]
=

[
0 x y
−x 0 z
−y −z 0

] [
0 a b
−a 0 c
−b −c 0

]
−
[

0 a b
−a 0 c
−b −c 0

] [0 x y
−x 0 z
−y −z 0

]

=

 0 −yc + bz xc− az
yc− az 0 −xb + ay
−xc + az xb− ay 0

 .

With respect to the standard basis of so3(R) that gives the isomorphism
[

0 a b
−a 0 c
−b −c 0

]
7→
[
a
b
c

]
with

R3, the adjoint transformation adX satisfies

adX

ab
c

 =

−yc + bz
xc− az
−xb + ay

and hence is represented by

adX =

 0 z −y
−z 0 x
y −x 0

 .

For two such adjoint transformations adX and adY (take X as above only with entries using 1 as
a subscript and Y of the same form but using 2 as a subscript), we have

adX ◦ adY =

 0 z1 −y1
−z1 0 x1
y1 −x1 0

 0 z2 −y2
−z2 0 x2
y2 −x2 0

=

−z1z2 − y1y2 y1x2 z1x2
x1y2 −z1z2 − x1x2 z1y2
x1z2 y1z2 −y1y2 − x1x2

 ,

so B(X,Y) = tr(adX ◦ adY) = −2(x1x2 + y2y2 + z2z2) is the Killing form on so3(R).

Exercise. Compute the Killing form on sl2(R).

Exercise. Compute the Killing form on the Heisenberg Lie algebra.

We say that the Lie algebra g is semisimple if its Killing form is non-degenerate, which means
that the only X ∈ g satisfying B(X,Y) = 0 for all Y ∈ g is X = 0. This is true for the example of
so3(R) above: if for fixed x1, y1, z1 we have

−2(x1x2 + y1y2 + z1z2) = 0

for all x2, y2, z2, then taking (x2, y2, z2) = (1, 0, 0), (0, 1, 0), and (0, 0, 1) will show that x1 = 0, y1 =
0, and z1 = 0 respectively. Thus so3(R) is semisimple.

Exercise. Show that sl2(R) is semisimple.

19

It should be clear from the computation of the Killing form on the Heisenberg algebra that it
is degenerate, so that the Heisenberg algebra is not semisimple.

The Killing form us to define a linear map g → g∗ as follows: for each X ∈ g, define BX ∈ g∗

to be the linear functional which sends Y ∈ g to B(X,Y):

BX(Y) := B(X,Y) for all Y ∈ g.

For the Killing form on so3(R) ∼= R3 computed above for example, for fixed x =
[
x1
y1
z1

]
we have

Bx

[
x2
y2
z2

]
= B

([
x1
y1
z2

]
,
[
x2
y2
z3

])
= −2(x1x2 + y1y2 + z1z2),

so the linear functional Bx : R3 → R is represented by the 1× 3 matrix

Bx =
[
−2x1 −2y1 −2z1

]
∈ so3(R)∗ ∼= (R3)∗

and the map so3(R) ∼= R3 → so3(R)∗ ∼= (R3)∗ induced by the Killing form is x 7→ −2xT . Note
that this map is an isomorphism, which is in fact always true in the semisimple case: the fact that
the Killing form is non-degenerate says precisely that the map X 7→ BX has trivial kernel, so it is
injective and hence surjective since g and g∗ have the same dimension.

When g is the Lie algebra of a group G, the map g → g∗ induced by the Killing form is
equivariant for the adjoint and coadjoint actions of G, which means that acting by G on g first and
then applying this map is the same as applying the map first and then acting by G:

BAdgX = Ad∗gBX

for all g ∈ G. If we unwind the definitions, this equality says that

B(AdX , Y) = B(X,Adg−1Y)

for all X,Y ∈ g, where the left side is the functional BAdgX evaluated at Y and the right side is
the functional Ad∗gBx evaluated at Y .

Exercise. Justify this equivariance property, which is actually just a reformulation of the Ad-
invariance property of the Killing form mentioned previously.

Equivariance in particular implies that any adjoint orbit in g is sent into a coadjoint orbit in g∗

under the map B : g→ g∗, since the image an element AdgX in the adjoint orbit of X is the same
as the element Ad∗gBx in the coadjoint orbit of BX . Thus when this map B is invertible, in other
words when we are in the semisimple case, this map induces a bijection (diffeomorphism, actually)
between the adjoint orbits and coadjoint orbits, which explains what we saw previously for so3(R)
and sl3(R). For so3(R) ∼= R3, the map R3 → (R3)∗ ∼= R3 (identity the dual of R3 with R3 using
the dual bases) induced by the Killing form is x 7→ −2x, which indeed sends spheres (i.e., adjoint
orbits) to spheres (i.e., coadjoints orbits).

Exercise. Using the Killing form on sl2(R) ∼= R3 computed previously and identifying sl2(R)∗ also
with R3 using the dual bases, verify that an adjoint orbit yz + x2 = k is sent to a coadjoint orbit
4yz + x2 = ` under the map induced by the Killing form.

In the Heisenberg case, all adjoint orbits end up being sent to a single coadjoint orbit, namely
the coadjoint orbit of the zero vector, which consists of only the zero vector. (The result of the
exercise asking to compute the Killing form on the Heisenberg algebra is that the Killing form is
zero on all vectors.) Hence we should not expect any relation between the adjoint and coadjoint
orbits of the Heisenberg algebra, just as we saw previously.

20

Mechanics

We finish by giving the motivation behind the subject of linear Poisson geometry, and why one
might be led to study coadjoint orbits and symplectic leaves in the first place. The starting point
is Hamilton’s formulation of Newtonian mechanics. We take the standard Poisson bracket on R2n

with coordinates (x1, . . . , xn, y1, . . . , yn):

{f, g} =
∑
i

(
∂f

∂x1

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
.

We consider R2n = Rn × Rn as a phase space of a mechanical system, where x = (x1, . . . , xn)
describes position and y = (y1, . . . , yn) momentum. The basic tenet of Hamiltonian mechanics is
that an observable quantity (i.e., function) f of position and momentum evolves in time along the
trajectories of our system according to the differential equation

ḟ = {f,H}

where ḟ denotes the time-derivative of f and where H is the Hamiltonian function of the system,
which is usually interpreted as being the total energy of the system:

H = (kinetic energy) + (potential energy).

Let’s use the standard total energy H(x,y) = y·y
2m + V (x) where V (x) is some potential energy.

If we want to know, say, how position changes with respect to time, the equation above says
that this rate of change is given by Poisson-bracketing with the Hamiltonian function. Similarly
for determining how momentum changes, so we get the equations

ẋi = {xi, H} =
∂H

∂yi
and ẏi = {yi, H} = −∂H

∂xi
,

which are known as Hamilton’s equations. For the specific Hamiltonian H = y·y
2m + V (x), we have

∂H
∂yi

= yi
m and ∂H

∂xi
= ∂V

∂xi
, so Hamilton’s equations become

ẋi =
yi
m

and ẏi =
∂V

∂xi
.

From this we can compute acceleration ẍi by substituting the second equation into the time-
derivative of the first:

ẍi =
ẏi
m

=
1

m

∂V

∂xi
.

Rewriting this as mẍi = ∂V
∂xi

gives Newton’s second law of motion, where ∂V
∂xi

is the force acting
on our system. Thus, we see that Hamiltonian mechanics does indeeed reproduce Newtonian
mechanics.

We say that f and g Poisson commute if {f, g} = 0. If f Poisson commutes with the Hamiltonian
H, then ḟ = {f,H} = 0, which means that f should not change values along the trajectories of
our system, so that f should be constant along the trajectories. (We say that f is a conserved
quantity.) Thus, the underliyng mechanics should take place on a level set of f . Functions which
Poisson commute with all other functions (these are called Casimir functions) in particular Poisson
commute with the Hamiltonian, so the symplectic leaves (i.e., level sets of Casimir functions) we
saw earlier describe spaces on which Hamiltonian mechanics occurs. The non-degeneracy of the
Poisson bracket we get on such leaves has useful consequences in physics, and the fact that these
leaves correspond to the orbits of a certain group action opens up the use of group theory to their
study. Such coadjoint orbits/leaves also arise naturally via a type of “reduction” procedure, but
that is a story for another time.

21

	Introduction
	Matrix Groups
	Lie Algebras
	Poisson Brackets
	Adjoint Orbits
	Dual Spaces
	Coadjoint Orbits
	Semisimplicity
	Mechanics

