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STEVE ZELDITCH

Abstract. This lecture is concerned with counting and equidistribution problems for crit-
ical points of random holomorphic functions and their applications to statistics of vacua
of certain string/M theories. To get oriented, we begin with the distribution of complex
zeros of Gaussian random holomorphic polynomials of one variable. We then consider zeros
and critical points of Gaussian random holomorphic sections of line bundles over complex
manifolds. The main focus is on critical points ∇s(z) = 0 of a holomorphic sections rela-
tive to a smooth metric connection ∇ on a holomorphic line bundle. In string/M theory
compactified on a Calabi-Yau manifold, the possible vacuum states of the universe (vacua)
are critical points of a holomorphic section (the ‘superpotential’) of a line bundle over the
moduli space of Calabi-Yau manifolds. Physicists sometimes estimate the number of possi-
ble vacua to be around 10500. We describe some rigorous results from [DSZ3, DD] on the
number and distribution of vacua in such string theories. Finally, we discuss some results
from [DSZ1, DSZ2] on the pure geometry of critical points: how the average number of
critical points is asymptotically minimized by Calabi extremal metrics and some hints on
the correlations between critical points on small scales.
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1. Introduction

This is an expository article (based on the author’s AMS address in Atlanta, 2005) which
leads the reader from the classical mathematics of random polynomials to the contemporary
physics of the vacuum selection problem of string theory. It assumes no prior background
in either random polynomials or string theory. Starting with classical results of Kac and
Hammersley on zeros of random polynomials, the geometric context gradually broadens
to zeros and critical points of random holomorphic sections of line bundles over complex
manifolds to finally encompass vacua of certain string theories compactified on Calabi-Yau
manifolds. The unifying theme is the statistics of critical points of random holomorphic
functions or sections. As we hope to convince the reader, the distribution of (and correlations
between) critical points of random polynomials and holomorphic sections of line bundles is a
subject of some intrinsic interest in complex geometry, with connections to Calabi extremal
metrics (see §6). But it acquires an independent interest from its connection to string theory,
in which vacua (and extremal black holes) are critical points of certain holomorphic sections
known as superpotentials. There is a plethora of possible superpotentials and vacua, and in
the absence of a selection principle determining a unique one, it makes sense to count the
number of vacua which are consistent with known physical quantities such as the cosmological
constant. After providing some background on random polynomials and sections in §2 - §4,
we give a mathematical introduction in §5 to the counting and equidistribution problems
in complex geometry which arise in ‘statistics of vacua’. The results discussed in §5 come
from joint work with M. R. Douglas and B. Shiffman [DSZ1, DSZ2, DSZ3] and from related
works of Douglas and his collaborators (Ashok, Denef) [AD, DD, DD2]. They are also
based on earlier joint work with P. Bleher [BSZ1]. We would like to thank B. Shiffman and
M. R. Douglas for the pleasure of the collaboration, and also for many comments on and
contributions to this article.

1.1. Statistics of vacua in string/M theory. Let us first give an overview of what
statistics of vacua in string/M theory is about (undefined terms will be discussed in detail in
§5). It is a response to the so-called vacuum selection problem in string theory, which is easy
to understand without any background in string theory: in its vacuum state, our universe
according to string theory is a 10 dimensional spacetime of the form M3,1 ×X, where M3,1

is Minkowski space and X is a small 3-complex dimensional Calabi-Yau manifold X known
as the ‘small’ or ‘extra’ dimensions [CHSW, St2, Zw, P]. The vacuum selection problem is
simply, “which Calabi-Yau 3-fold X?”.

At this time, the set of topological types of CY 3-folds is unknown and has not been proved
to be finite. We will ignore this aspect of the problem, and concentrate on the issue of which
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CY metric(s) in the moduli space MCY of CY metrics on a fixed manifold X could model the
small dimensions of the universe. We focus on so-called type IIb string theories compactified
on a Calabi-Yau manifold Y with flux [GKP, GVW]. When Y is d-dimensional, a ‘flux’ is a
complex integral d-form. In the setting of this paper, Y = X × T 2 where T 2 = R

2/Z2 and
X is a complex 3-dimension CY manifold; the flux has the form F ∧ dx + iH ∧ dy where
G = F + iH ∈ H3(X,Z ⊕

√
−1Z).

The key point for us is that the possible vacua for a fixed choice of flux G are critical
points of the scalar potential energy (cf. [WB], (21.22))

VW (Z) = |∇W (Z)|2 − 3|W (Z)|2, (Z = (z, τ) ∈ MCY ×H/SL(2,Z)) (1)

on the ‘configuration space’ C = MCY × H/SL(2,Z) ( H is the upper half-plane). Here,
W = WG is the flux superpotential corresponding to the flux G in a fashion which will be
defined in §5 (43)-(44). Among the critical points of VW are the supersymmetric vacua (=
SUSY vacua) where ∇W (Z) = 0. For the sake of simplicity, we restrict our attention to
these SUSY vacua (see [DD2] for developments in the non-SUSY case).

String/M theory leads to the study of critical points of holomorphic sections of line bundles
with respect to Chern metric connections because:

• The superpotential WG is a holomorphic section of a holomorphic line bundle L → C.
We denote the space of its holomorphic sections by H0(C,L). L is the dual bundle
of the Hodge bundle H3,0

z (X) ⊗H1,0(T 2) → C of holomorphic volume forms;
• ∇ = ∇WP is the Chern connection on L corresponding to the Weil-Petersson her-

mitian metric;
• Supersymmetric vacua are connection critical points ∇WPWG(Z) = 0 (cf. Definition

4 and the local formula (18)). We denote the set of critical points of W by Crit(W ) ⊂
C.

Thus, to get a grasp on the number of possible (SUSY) vacua in this model, we need to
count critical points of holomorphic sections satisfying constraints.

The potential VW depends on a choice of superpotential W , and the superpotential WG

depends on a choice of flux G. How unique is the flux G? The answer is that the flux G can
be any element of H3(X,Z⊕

√
−1Z) satisfying a certain ‘tadpole constraint’ 0 ≤ Q[G] ≤ L,

where Q[W ] is an indefinite quadratic form derived from the intersection form on H3(X,C)
(see §5.3). Thus, we can describe the set of relevant superpotentials as follows:

• Fluxes G ∈ H3(X,Z ⊕
√
−1Z) give rise to flux superpotentials WG, which form a

lattice FZ ⊂ F in a subspace F ⊂ H0(C,L) of dimension 2b3 = dimH3(X,C). We
call F the space of ‘complex flux superpotentials’.

• The tadpole constraint 0 ≤ Q[G] ≤ L determines a hyperbolic shell in F , i.e. the
region between the image of the cone Q[G] = 0 and the hyperboloid Q[G] = L.

Let us summarize what this implies about the set of candidate vacua in the model. Each
superpotential WG gives rise to a number of critical points Crit(WG) ⊂ C, any one of which
is a candidate for the vacuum state of the universe. The set of possible vacua is thus the
union

VacuaL =
⋃

G∈H3(X,Z⊕√−1Z), 0≤Q[G]≤L
Crit(WG). (2)
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The ‘tadpole’ number L is fixed by X and can take on a large range of values (cf. §5.3 and
especially (46)).

The seeming multitude of superpotentials and vacua is obviously a problem for string
theory. Unless or until a principle emerges which selects one superpotential and one vacuum,
it seems natural to investigate the whole ‘discretuum’ of possible vacua to answer such
questions as: how many vacua are there for a fixed manifold X, as W runs over the set (2)
of physically allowed superpotentials? More importantly, how many vacua are consistent
with known values of the cosmological constant (the value of VW (Z) at the critical point)
or masses of elementary particles? Does even one exist? How are vacua distributed in the
moduli space MCY of Calabi-Yau manifolds?

A direct enumerative approach to vacua is to pick a specific manifold X, calculate the
corresponding superpotentials on C, and solve for their critical points. Such an approach has
been carried out for rigid Calabi-Yau manifolds (cf. §5.5), for the complex 3 torus (T 2)3, for
one or two parameter families of quintic hypersurfaces in CP

4 or for more general hypersur-
faces in weighted projective spaces (see e.g. [AD, CQ, GKT, DGKT, MN]). Enumerative
problems for flux vacua in (2) may turn out to be intrinsically interesting in mathematics.
Indeed, the dualities between different string models should define correspondences between
their vacua. Besides the type IIb compactifications with flux on a CY 3-fold, there are other
string models such as the type IIa string on a CY 3-fold, the heterotic string on a CY 3-fold
or M theory on a G2 manifold. Other dualities relate vacua with flux to vacua defined using
Dirichlet branes, which are counted using Gopakumar-Vafa invariants. Thus, we may expect
relations between the mathematically diverse enumeration problems which arise in vacuum
counting. In addition, flux vacua are very analogous to extremal black holes, which are crit-
ical points of superpotentials of the same kind but with real fluxes [St, FGK]. The critical
point equation (known as the black hole attractor equation) appears to have connections to
number theory [M, MM].)

However, it is difficult and laborious to solve the critical point equations explicitly in all but
the simplest models. Therefore M. R. Douglas initiated in [D] a statistical approach to count
the vacua in (2) and determine the distribution of physically interesting quantities such as the
cosmological constant on that set. He suggested that the discrete set of flux superpotentials
could be approximated (for sufficiently large L) by a continuum ensemble resembling the
Gaussian or spherical ensembles studied in [BSZ1, BSZ2]. At the same time, B. Shiffman
and the author were studying critical points of random holomorphic sections relative to
metric connections for their intrinsic mathematical interest (see §4). This coincidence of
interests led to our joint works on statistics of vacua [DSZ1, DSZ2, DSZ3]. There is also
a wealth of detail without rigorous proofs on statistics of vacua in the physics articles by
Ashok-Douglas [AD], Denef-Douglas [DD, DD2] and in [GKT, DGKT, CQ].

These works aim at giving a precise and rigorous count of vacua satisfying physical con-
straints in a specific model. At the same time, the string theory literature contains a number
of heuristic statements about numbers of vacua and the string theory landscape which do
not specify any particular model. The graph of the scalar potential energy is often visualized
in physics as a landscape [S] whose local minima are the candidate vacua. In the words of
Bousso-Polchinski [BP], “The theory of strings predicts that the universe might occupy one
random ”valley” out of a virtually infinite selection of valleys in a vast landscape of possi-
bilities.” They suggest that the number of valleys might not be infinite but roughly of the
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order 10500. In a lecture, L. Susskind also arrived at this large number of local minima by
reasoning that the potential energy is a function of a large number of variables (say, 1, 000).
A typical polynomial f of degree d on C

m may be expected to have (d− 1)m critical points
since critical points are solutions of the m equations ∂f

∂zj
(w) = 0 of degree d − 1. Thus, a

figure of 10500 is reasonable if the potential has a degree of the order of magnitude of 10.
To connect this heuristic argument to the type IIb flux compactification model we are

focussing on here, we should imagine the potential energy as defined on F × C, i.e. the
flux space F should be included as part of the moduli variables in the potential energy.
The string theory landscape is thus pictured as the graph of a potential energy function
V(W,Z) over F ×C, whose critical points are pairs (G,Z) ∈ H3(X,C)×C with G ∈ FZ and
Z ∈ Crit(WG); thus, VacuaL is in 1 − 1 correspondence with the critical points of V . For
a typical CY 3-fold, the third betti number b3 is often around 300 and sometimes as high
as 1, 000 (cf. [G, GHJ, Can1, Can2] for references). The space F × C has dimension 3b3
or roughly 1, 000 or so (depending on the topology of X). Thus, the potential is indeed a
function of roughly 1, 000 variables.

It is not so easy to conclude from these facts how many critical points the potential
should have, however. The first problem is that the critical point equation is C∞ but not
holomorphic, so vacua should be viewed as critical points of a real system of equations. Thus
#Crit(W ) varies with W and it is not obvious how many real critical points to expect even
a polynomial of known degree to have (the answer depends on the probability measure one
uses to define ‘expect’). For that matter, a flux superpotential W is not a polynomial and it
is not apriori clear how to assign it a ‘degree’ or other measure of complexity which reflects
its number of critical points. Further, C is an incomplete Kähler manifold of rather small
volume, so it is not really analogous to R

n in counting critical points. Such complications lie
at the heart of the ‘statistics of vacua’. In Theorem 5.1 of §5, we give an asymptotic formula
for #VacuaL which uses a mixture of lattice point methods and integral geometry to deal
with these complications. Our rigorous count of the number of vacua of (2) lying in a given
compact subset K ⊂ C shows that it is given asymptotically by

#VacuaL ∩K ∼ CK,XL
b3(X), as L→ ∞, (3)

where CK,X is a certain integral over K. Of course, such an asymptotic result only provides
a good estimates when L is large (cf. §5 for more details). It is roughly consistent with
the heuristic predictions of 10500 when L ∼ 1, 000, but its accuracy depends on the size of
the coefficient CK,X and on the remainder estimate. The coefficient CK,X is (very roughly
speaking) a measure of the number of critical points of an individual W in K. This number
is often small, so it appears that the complexity of a given superpotential W is not large; it
is rather the large number of possible fluxes G satisfying 0 ≤ Q[G] ≤ L which is responsible
for the large value of #VacuaL. This is why we should view the landscape as rippling over
F × C.

Theorem 5.1 is only a first step in the rigorous study of statistics of vacua. Effective
results would presumably be more useful than asymptotic results for counting vacua in a
specific theory. Its limitations and the many issues it leaves unresolved are discussed in
§5. However, at this stage in vacuum statistics, the main purpose is to provide a model for
rigorous results which illuminates the complexities and subtleties underlying naive vacuum
counting in string theory.
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1.2. Random polynomials and statistical algebraic geometry. Although we are em-
phasizing statistics of string vacua, the study of zeros (and critical points) of random polyno-
mials and holomorphic sections has its own intrinsic interest. Zeros of random holomorphic
sections form the basis of statistical algebraic geometry– the probabalistic study of algebraic
varieties when the coefficients of polynomial equations are viewed as random variables. We
present a number of results on the geometry of zeros and critical points of random polynomi-
als and sections in §2 - §3 and §6. They are motivated by the question, how do probabilities
and correlations for random algebraic varieties behave as the complexity of the varieties
increases? Here, complexity is usually measured by the degree of the defining equations but
could also involve the number of variables (see [Z] for further background).

What are random polynomials or sections? A section may be expressed as a linear com-
bination S(z) =

∑N
j=1 cjSj(z) relative to a fixed basis {Sj} of given space S of functions.

We endow S 
 C
N with a probability measure P , so that the coefficients cj become random

variables. A ‘random section’ is an element of (S, P ) which one thinks of as having expected
(average) features.

Examples

Gaussian measures γ are very basic ones where S is equipped with an inner product
〈, 〉, where {Sj} is an orthonormal basis and where the coefficients are independent complex
normal variables. They will be discussed extensively in §2 - §3. A basic invariant of Gaussian
measures is the covariance kernel

ΠS,γ(z, w) = E γ(S(z)S(w), (4)

which is the kernel of the orthogonal projection onto S (see Definition 3). It complex
analysis it is often called the Szegö kernel. The asymptotic behavior of this kernel as the
degree increases is often the most delicate aspect of the study of random zeros and critical
points, and will be discussed in detail in §2 and below.

Non-Gaussian measures are of course of course also very important. One example of
a non-Gaussian measure is the spherical ensemble defined by an inner product, whereby
we endow the unit sphere SH0(M,L) with its U(d)-invariant probability measure, where
d = dimH0(M,L). That is, we pick sections at random from the unit sphere with equal
probability of picking any section. This ensemble is however only superficially different from
the Gaussian ensemble. If one writes expected values or probabilities in polar coordinates,
one easily relates spherical and Gaussian ensembles based on the same inner product. In the
language of statistical mechanics, they are equivalent ensembles.

Another non-Gaussian example is the discrete ensemble where the coefficients cj of zj are
independent ±1 coefficients with equal probability of each sign. These are the ensembles
studied by Bloch-Polya [BP] and Salem-Zygmund [SZ], among others. A more general dis-
crete ensemble arises if one fixes a lattice L and a region Ω in the space of polynomials, and
defines P by putting point-masses anδn at the lattice points n ∈ L ∩ Ω so that the sum of
the an equals one. For instance, one could choose the lattice to be the integral lattice in the
coefficient space. This is the kind of measure which arises in the vacuum selection problem in
string theory, although it is not normalized to be a probability measure. More generally, one
could take the coefficients to be any kind of i.i.d. random variables with suitable regularity
and moment conditions [IZ, DPSZ, BD, So].
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Why study random polynomials in pure mathematics? One answer is that we can often
obtain information about ‘random polynomials’ which is very difficult to obtain about any
individual polynomial. How are its zeros distributed? How are its values distributed? How
large are its (say, Lp) norms? Studying these aspects of individual polynomials inevitably
forces one to spend most of the time on ‘outliers’ which exhibit extremal behavior. The
extremals can be fascinating and beautiful. But the generic (average) polynomial demands
equal time and is often what is more relevant. Indeed, concentration of measure phenomena

take over when considering polynomials of large degreeN , since then P(1)
N is a Gaussian vector

space of large dimension. Functionals of polynomials such as its norms become concentrated
exponentially closely around their median values as N → ∞ and outliers are very rare (see
e.g. [SZ2] for results and references).

A second answer is that probabilistic information concerns the ensemble rather than the
individual, and ensemble problems have their own fascination. To illustrate: “how likely is
it to find two zeros of a polynomial of degree N which are within a disc of radius 1/N of each
other? How likely is it to find no zeros in a given disc of radius 1?” are ensemble questions
that make no sense for an individual polynomial. (See §6, and also [So], for discussions of
these problems). As this answer suggests, the information one obtains reflects on both the
objects involved (polynomials) and on the choice of probability measure P .

A physical answer to the question, ‘why random polynomials’ aside from string theory
is that there is a long tradition in physics of modelling random fluctuations in physical
systems by Gaussian random functions. For instance, the matter density fluctuations in
the early universe are often modelled as Gaussian. The statistics of its peak points (local
maxima) is considered to be relevant to the large scale distribution of galaxies in the universe
[BBKS]. Of course, the matter density has since evolved into a very non-Gaussian form
(cf. [BBKS, ABS]). The statistics of critical points of Gaussian random functions is also
relevant to peak points of signals [Ri], speckle patterns [Hal], quantum chaotic eigenfunctions
[B, Ze2, BBL, Han, NV, SZ], and metastable states in spin glasses (see [Fy] for references).

2. Zeros of Gaussian random polynomials of one variable

Random polynomials and more general random functions of one variable have a long
history in mathematics, of which some representative early works are Bloch-Pòlya [BPo],
Paley-Wiener-Zygmund [PWZ, PW], Littlewood-Offord [LO], Erdos-Turan [ET], Hammers-
ley [Ham], M. Kac [K1, K2] and S.O. Rice [Ri].

Let us begin with the definition: Complex holomorphic polynomials in one variable form
the complex vector space

P(1)
N = {

N∑
j=1

cjz
j, cj ∈ C} 
 C

N .

A ‘random’ polynomial is short for a probability measure P on the coefficients, and (P(1)
N , P )

is called an ‘ensemble’ of random polynomials. A random variable on the ensemble is simply

a function f(c) on P(1)
N and its expected value is defined by

E P (f) =

∫
P(1)

N

f(c)dP (c).
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Among the simplest and perhaps the most fundamental measures on P(1)
N are the Gaussian

measures. Let us postpone the general definition and consider one of the oldest and simplest
examples: the ‘Kac polynomial’

f(z) =
N∑
j=1

cjz
j

where the coefficients cj are independent complex Gaussian random variables of mean zero

and variance one. That is, the Kac measure on P(1)
N is the complex Gaussian measure for

which the coefficients of the basis {zj} satisfy.

E (cj) = 0 = E (cjck), E (cj c̄k) = δjk. (5)

Equivalently, in the coordinates cj, it is the measure defined by

dγKAC(f) = e−|c|2/2dc.

(To be historically accurate, M. Kac [K1, K2] considered the analogous ensemble polynomials
of one real variable and real coefficients. It was apparently Hammersley [Ham] who first
considered the complex analogue.)

Most work on random polynomials concerns their zeros, so we begin with them. The
distribution of zeros of a polynomial of degree N is the probability measure on C defined by

Zf =
1

N

∑
z:f(z)=0

δz, (6)

where δz is the Dirac delta-function at z. We most often regard δz and other measures as
linear functionals acting on test functions, and we then denote the pairing by 〈δz, ϕ〉 = ϕ(z).

Given a probability measure P on (P(1)
N we can define the expected distribution of zeros

of random polynomials of degree N with measure P . It is the probability measure E PZf on
C defined by

〈E PZf , ϕ〉 =

∫
P(1)

N

{ 1

N

∑
z:f(z)=0

ϕ(z)}dP (f),

for ϕ ∈ Cc(C). For most of the probability measures we study, it is a continuous (indeed,
smooth) measure whose density relative to a given volume form measures the probability
density of finding a zero near a point z.

How are zeros of complex Kac polynomials distributed? Kac studied real zeros of random
real Kac polynomials, and found that the expected number of real zeros was of the very
low order logN . Hammersley [Ham] and Shepp-Vanderbei [SV] explained this low order by
studying the expected distribution of complex zeros. They found that the complex zeros of
random Kac polynomials of degree N concentrate in small annuli around the unit circle S1.
Since S1 touches the real axis only at the two points ±1, the real zeros therefore concentrate
in thin intervals around these points. In the limit as the degree N → ∞, the complex zeros
asymptotically concentrate exactly on S1, as follows:

Theorem 2.1. [Kac, Hammersley, Shepp-Vanderbei] The expected distribution of zeros of
polynomials of degree N in the Kac ensemble has the asymptotics:

EN
KAC(ZN

f ) → δS1 as N → ∞ ,where (δS1 , ϕ) := 1
2π

∫
S1 ϕ(eiθ) dθ.
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This concentration on S1 may seem rather surprising. Do zeros of polynomials really
tend to concentrate on S1? The answer is a qualified ‘yes’: ‘yes’, for the polynomials which
dominate the Kac measure dγNKAC , ‘no’ for general polynomials. The concentration depends
on the choice of the Kac measure: making the coefficients of {zn} independent complex
normal variables had the effect of concentrating the expected distribution towards S1.

The Kac measure achieved this by imposing an implicit choice of inner product on P(1)
N .

This illustrates a basic fact: The choice of a Gaussian measure on a vector space H is
equivalent to the choice of inner product on H. The inner product induces an orthonormal
basis {Sj}. The associated Gaussian measure dγ corresponds to random orthogonal sums

S =
d∑
j=1

cjSj,

where {cj} are independent complex normal random variables.

The inner product underlying the Kac measure on P(1)
N is one for which the basis {zj} is

orthonormal. They are orthonormal on S1, and that is where the zeros concentrate. This
suggests that if we orthonormalize the polynomials on the boundary ∂Ω of of another simply
connected, bounded domain Ω, then the zeros will concentrate on ∂Ω. This would justify
our assertion that zeros of general polynomials do not concentrate on S1.

To make this precise, we define the inner product on P(1)
N by

〈f, ḡ〉∂Ω :=

∫
∂Ω

f(z)g(z) |dz| .

We let γN∂Ω = the Gaussian measure induced by 〈f, ḡ〉∂Ω and say that the Gaussian measure
is adapted to Ω. We then denote the expectation relative to the ensemble (PN , γN∂Ω) by EN

∂Ω.

Theorem 2.2. [SZ1] We have:

EN
∂Ω(ZN

f ) = νΩ +O (1/N) ,

where νΩ is the equilibrium measure of Ω̄.

We recall that the equilibrium measure of a compact set K is the unique probability
measure dνK which minimizes the energy

E(µ) = −
∫
K

∫
K

log |z − w| dµ(z) dµ(w).

Thus, in the limit as the degree N → ∞, random polynomials adapted to Ω act like electric
charges in Ω.

We obtain the same asymptotic distribution of zeros if we use any analytic density ρ|dz|
on ∂Ω and, moreover, if we orthonormalize the polynomials in the interior of Ω relative to
an analytic area form ρdz ∧ dz̄. This makes sense in the electron picture since electrons in
a region would push each other to the boundary and distribute themselves uniformly with
respect to dνK .

As these results show, the asymptotic distribution of zeros of Gaussian random polynomials
of degree N is highly sensitive on the choice of Gaussian measure (not to mention more
general measures).
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Let us give a few ingredients of the proofs which generalize to the line bundle setting. The
first objects is the Szegö kernel of Ω with respect to a measure ρds on ∂Ω, which is defined
as the Schwartz kernel S(z, w) of the orthogonal projection

S : L2(∂Ω, ρds) → H2(∂Ω, ρds) (7)

onto the Hardy space of boundary values of holomorphic functions in Ω which belong to
L2(∂Ω, ds). Since S is an orthogonal projection,we may express it in terms of any orthonormal
basis {Pk} as

S(z, w) =
∞∑
k=0

Pk(z)Pk(w), (z, w) ∈ Ω × Ω (8)

It is known that S(z, z) <∞ for z ∈ Ω, and thus PN → 0 on Ω.
We now choose the orthonormal basis to consist of the orthogonal polynomials of L2(∂Ω, ρds).

Since we are interested in polynomials in PN , we truncate the Szegö kernel to obtain the
partial Szegö kernel

SN(z, w) =
N∑
k=0

Pk(z)Pk(w). (9)

A simple but basic calculation shows that it is the two-point function:

Proposition 2.3. Let fN denote a random element of PN . Then

SN(z, w) = EN
∂Ω(fN(z)fN(w)).

The proof is simple and completely general: write f =
∑n

j=1 cjPj, use (5) and obtain the

right side of (9).
The next step, which is also valid in a very general context, is to express the distribution

of zeros in terms of the two-point function:

Proposition 2.4. We have

EN
∂Ω,ρ(Zf ) =

√
−1

2π
∂∂̄ logSN(z, z).

The proof is very simple in this setting, and acquires new features in the line bundle

setting. Since
√−1
2π
∂∂̄ log |z|2 = δ0, we have

Zf =

√
−1

2π
∂∂̄ log |f |2. (10)

It follows that

EN
∂Ω,ρ(Zf ) =

√
−1

2π
∂∂̄EN

∂Ω,ρ

(
log |f |2

)
. (11)

To calculate the expectation, we write f in terms of the orthonormal basis {Pj} of PN :

f(z) =
N∑
j=0

ajPj(z) = 〈a, p(z)〉 ,

where a = (a0, . . . , aN), P = (P0, . . . , PN). Then,

EN
∂Ω,ρ(Zf ) =

√
−1

π
∂∂̄

∫
CN+1

log |〈a, P (z)〉| 1

πN+1
e−‖a‖2

da.
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We write

P (z) = ‖P (z)‖u(z), ‖P (z)‖2 =
N∑
j=0

|Pj(z)|2 = SN(z, z), ‖u(z)‖ = 1 .

Then,
log |〈a, P (z)〉| = log ‖P (z)‖ + log |〈a, u(z)〉| .

We observe that ∫
CN+1

log |〈a, u(z)〉| e−‖a‖2

da = constant

since for each z we may apply a unitary coordinate change so that u(z) = (1, 0, . . . , 0). Hence
the derivative equals zero, and we have

EN
∂Ω,ρ(Zf ) =

√
−1

π
∂∂̄ log ‖P (z)‖ =

√
−1

2π
∂∂̄ logSN(z, z) .

�
To complete the proof of Theorem 2.2, we have to understand the asymptotic behavior

of the Szegö kernel SN(z, z). Up to this point, the arguments have been very general and
did not really use the special features of the Kac-Hammersley ensemble. But at this point,
the analysis of the two-point function SN(z, z) , the argument becomes delicate and depends
strongly on the context. In the proof of 2.2 one uses classical results of Szegö and Carleman
relating the Szegö and Bergman kernels, as well as the equilibrium measure, to the exterior
Riemann mapping function of Ω; since it does not generalize to the geometric setting, we stop
the discussion here and refer the reader to [SZ1] for further discussion of the Kac-Hammersley
case.

2.0.1. SU(2) polynomials. Is there an inner product in which the expected distribution of
zeros of polynomials of degree N is ‘uniform’ on C, i.e. which doesn’t concentrate anywhere?
The answer is ‘yes’, if we take ‘uniform’ to mean uniform on CP

1 with respect to the Fubini-
Study area form ωFS. The resulting ensemble is called the ensemble of SU(2)-polynomials.

The new feature is that we need to define an inner product on P(1)
N which depends on N .

We put:

〈zj, zk〉N =
1(
N
j

)δjk. (12)

Thus, a random SU(2) polynomial has the form

f =
∑

j≤N λj

√(
N
j

)
zj,

E(λj) = 0, E(λjλk) = δjk.

Proposition 2.5. In the SU(2) ensemble, E SU(2)(Zf ) = ωFS, the Fubini-Study area form
on CP

1.

This proposition is quite trivial if we make the right identifications. We recall that CP
1

carries a tautological line bundle whose fiber at the point with homogeneous coordinates
[z0, z1] ∈ CP

1 is the line in C
2 through (z0, z1). The dual line bundle is the hyperplane

section line bundle O(1) → CP
1 whose sections are linear functionals on the lines. The
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holomorphic sections of its Nth (tensor power) O(N) → CP
1 are then polynomials of degree

N , we we have an identification

P(1)
N 
 H0(CP

1,O(N)).

This space carries a natural SU(2)-invariant Fubini-Study inner product, defined by

〈s1, s2〉FS =

∫
CP1

hFS(s1(z), s2(z))zωFS(z).

Here, hFS is the Fubini-Study hermitian metric on O(1) and ωFS is its curvature (1, 1)-form,
the standard Fubini-Study area form. The integral can be put in a more familiar form if

we homogenize f(z) ∈ P(1)
N to F (z0, z1) = zN0 f(z1/z0): i.e. we introduce a new variable

z0 and homogenize each monomial zj to zN−j
0 zj1 on C

2. Sections of O(N) are equivalent
to equivariant functions on the associated S1 bundle SU(2) → CP

1, which in turn can be
identified with the boundary of the unit ball S3 ⊂ C

2. The Fubini-Study inner product
is then the usual inner product on the 3-sphere S3. The inner product (12) can be easily
calculated by homogenizing the monomials and calculating inner products on S3.

Since the inner product, hence the Gaussian measure, are SU(2) invariant, it follows that
E SU(2)(Zf ) is an SU(2)-invariant probability measure with a smooth density. There is a
unique such measure of mass one, and therefore E SU(2)(Zf ) = 1

V ol(CP1)
ωFS.

3. Gaussian holomorphic sections of line bundles over Kähler manifolds

The ensemble of SU(2) polynomials has an obvious generalization to m variables. We
denote by Pm

N the space of complex polynomials

f(z1, . . . , zm) =
∑

α∈Nm:|α|≤N
λαz

α1
1 · · · zαm

m ,

of degree N in m complex variables with cα ∈ C. As with one variable, we identify poly-
nomials of degree N with holomorphic sections on the Nth power of the hyperplane section
bundle:

Pm
N 
 H0(CP

m,O(N)).

We further define the SU(m + 1)- Gaussian measure γmN by using the Fubini-Study in-
ner product on the space H0(CP

m,O(N)), which is defined as in the one-variable case by
||f ||2FS =

∫
S2m+1 |F |2 dσ , where F (z0, . . . , zm) = zN0 f(z′/z0) is the homogenization of f . A

simple calculation gives

||zα||FS =

(
N

α

)−1/2

, 〈zα, zβ〉 = 0, α �= β.

We then define Gaussian random SU(m+ 1) polynomials of degree N by

f =
∑

|α|≤N λα

√(
N
α

)
zα,

E(λα) = 0, E(λαλβ) = δαβ.

In coordinates λα:

dγmN (f) =
1

πkN
e−|λ|2dλ on Pm

N .



RANDOM COMPLEX GEOMETRY AND VACUA, OR: HOW TO COUNT UNIVERSES IN STRING/M THEORY13

By the same argument as for m = 1, the expected distribution of zeros is uniform with
respect to the Fubini-Study volume form.

The SU(m+ 1) ensemble in turn generalizes to any compact Kähler manifold of complex
dimension m, and to any positive hermitian holomorphic line bundle L→M . To define the
term ‘positive line bundle’, we recall that in a local frame e, the hermitian metric is given
by a positive function h(z) = ||e||z. The curvature form is defined locally by

Θh = ∂∂̄K, K = − log h.

We say that (L, h) is positive if the (real) 2-form ω =
√−1

2
Θh is positive, i.e., if ω is a Kähler

form. Given one positive metric h0 on L, the other metrics have the form hϕ = eϕh. We
denote the space of positive metrics by

P (M,L) = {ϕ ∈ C∞(M) : Θh = Θh0 − ∂∂̄ϕ >> 0}. (13)

If (L, h) is positive, then dVh =
ωm

h

m!
defines a volume form for M , where m = dimCM . We

define the inner product

〈s1, s2〉h =

∫
M

h(s1(z), s2(z))dVh(z).

This inner product determines a special Gaussian ensemble which depends only on the metric
h.

Definition: Let (L, h) → M be a positive line bundle. We define the Hermitian Gaussian
measure of (L, h) to be the Gaussian measure γh on H0(M,L) determined by 〈, 〉h, i.e.

s =
∑
j

cjSj, 〈Sj, Sk〉 = δjk

with E(cj) = 0 = E(cjck), E(cjck) = δjk, where {Sj} denotes an orthonormal basis of the
space H0(M,L) relative to 〈, 〉h.

The Hermitian Gaussian measures seem the simplest and most natural ones in geometry.
However, we caution the reader that the line bundle in string theory is negative and the
Gaussian measures relevant to string/M theory are not Hermitian.

Given any inner product 〈, 〉 on a subspace S ⊂ H0(M,L), a key invariant is the following:

Definition: The two-point kernel of a Gaussian measure γ defined by (S, 〈, 〉) is defined by

ΠS(z, w) = ES(s(z) ⊗ s(w)) ∈ Lz ⊗ Lw.

In a local frame eL for L over U ⊂M , we write

ΠS(z, w) = FS(z, w)eL(z) ⊗ eL(w),

and call FS(z, w) the local two-point kernel.

Here L denotes the complex conjugate of the line bundle L. ΠS can be written in the form

ΠS(z, w) =
n∑
j=1

sj(z) ⊗ sj(w) ,
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where {s1, . . . sn} is an orthonormal basis for S with respect to the inner product 〈, 〉 asso-
ciated to the Gaussian measure γ. Indeed, as in Proposition 2.3 we have,

E
(
s(z) ⊗ s(w)

)
= E

(
n∑

j,k=1

cjck sj(z) ⊗ sk(w)

)
=

n∑
j=1

sj(z) ⊗ sj(w) , (14)

since the cj are independent complex (Gaussian) random variables of variance 1.

3.1. Density of zeros in Hermitian Gaussian ensembles. The zero set Zs of a holo-
morphic section is a hypersurface in M . Parallel to the definition (6) of the distribution of
zeros of a random polynomial of one variable is the probability measure |Zs| on M defined
by

〈|Zs|, ϕ〉 =
1∫

Zs
ωm−1
h

∫
Zs

ϕωm−1
h , ϕ ∈ C(M). (15)

We note that, by the Wirtinger formula, ωm−1
h |Zs is the natural volume form on Zs induced

by the Kähler metric ωh. The measure |Zs| is the total variation of the current of integration
Zs over the zero set, i.e.

〈Zs, ϕ〉 =

∫
Zs

ϕ, ϕ ∈ Dm−1,m−1.

The Poincaré-Lelong formula says that

Zs =

√
−1

2π
∂∂̄ log |f |2 (16)

where s = fe locally in a frame e. Generalizing Proposition 2.4, we have:

Proposition 3.1. [BSZ2] We have:

E γh
[Zs] = ∂∂̄ log Πh(z, z) − Θh

where

Πh : L2(M,L) → H0(M,L)

is the orthogonal (Szegö ) projector with respect to the inner product 〈, 〉h.

This formula leads to a kind of generalization of the asymptotic distribution result of Kac-
Hammersley-Shepp-Vanderbei (Theorems 2.1 and 2.2) to positive holomorphic line bundles.
In place of letting the degreeN of the polynomial tend to infinity, we let the power LN := L⊗N

of the line bundle tend to ∞. These limits are in fact of the same type, since P(N) 

H0(CP

1,O(N)) and O(N) == O(1)⊗N . We choose the metric on LN to have the form
hN = hN .

Theorem 3.2. [SZ] Let (L, h) → M be a positive line bundle, and endow H0(M,LN) with
its Hermitian Gaussian measures γN relative to hN . Then the expected distribution of zeros
w.r.t γN is given asymptotically by

1

N
E γN

[Zs] = Θh +O(
1

N
).
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Let us sketch the proof: By Proposition 3.1, we have

1

N
E γN

[Zs] =
1

N
∂∂̄ log ΠN(z, z) − Θh,

where ΠN = ΠhN . As is generally the case in distribution problems for zeros or critical
points, the delicate step is the analysis of the behavior of the Szegö kernel ΠN(z, w). In
this case, we only need the diagonal asymptotics, which are known to have the form (cf.
[Cat, Ze, Lu]).

ΠN(z, z) ∼ Nm[1 +
a1(z)

N
+ · · · ]. (17)

It follows that
1

N
∂∂̄ log ΠN(z, z) = O(

1

N
),

concluding the proof.
Thus zeros become equidistributed with respect to the curvature. A heuristic explanation

of this reslt is that curvature causes sections to oscillate more rapidly that in flat regions, so
zeros concentrate in the most highly curved regions.

We are more interested in the discrete set of critical points than zeros in this article, so we
close this section by stating a result on the discrete zeros of m independent sections. Since
the zeros of a full system of m polynomials (or holomorphic sections) in m variables form a
discrete set, we define distribution of zeros of the system (f1, . . . , fm) by

Zf1,...,fm =
∑

{zj :f1(zj)=···=fm(zj)=0

δzj
.

We endow m-tuples of sections with the product measure so that they are independent
random sections. We denote the expected distribution of the simultaneous zeros of a ran-
dom system of m polynomials by EN(Zf1,...,fm , ϕ). It is the average value of the measure
(Zf1,...,fm , ϕ) w.r.t. f . We thus define

EN(Zf1,...,fm)(U) =
∫
dγN(f1) · · ·

∫
dγN(fm) ×

[
#{z ∈ U : f1(z) = · · · = fm(z) = 0}

]
,

for U ⊂ C
∗m, where the integrals are over PC

N or more generally over H0(M,LN).

Theorem 3.3. [SZ] In the Hermitian Gaussian ensemble on m independent copies of H0(M,LN),
we have:

1

Nm
EN(Zf1,...,fm) → ωmh

in the sense of weak convergence; i.e., for any open U ⊂M , we have

1
(N)m EN

(
#{z ∈ U : f1(z) = · · · = fm(z) = 0}

)
→ m!Volω(U) .

The results surveyed above concern the distribution of zeros of one or several Gaussian
random holomorphic sections. But the distribution of zeros is merely the simplest invariant
of the zeros of an ensemble. Higher level invariants are given by the correlation functions of
the zeros (or critical points), which measure whether zeros (or critical points) tend to repel,
or clump together or ignore each other. We will meet them in §6, where we review a result
from [BSZ3] which shows that this tendency depends on the dimension.
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4. Critical points

Algebraic geometers are most interested in zeros of holmorphic sections, but with vacua
of string theory in mind, we are more interested here in critical points. It turns out that the
theory of critical points relative to metric connections is quite different from that of zeros.
To understand why, let us recall the definition.

Definition: Let (L, h) → M be a Hermitian holomorphic line bundle over a complex
manifold M , and let ∇ = ∇h be its Chern connection. A critical point of a holomorphic
section s ∈ H0(M,L) is defined to be a point z ∈M where ∇s(z) = 0.

In a local frame e, the critical point equation for s = fe reads:

∂f(w) + f(w)∂K(w) = 0, (18)

where K = − log ||e(z)||h and where ∂f =
∑m

j=1
∂f
∂zj
dzj. The key difference with zeros is that

the critical point equation is only C∞ and not holomorphic since K is not holomorphic. In
fact, the critical point equation is equivalent to d log ||s(z)||2h = 0, i.e. to the non-zero critical
points of the metric norm ||s(z)||h of the section.

The reader might wonder how such a notion of critical points relates to the more classical
notion on C

m,

∂f

∂z1

(w) = · · · =
∂f

∂zm
(w) = 0, (19)

which is manifestly complex analytical [AGV, Mi]. There are actually two distinct ways to
interpret this notion on manifolds. The first is that w is a singular point. For sections of
line bundle, a singular point is a point where s(w) = ∇s(w) = 0. For a polynomial f on
C
m there is no change in geometry of the hypersurface f = 0 if one subtracts f(w) so that

f(w) = 0. Generic holomorphic sections s ∈ H0(M,L) have no singular points, but they are
nevertheless interesting and important in both mathematics and physics (in string theory,
they are the ‘Minkowski vacua’) and one can develop a conditional probability theory of
them (in progress). The second interpretation is that the gradient ∇ in (19) compactifies
to a meromorphic flat connection on CP

m and thus (19) genereralizes to the study critical
points of sections relative to flat meromorphic connections. It is simpler than the C∞ metric
theory and is studied in [DSZ4].

But for supersymmetric vacua of string theory, the connection is a metric connection and
the critical points are non-singular in general; and therefore (18) is the appropriate notion
in this article.

4.1. Critical points relative to Hermitian connections. The distribution of critical
points of a fixed section s with respect to h (or ∇h) is the measure

Ch
s :=

∑
z∈Crit(s,h)

δz. (20)

That is,

〈Ch
s , ϕ〉 :=

∑
z∈Crit(s,h)

ϕ(z). (21)
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We denote the set of critical points of s by Crit(s, h) and its number by #Crit(s, h). Note
that we do not normalize Ch

s to be a probability; this is because #Crit(s, h) is a complicated
random variable.

As with the expected distribution of zeros, if we equipH0(M,L) with a probability measure
γ, then we obtain a distribution of critical points. We need a rather general version for later
application to string theory:

Definition: Let S ⊂ H0(M,L) denote a subspace of holomorphic sections, let γ denote
a Gaussian measure on S, and let ∇h denote a connection on L for a hermitian metric h.
The (expected) distribution E γC

h
s of critical points ∇hs(z) = 0 of s ∈ S ⊂ H0(M,L) with

respect to ∇h and γ is defined by

〈E γC
h
s , ϕ〉 :=

∫
M

ϕ(z)Kcrit(z) dV (z) :=

∫
S

⎡⎣ ∑
z:∇hs(z)=0

ϕ(z)

⎤⎦ dγ(s)
A particularly important statistic is the expected number of critical points:

Definition:
N crit(h, γ) =

∫
S #Crit(s, h)dγ(s).

If we use the Hermitian Gaussian ensemble, then E γh
Ch
s and N crit(h, γh) are purely metric

invariants; in that case, we omit the notation γh.
It is important to keep in mind that N crit(h, γ) depends on both the connection ∇h and the

measure γ. This is in contrast to the number of simultaneous zeros of m generic holomorphic
sections of a line bundle, or the number of critical points of random polynomials in the Kac-
Hammersley ensembles, which are topological invariants; in the line bundle case, it is the
Chern number c1(L)m of L→M . On the contrary, the number #Crit(s, h) of critical points
of a section s ∈ H0(M,L)–even a polynomial in H0(CP

m,O(N)) – is genuinely a random
variable because the equation is non-holomorphic. The only topological invariant is the index
sum

∑
z:∇s(z)=0 ind(z) where ind(z) is the Morse index of the critical point.

The following questions about critical points seem fundamental:

• What is the maximum number

Max(L, h) = max
s∈H0(M,L)

#Crit(s, h)

of critical points of s ∈ H0(M,L) (one could add: of a given Morse index)? Is
Max(L, h) unbounded as h ranges over hermitian metrics on L? What about positive
hermitian metrics? If we take powers (LN , hN), how does Max(LN , hN) grow with
N .

• To what extend is N crit(h, γ) a topological invariant? I.e. although #Crit(s, h)
depends on the metric h for an individual section, to what extend is the average
number of critical points independent of h?

• Which metrics (if any) minimize N crit(h, γ)?

Intuitively, the number of critical points reflects the degree of the Kähler potential in (18)
as well as the degree of the section. Unless there is some limit on the degree of K, one
should expect Max(L, h) to be unbounded as h varies over hermitian metrics. Requiring
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h = eϕh0 ∈ P (M,L) (see (13)) to be positively curved constrains the second derivative of
h and possibly Max(L, h), though this is unknown. Metrics minimizing N crit(h, γ) are in
some sense ‘of least complexity’.

Before we can attempt to answer such questions, we need to calculate the expected distri-
bution of critical points. We need a very general version in which the subspace S ⊂ H0(M,L)
can be a proper subspace, and in which the Gaussian measure and connection are completely
independent.

4.2. The expected distribution of critical points in dimension one. We first give the
formula for the expected distribution of critical points in dimension one.

Theorem 4.1. [DSZ1] Let (L, h) → M be a Hermitian line bundle on a (possibly non-
compact) Riemann surface M with area form dV . Let µ1 = µ1(z), µ2 = µ2(z) denote the
eigenvalues of Λ(z)Qr, where r = r(z) = i

2
Θh/dV . Then Kcrit

S,γ,∇ = KS,h,V dV , where

Kcrit
S,h,V =

1

πA

µ2
1 + µ2

2

|µ1| + |µ2|
=

1

πA

TrΛ2

Tr|Λ 1
2QrΛ

1
2 |
.

Here,

Qr =

(
1 0
0 −r2

)
,

and

A(z0) =

(
∂2

∂z∂w̄
FS(z, w)

∣∣∣∣
(z,w)=(z0,z0)

)
(22)

and

Λ(z0) = C(z0) −B(z0)
∗A(z0)

−1B(z0) , (23)

where

B(z0) =

[(
∂3

∂z∂w̄∂w̄
FS(z, w)

) (
∂

∂z
FS(z, w)

)]∣∣∣∣
(z,w)=(z0,z0)

, (24)

C(z0) =

⎡⎣
(

∂4

∂z∂z∂w̄∂w̄
FS(z, w)

) (
∂2

∂z∂z
FS(z, w)

)
(

∂2

∂w̄∂w̄
FS(z, w)

)
FS(z, z)

⎤⎦∣∣∣∣∣∣
(z,w)=(z0,z0)

, (25)

To our knowledge, the first formula of this kind is due to S. O. Rice [Ri, Ria] in the
case of real polynomials in one real variable. Related formulae for critical points of real
random functions are given in [BBKS] and [Fy], with references to the earlier literature.
The expression in Theorem 4.1 is one of several proved in [DSZ1, DSZ2], based on our
earlier work on zeros [BSZ1].

4.2.1. Exact formula for N crit(hFS, γFS) on CP
1. In the special case of CP

1 we can give a
more precise formula:
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Theorem 4.2. [DSZ1] The expected number of critical points of a random section sN ∈
H0(CP

1,O(N)) (with respect to the Gaussian measure γFS on H0(CP
1,O(N)) induced from

the Fubini-Study metrics on O(N) and CP
1) is

5N2 − 8N + 4

3N − 2
=

5

3
N − 14

9
+

8

27
N−1 · · · .

This should be compared to the number N − 1 of critical points of a polynomial of degree
N in the classical sense of f ′(z) = 0. That number is topological, since (as mentioned above)
d/dz defines a flat meromorphic connection on CP

1 with pole at infinity. The equation
f ′(z) = 0 is then holomorphic rather than C∞, all of the critical points are saddle points,
and their number is given by a Chern class. We find that when a smooth metric of positive
(1, 1) curvature is used, then the number of critical points goes up: There are N

3
new local

maxima and N
3

new saddles. Thus, the positive curvature of the Fubini-Study hermitian
metric and connection causes sections to oscillate much more than the flat connection.

4.3. Higher dimensions. We now generalize the density formula to higher dimensions. For
simplicity of notation, we assume that the holomorphic Hessian maps

Hz : Sz → Sym(m,C), with Sz = {s ∈ S : ∇s(z) = 0} (26)

are surjective for all z, where Sym(m,C) denotes the space of complex symmetric matrices
of rank m, and only indicate the modification at the end of the statement of the theorem
when this does not hold. The modification is important because the Hessian is not surjective
in the case of string vacua and black holes.

Theorem 4.3. [DSZ1] Let (L, h) →M denote a holomorphic hermitian line bundle. Assume
that Hz : Sz → Sym(m,C) is surjective for all z. Then there exist positive-definite Hermitian
operators

A(z) : C
m → C

m , Λ(z) : Sym(m,C) ⊕ C → Sym(m,C) ⊕ C , such that

Kcrit(z) = 1
detA(z) det Λ(z)

×
∫

C

∫
Sym(m,C)

| det

(
H ′ xΘ(z)

x̄ Θ̄(z) H̄ ′

)
| e−〈Λ(z)−1(H′⊕x), H′⊕x〉 dH ′ dx .

Here, dH and dx denote Lebesgue measure, and Θh(z0) =
∑

j,q Θjqdzj ∧ dz̄q is the curvature

(1, 1) form.
If Hz : Sz → Hz maps to a proper subspace, then Sym(m,C) = Hz⊕H⊥

z is the orthogonal
decompositon into Λz-invariant subspaces for which Λz >> 0 and Λz = 0. The integral is
then over Hz ⊕ C and Λz should be everywhere replaced by Λz|Hz⊕C.

When h is a positive or negative hermitian metric, one can choose coordinates and frames
in which Θ = ±I to obtain:

Corollary 4.4. [DSZ1] Let (L, h) → M denote a positive or negative holomorphic line
bundle, and give M the volume form dV = 1

m!

(
± i

2
Θh

)m
induced from the curvature of L.

Then if Hz : Sz → Hz is surjective, we have

Kcrit
h,S (z) = 1

detA detΛ

∫
Sym(m,C)×C

|det(H ′H ′∗ − |x|2I)| e−〈Λ(z)−1(H′,x),(H′,x)〉 dH ′ dx .

We make the same modification as above if Hz is not surjective.
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By integrating over M , we obtain an explicit formula for the expected number N crit(h) of
critical points of a Gaussian random holomorphic section. For the sake of simplicity we only
state it for positive or negative metrics.

Corollary 4.5. [DSZ1]

N crit(h) =
∫
M
{ 1

detA detΛ

∫
Sym(m,C)×C

|det(H ′H ′∗ − |x|2I)| e−〈Λ(z)−1(H′,x),(H′,x)〉 dH ′ dx}dVh .

When γ is the Hermitian Gaussian measure, N crit(h) is a purely metric invariant of (L, h).
Above, the operators A(z),Λ(z) depend only on ∇ and on the Szegö kernel ΠS and are

defined as follows in the surjective case: Let H = (Hjq) ∈ Sym(m,C), and write

H =
∑

1≤j≤q≤m
Ĥjq E

jq , Ĥjq = τjqHjq , (27)

where τjq =
√

2 if j < q, resp. τjj = 1 for 1 ≤ j ≤ m, 1 ≤ j ≤ q ≤ m, 1 ≤ j′ ≤ q′ ≤ m.
Then denote an operator on Sym(m,C) ⊕ C by

Λ =

⎡⎣ (Λj′q′
jq

) (
Λ0
jq

)
(
Λj′q′

0

)
Λ0

0

⎤⎦ , (28)

and define

〈Λ(z)−1(H, x), (H, x)〉 =
∑

(Λ−1)j
′q′
jq ĤjqĤj′q′ + 2Re

∑
(Λ−1)0

jqĤjqx̄+ (Λ−1)0
0|x|2. (29)

As in Definition 3, let FS(z, w) be the local expression for ΠS(z, w) in the frame eL. Then
Λ = C −B∗A−1B, where

A =
(

∂2

∂zj∂w̄j′
FS(z, w)|z=w

)
,

B =
[(

∂3

∂zj∂w̄q′∂w̄j′
)FS |z=w

) (
( ∂
∂zj
FS |z=w

)]
,

C =

⎡⎣
(

∂4

∂zq∂zj∂w̄q′∂w̄j′
FS |z=w

) (
∂2

∂zj∂zq
FS
)

(
∂2

∂w̄q′∂w̄j′
FS
)
|z=w FS(z, z)

⎤⎦ ,
1 ≤ j ≤ m, 1 ≤ j ≤ q ≤ m, 1 ≤ j′ ≤ q′ ≤ m.

In the above, A,B,C arem×m, m×n, n×nmatrices, respectively, where n = 1
2
(m2+m+2).

The space Sym(m,C) ⊕ C arises in the surjective case since it parametrizes the possible
Hessians of holomorphic sections at critical points. To explain this, we locally write Hessians
in the form

D′∇′s(z0) =
∑
j,q

H ′
jqdzq ⊗ dzj ⊗ eL, D′′∇′s(z0) =

∑
j,q

H ′′
jqdz̄q ⊗ dzj ⊗ eL . (30)

In the local frame, the hermitian metric is represented by the function

|eL(z)|2h = e−K(z) , (31)

and thus for a section s = feL ∈ H0(M,L),

∇s =
m∑
j=1

(
∂f

∂zj
− f

∂K

∂zj

)
dzj ⊗ eL =

m∑
j=1

eK
∂

∂zj

(
e−K f

)
dzj ⊗ eL . (32)
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Differentiating (32), we then obtain:

H ′
jq =

∂2f

∂zj∂zq
(z0) ∈ Sym(m,C) , (33)

H ′′
jq = − f

∂2K

∂zj∂z̄q

∣∣∣∣
z0

= −f(z0)Θjq ∈ CΘjq . (34)

We assemble the blocks into the following ‘complex Hessian’:

Hc :=

(
H ′ −f(z0)Θ

−f(z0)Θ H ′

)
.. (35)

Under the surjectivity assumption, the image of the Hessian map is thus Sym(m,C) ⊕ C.
As mentioned above, when the Hessian maps to a proper subspace, one simply restricts Λz

to its positive spectral subspaces.
The absolute value surrounding the determinant in the density formula of Theorem 4.3

makes this formula difficult to analyze. In particular, Wick’s formula for computing moments
of Gaussian measures does not apply. In [DSZ2] an alternative Itzykson-Zuber type formula
for the expected distribution is given which reduces the calculation to repeated residue
integral calculations. In §6 we discuss the asymptotics of the distribution of critical points
which reveals the dependence on the geometry of (L, h) of the integral.

We briefly indicate the proof of Theorem 4.3. By definition,∫
M

ϕ(z)Kcrit(z) dV (z) :=

∫
S

⎡⎣ ∑
z:∇hs(z)=0

ϕ(z)

⎤⎦ dγ(s). (36)

The integral on the right hand side may be regarded as an integral over the incidence relation

I = {(s, z) : s ∈ Sz} ⊂ S ×M (37)

where Sz is defined in (26). The integral over I is performed as an iterated integral
with respect to the ‘fibration’ I → S. The integration measure on I is sometimes writ-
ten δ(∇s(z))| detD∇s(z)|. Here, δ(∇s(z)) = ∇s(z)∗δ0 stands for the Leray form in I,

namely the quotient form γ×dV (z)
dE , where E is the evaluation map E(s, z) = ∇s(z). The fac-

tor | detD∇s(z)| is needed to cancel out the denominators which appear in ∇s(z)∗δ0 but

do not appear in
[∑

z:∇hs(z)=0 ϕ(z)
]
. To obtain the expression in Theorem 4.3, it is only

necessary to switch the order of integration to integrate first over the fibers of I →M.

4.4. Morse index. We are ultimately interested in local minima of sections of negative line
bundles, so we want to take the Morse index of a critical point into account. To do this, it is
only necessary to integrate over the subclass of symmetric matrices represented this Morse
index.

We define the topological index of a section s at a critical point z0 to be the index of the
vector field ∇s at z0 (where ∇s vanishes). The critical points of a section s are the critical
points of log |s|h, and for positive line bundles L, we have

indexz0(∇s) = (−1)m+Morse indexz0 (log |s|) , (38)

at (nondegenerate) critical points z0.
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Theorem 4.6. [DSZ1] Let (L, h) →M be a positive holomorphic line bundle over a complex
manifold M with volume form dV = 1

m!
( i

2
Θh)

m. Suppose that H0(M,L) contains a finite-
dimensional subspace S with the 2-jet spanning property, and let γ be the Hermitian Gaussian
measure on S. Then the expected density with respect to dV of critical points of log |s|h of
Morse index q is given by

Kcrit
S,h,q(z) =

π−(m+2
2 )

detA(z) det Λ(z)

∫
Sm,q−m

∣∣det(SS∗ − |x|2I)
∣∣ e−〈Λ(z)−1(S,x),(S,x)〉 dS dx .

where

Sm,k = {S ∈ Sym(m,C) × C : index(SS∗ − |x|2I) = k} .

Let us consider the case of Riemann surfaces. The critical points of s of index 1 are the
saddle points of log |s|h (or equivalently, of |s|2h), while those of index −1 are local maxima
of log |s|h in the case where L is positive, and are local minima of |s|2h if L is negative.
(If L is negative, the length |s|h cannot have local maxima; if L is positive, the only local
minima of |s|h are where s vanishes.) Thus, in dimension 1, topological index 1 corresponds
to log |s|h having Morse index 1, while topological index −1 corresponds to Morse index 2 if
L is positive.

Corollary 4.7. [DSZ1] Let (L, h) → (M,dV ), µ1, µ2 be as in Theorem 4.1. Then:

• The expected density of critical points of topological index 1 (where |s|2h has a saddle
point) is given by

Kcrit
+ (z) =

1

πA(z)

µ2
1

|µ1| + |µ2|
,

• The expected density of critical points of topological index −1 (where |s|2h has a local
maximum) is

Kcrit
− (z) =

1

πA(z)

µ2
2

|µ1| + |µ2|
.

• Hence, the index density is given by

Kcrit
index := Kcrit

+ (z) −Kcrit
− (z) =

1

πA(z)
(µ1 + µ2) =

1

πA(z)
Tr[Λ(z)Q] .

5. String theory

Having gained some experience with metric critical points of Gaussian random holomor-
phic sections, we return to vacuum statistics problem in string theory. As discussed in the
introduction (see §1.1), the main problem is to count the number of vacua coming from all flux
superpotentials satisfying a certain tadople constraint which are consistent with the known
values of physical constants such as the cosmological constant. We will not discuss the physics
of string vacua further, and refer the reader to M. R. Douglas’ articles and lectures on the
subject for movation and background (see also [D, AD, DD, DD2, DGKT, GKT, CQ, Gid]).
We will confine our discussion to the mathematics of the vacuum selection problem. As a
counting problem, it differs in several key aspects from the problems studied in §4 which we
should highlight at the outset:
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• The ensembles of sections relevant to string theory are discrete, i.e. the coefficients
only take on discrete values lying in a set of lattice points. We mainly discuss the
asymptotic regime in which the (scaled) values become dense and the ensembles are
well approximated by Gaussian ensembles;

• The measure we put on the lattice of superpotentials is not normalized to be a
probability measure: the purpose is to count all vacua coming from the collection
of superpotentials which satisfy physical constraints, not to estimate probabilities of
vacua satisfying constraints.

As this suggests, the distribution of vacua in string theory is a hybrid problem involving
both lattice point problems and the complex geometry of critical points. The main result
we describe, Theorem 5.1, is an asymptotic formula for the density of critical points of the
physically relevant flux superpotentials as a certain tadpole number L increases. Its purpose
is to provide a simple but reasonably accurate ‘order of magnitude’ estimate for numbers of
vacua in the high tadpole number regime. More refined and difficult results will be briefly
discussed at the end of this section.

5.1. Type IIb compactifications on Calabi-Yau manifolds (or orientifolds) with
flux. Our first object is to describe the string theory models. The specific models we work
with are called type IIb compactifications on Calabi-Yau manifolds (or orientifolds) with flux,
which are described in a down-to-earth manner in [GKTT, GKT, AD] and which apparently
originate in [GVW, GKP].

As mentioned in the introduction, the vacuum in such a model has the form M3,1 × X
where X is a Calabi-Yau 3-fold. We recall that a Calabi-Yau d-fold is a compact complex
Kähler manifold X of dimension d with trivial canonical bundle KX , i.e. c1(X) = 0. By
the Calabi-Yau theorem, there exists a unique Ricci flat Kähler metric in each Kähler class
on X. Roughly speaking, the dimension 10D of the space-time is needed for a consistent
supersymmetric string theory, the fact that X is Kähler is needed for supersymmetry, and
the Ricci flatness of X follows from the Einstein vacuum equations (cf. [CHSW], or [St]). In
these models, any Calabi-Yau 3-fold could play the role of vacuum, or in other words, the
vacuum degeneracy consists in the moduli space MCY of Calabi-Yau (i.e. Ricci flat Kähler
) metrics on a 3-fold X.

String theory makes contact with ‘reality’ in the effective supergravity theory it induces.
Roughly speaking, effective supergravity is derived by ‘integrating out’ or neglecting the
massive modes (positive eigenvalues) of various operators (cf. [St]). The data of effective
supergravity consists of (C,L,W ) where:

(1) C is the configuration space;
(2) L → C is a holomorphic line bundle.
(3) the superpotential W is a holomorphic section of L.

In type IIb flux compactifications, the configuration space has the form

C = MCY × E , (39)

where E = H/SL(2,Z) is the moduli space of elliptic curves. One may view C as a moduli
space of Calabi-Yau metrics on the 4-fold X×T 2, which are elliptic fibrations over X as in ‘F
theory’ [V, MV]. The parameter τ ∈ H/SL(2,Z) is known as the dilaton-axion parameter,
and it has an important impact on the critical point equation.
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The moduli space MCY contains two sorts of moduli: Kähler class moduli and complex
structure moduli. In what follows, as in [AD, DD, DSZ3] and elsewhere, we will simplify the
problem by fixing the Kähler class. Once the Kähler class is fixed, the Calabi-Yau metrics
are parametrized by complex structures on X. To make this point clear, we denote by MC

the moduli space of complex structures on X and henceforth replace MCY by MC.

5.2. Calabi-Yau geometry. We now explain the Calabi-Yau moduli objects in more detail,
following the references [Can1, Can2, Gr, GHJ, LS].

Let X be a complex 3-fold. The Teichmüller space of X is defined by

T eich(X) = {complex structures on X}/Diff0

where J ∼ J ′ if there exists a diffeomorphism ϕ ∈ Diff0 isotopic to the identity satisfying
ϕ∗J ′ = J. The moduli space MC of complex structures on X is the quotient of T eich(X) by
the mapping class group

ΓX := Diff(X)/Diff0(X).

We often work on T eich(X) and treat MC as a fundamental domain DΓX
for ΓX in T eich(X).

The full symmetry group of C or more precisely its universal cover T eich(X) × H is then
Γ = ΓX × SL(2,Z).

The mapping class group ΓX has a representation on middle-dimensional cycles or co-
cycles H3(X,R) which preserves the intersection form

η(α, β) =

∫
X

α ∧ β.

The action of ΓX on 3-cycles defines a homomorphism

ϕ : ΓX → Sp(2b3,Z).

According to a theorem of D. Sullivan, ϕ(ΓX) is an (arithmetic) subgroup of finite index in
Sp(2b3,Z) and the kernel of ϕ is a finite subgroup.

Each choice of complex structure z ∈ MC gives rise to a Hodge decomposition

H3(X,C) = H3,0
z (X) ⊕H2,1

z (X) ⊕H1,2
z (X) ⊕H0,3

z (X) (40)

into forms of type (p, q). We put as usual hpq = dimCH
p,q and b3 = dimRH

3(X,R). Thus,
h3,0 = h0,3 = 1, h1,2 = h2,1 and b3 = 2 + 2h2,1. We also have h2,1 = dimC MC, so that the
high dimensionality of the configuration space is due to the topological complexity of X.

The intersection form defines a non-degenerate pairing of Hp,q with Hq,p whose sign de-
pends only on the parity of p. One can modify η to make the real symmetric bilinear form

Q(ψ, ϕ) = i3
∫
X

ψ ∧ ϕ̄. (41)

The Hodge-Riemann bilinear relations for a 3-fold say that the form Q is definite in each
Hp,q
z (X) for p+ q = 3 with sign alternating + − +− as one moves left to right in (40).
We now specify the line bundle L. On a Calabi-Yau 3-fold, dimH3,0

z (X) = 1, and
H3,0
z (X) → MC is a (holomorphic) line bundle known as the Hodge bundle. It carries a

natural Hermitian metric

hWP (Ωz,Ωz) =

∫
X

Ωz ∧ Ωz
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known as the Weil-Petersson metric. Thus, the Kähler potential on MC is

K(z, z̄) = − log

∫
X

Ωz ∧ Ωz. (42)

We denote the associated Chern metric connection by ∇WP . We then define LX to be the
dual line bundle to the Hodge bundle, and endow it with the dual Weil-Petersson metric
and connection. The hermitian line bundle (H3,0, hWP ) → MC is a positive line bundle,
and it follows that LX is a negative line bundle. We make a similar construction for the
moduli space E of complex structurs on the complex 1-torus and then tensor the two bundles
together to obtain a holomorphic line bundle L → C with its product Weil-Petersson metric.

5.3. Flux superpotentials and tadpole constraint. Type IIb flux compactifications
contain two non-zero harmonic 3-forms F,H ∈ H3(X,Z) which are known respectively as
the RR (Ramond-Ramond) and NS (Neveu-Schwartz) 3-form field strengths. These forms
induce a superpotential a potential V (Z) on C which ‘stabilizes moduli’, i.e. only the local
minima of V can be vacua. We now define these objects.

On a compact manifold, a negative line bundle has no holomorphic sections. But C is
non-compact and H0(C,L) has many holomorphic sections. The physically relevant sections
are the quantized, or integral, flux superpotentials, which correspond to complex integral
co-cycles (‘fluxes’) G ∈ H3(X,Z ⊕

√
−1Z). Given G = F + iH ∈ H3(X,Z ⊕

√
−1Z), and

τ ∈ H, physicists define the superpotential corresponding to G, τ by:

WG(z, τ) =

∫
X

(F − τH) ∧ Ωz. (43)

To be more precise, we form the 4-form on X × T 2

G̃ = F ∧ dy +H ∧ dx
and define a linear functional on H3,0

z (X) ⊗H1,0
τ (T 2) by

〈WG(z, τ),Ωz ∧ ωτ 〉 =

∫
X×T 2

G̃ ∧ Ωz ∧ ωτ . (44)

When ωτ = dx+ τdy we obtain the original formula. As Z = (z, τ) ∈ C varies, (44) defines a
holomorphic section of the line bundle L dual to H3,0

z ⊗H1,0
τ → C. The same definition makes

sense for any G ∈ H3(X,C). We denote by F ⊂ H0(C,L) the space of all complex-valued
flux superpotentials with dilaton-axion and by FZ ⊂ F the lattice of sections corresponding
to integral G ∈ H3(X,Z ⊕

√
−1Z).

Without any constraint on G, there would be an infinite number of possible superpoten-
tials, hence an infinity of vacua. This would destroy any vestige of predicitivity to string
theory. However, there is a constraint on G which limits the number of vacua to a finite
number, namely the tadpole constraint

Q[G] =

∫
FRR ∧HNS ≤ L (45)

where as in (41), Q is the Hodge-Riemann form on H3(X,C). The number L is not a free
parameter but is fixed by X. When there exists an involution g of X (an ”orientifolding”)
and a Calabi-Yau 4-fold Z which is an elliptic fibration over X/g, then

L = χ(Z)/24. (46)
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Since Q is indefinite, the integral fluxes G satisfying the constraint are lattice points in the
hyperbolic shell (45) in H3(X,C).

5.4. Critical points and Hodge decomposition. As mentioned in the introduction, a
superpotential WG adds a scalar potential (1) to the Lagrangian of effective supergravity.
Vacua are critical points of this real valued function. In this article, we only consider the
special class of supersymmetric vacua where ∇WPW (Z) = 0. There is a similar but more
complicated theory of non-supersymmetric vacua [DD2].

At a point Z = (z, τ), the supersymmetric critical point equation reads:

∇WP (WF (z) − τWH(z)) = 0, WH(z) − 1
τ−τ̄ (WF − τWH) = 0. (47)

Let us write this system of equations down explicitly in a local frame Ωz ⊗ ωτ of the Hodge
bundle with ωτ = dx+ τdy. We denote by Ω∗

z ⊗ ω∗
τ the dual co-frames of L. A holomorphic

section of L can then be expressed as W = fΩ∗
z ⊗ω∗

τ where f ∈ O(C) is a local holomorphic
function. When W = WG, the coefficient as f = ΠG is given by (43). It is essentially an
integral linear combinations of periods of X with coefficient τ . More precisely, let us choose
a symplectic basis {αj, βk} of H3(X,R) of A and B cycles with respect to the intersection

form η, and let {α̂j, β̂j} be their Poincaré duals. Write G =
∑b3/2

j=1 [NA
j α̂j + iNB

j β̂j]. Then fG
may be written as

fG(z, τ) =

b3/2∑
j=1

[NA
j Παj

(z) − τNB
j Πβj

(z)],

where Πγ(z) =
∫
γ
Ωz. These period functions satisfy a Picard-Fuchs equation along curves

and in special cases are given by generalized hypergeometric functions [Can1, Can2, Mor,
BCDFHJQ]. The supersymmetric critical point equations then read:⎧⎪⎨⎪⎩

∑b3
i=1{(N i

RR + τN i
NS)(

∂
∂zj

+ ∂
∂zj
K)Πi(z) = 0,

∑b3
i=1(N

i
NS − 1

τ−τ̄ (N
i
RR + τN i

NS))Π(z) = 0.

(48)

where K is the Kähler potential (42).
An interesting and rather surprising feature of the critical point equation emerges if one

fixes (z, τ) ∈ C and views the critical point equation as an equation for a complex flux
G ∈ H3(X,C). That is, for (z, τ) ∈ C, we define the vector space

Fz,τ := {WG : ∇WPWG(τ, z) = 0}. (49)

The spaces Fz,τ are the fibers of the map π : I → M in (53). Then we have:

∇WPWG(z, τ) = 0 ⇐⇒ G ∈ H2,1
z ⊕H0,3

z , (50)

i.e. Fz,τ 
 H2,1
z ⊕H0,3

z .
In the language of complex symplectic geometry, the critical point equation is picking out

a moving positive complex polarization of H3(X,C) for each (z, τ) . We recall that if (V, ω)
is a real symplectic vector space and if (VC, ωC) is its complexification, a complex Lagrangian
subspace F ⊂ VC is called a polarization. The polarization is complex if F ∩ F = {0}, and
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positive if iω(v, w̄) is positive definite on F . In our case, (V, ω) = (H3(X,R), η), and a
complex structure z on X determines the polarization

H3(X,C) = F ⊕ F , F = H3,0 ⊕H1,2, F = H2,1 ⊕H0,3.

Clearly, F is complex Lagrangian, and by the alternating sign of the Hodge-Riemann form
Q (41),

Q(v, w) = −iη(v, w), v, w ∈ F

is a positive definite real quadratic form on H2,1
z ⊕H0,3

z . Hence F is a positive polarization.
It is curious that the derivative in the additional parameter τ is needed in the critical point
equation to obtain a positive polarization of H3(X,C).

Our main goal is to count solutions of the system of equations (47)- (48) in a region
of moduli space as G varies over fluxes satisfying the tadpole constraint. Equivalently,
to count inequivalent vacua in Teichmüller space. That is, Γ acts on the pairs (W,Z) of
superpotentials and moduli by

γ · (G,Z) = (ϕ(γ) ·G, γ · Z),

Therefore Γ acts on the incidence relation (37), or more precisely on

T I := {(G,Z) ∈ (H3(X,C) × (T ×H) : ∇WPWG(Z) = 0}. (51)

We only wish to count critical points modulo the action of Γ. To do this, there are two choices:
we could break the symmetry by fixing a fundamental domain DΓ for Γ in T ×H, i.e. only
count critical points in a fundamental domain. Or second, we could fix a fundamental domain
for ϕ(Γ) in H3(X,C) and count all critical points of these special flux superpotentials. We
follow the first course.

The total number of critical points is a combination of two effects:

(1) The number of fluxes G ∈ H3(X,Z ⊕
√
−1Z) satisfying Q[G] ≤ l for which WG has

a critical point in DΓ;
(2) The number of critical points of each such WG.

It seems rather difficult to separate out these counting problems. As will be seen below,
there are a lot of critical points if L is large, but they mainly come from (1) rather than from
(2), and it is hard to determine how large (2) is. Intuitively, the number of critical points
of WG measures its ‘complexity’. This number should be its number of critical points in all
of T eich(X). If we only count critical points in DΓ, then the complexity of WG is measured
by the number of critical points in in DΓ of the Γ-orbit of WG. It seems difficult to tell from
(48) alone how many critical points each WG should have.

5.5. Rigid Calabi-Yau’s. To illustrate the issues, let us consider the simplest case where
the Calabi-Yau manifold X is rigid, i.e. MC = {pt} [AD]. Then only the parameter τ ∈ H
varies, and quantized flux superpotentials have the form

WA,B(τ) = Aτ +B, A = a1 + ia2, B = b1 + ib2 ∈ Z ⊕
√
−1Z.

The Kähler potential is given by K = − 1
τ−τ̄ . Hence the critical point equation reads

W ′(τ) − 1
τ−τ̄W = 0 ⇐⇒ Aτ̄ +B = 0

⇐⇒ τ = −A
B

.
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We observe that each superpotential Aτ +B has a unique critical point, which may or may
not lie in a fundamental domain for SL(2,Z) in H. There is a unique superpotential in
its SL(2,Z)-orbit whose critical point lie in the fundamental domain, so the union of the
critical sets of all superpotentials in an SL(2,Z)-orbit contains one point in the fundamental
domain.

Thus, counting critical points is equivalent to counting SL(2,Z) orbits of superpotentials
satisfying the tadpole constraint. The Hodge-Riemann form may be identified with the
indefinite quadratic form

Q[(A,B)] = a1b2 − b2a1

on R
4. The pair (A,B) corresponds to the element

⎛⎝ a1 b1

a2 b2

⎞⎠ ∈ GL(2,Z) and the quadratic

form is its the determinant. The modular group SL(2,Z) acts by the standard diagonal ac-
tion on (A,B) ∈ R

2×R
2 preservingQ[(A,B)] or equivalently by left multiplication preserving

det. Thus, the set of superpotentials satisfying the tadpole constraint is thus parametrized
by:

{

⎛⎝ a1 b1

a2 b2

⎞⎠ ∈ GL(2,Z) : det

⎛⎝ a1 b1

a2 b2

⎞⎠ ≤ L},

and we want to count the number of SL(2,Z)-orbits in this set. A fundamental domain for
the SL(2,Z) action on GL(2,R) is:

D = {

⎛⎝ a1 b1

0 b2

⎞⎠ ∈ GL(2,R) : |b1| ≤ |b2| }.

Now let DL denote this fundamental domain intersected with det < L, or equivalently
0 ≤ a1b2 ≤ L and count integral solutions. Since |a1| ≥ 1, b2 ≤ L and then |b1| ≤ L.
Counting the number of SL(2,Z) orbits in DL is thus equivalent to determining the average
order of the classical divisor function σ(m), see for instance Hardy-Wright [HW], Theorem
324:

N crit(L) =
L∑

m=1

∑
k|m

k =
L∑

m=1

σ(m) ∼ π2

12
L2.+O(L logL). (52)

5.6. Statistics of vacua. We now state the counting problems precisely and present our
main results. We put counting measure on all lattice points N ∈ H3(X,Z ⊕

√
−1Z)) satis-

fying Q[N ] ≤ L. Note that the number of lattice points in this region could be infinite. As
in (37), we define the ‘incidence relation’

I = {(W ; z, τ) ∈ F × C : ∇W (z, τ) = 0}. (53)

Fix ψ ∈ C∞
0 (I), and define

Nψ(L) =
∑

N∈H3(X,Z⊕√−1Z):Q[N ]≤L
〈CN , ψ〉, (54)
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where

〈CN , ψ〉 =
∑

(z,τ):∇N(z,τ)=0

ψ(N, z, τ).

Problem Estimate Nψ(L) where L is the tadpole number.

An important example is the cosmological constant ψ(N, z, τ) = VN(z, τ), i.e. the value
of the potential at the vacuum. Or, to count critical points in a compact subset K ⊂ C of
moduli space, we would put ψ = χK(z, τ).

A nasty complication is the existence of a real discriminant hypersurface D of sections
W ∈ F which have degenerate critical points, i.e the Hessian D∇W (τ) is degenerate. The
number of critical points and the summand 〈CW , ψ〉 jump across D, so in Nψ(L) we are
summing a discontinuous function. However, this complication seems to be irrelevant for the
physical application: the Hessian D∇W (z, τ) of the superpotential at a critical point is the
‘fermionic mass matrix’. A degenerate critical point would be one where massless fermions
are observed. Such vacua are non-physical since there are no massless fermions. Hence, we
will assume that suppψ is disjoint from D.

As mentioned above, L depends on X and can have a broad range of values. In this
article and in [DSZ3], we assume that L >> 1 and thus consider the asymptotics of Nψ(L)
as L→ ∞. We then have:

Theorem 5.1. Suppose ψ(W, z, τ) ∈ C∞
b (F × C), with ψ(W, z, τ) = 0 for W ∈ D. Then

Nψ(L) = Lb3

[∫
C

∫
Fz,τ

ψ(W, z, τ)| detD∇W (z, τ)|χQz,τ (W )dWdVWP (z, τ) +O
(
L
− 2b3

2b3+1

)]
.

Here, b3 = dimH3(X,R), Qz,τ = Q|Fz,τ , and χQz,τ (W ) is the characteristic function of
{Qz,τ ≤ 1} ⊂ Fz,τ . Also C∞

b denotes bounded smooth functions.

Here, D∇W (z, τ) denotes the Hessian in the sense of (35). The integrand a priori includes
the additional factor of 1

detA(Z)
as in Theorem 4.3 (for A(Z) see (30)), but it happens to equal

1 due to the special geometry of the moduli space. We observe that the integral over Fz,τ

converges since Qz,τ is a positive definite form. It is dual under the Laplace transform to the
expected distribution of critical points with respect to the Gaussian measure e−〈Qz,τW,W 〉dW
on Fz,τ . In this sense, the Gaussian ensemble is a good approximation to the lattice ensemble
for large L. Also, we note that there are further results of this kind for more general ψ, e.g.
for ψ = χK(z, τ) as above. However, the size of the remainder term then depends on K and
for simplicity of exposition we confine ourselves to smooth test functions.

What does this imply about the number of vacua? As mentioned above, typical values
of L are in the range 100 − 300. Thus, it would be reasonable to estimate L2b3 ∼ 100200,
which is similar to the number 10500 quoted in the introduction. However, this is an over-
simplification. To obtain a good estimate of the number of vacua one would need to estimate
the size of the integral in the leading term and the dependence on b3 and other parameters
of the remainder.

Comparison with the expression in Theorem 4.3 shows that

Kcrit(z, τ) =

∫
Fz,τ

ψ(W, z, τ)| detD∇W (z, τ)|χQz,τ (W )dW (55)
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is analogous to the expected density of critical points with respect to the measure ψχQ(W )dW
in the hyperbolic shell 0 ≤ Q[W ] ≤ 1. The term ‘expected density’ is only formal since
χQ(W )dW is not a probability measure and indeed has infinite volume. But in attempting
to separate out the contributions of the number of fluxes and the number of critical points
per flux, this density is a measure of the latter.

Further expressions for the leading coefficient are possible. First, as in Theorem 4.3, one
can ‘push forward’ the integral (integrate over the fibers) with respect to the Hessian maps
W → D∇W (z, τ). As mentioned above, Fz,τ = H3,0

z ⊕ H1,2 and the Hessian map on this
space takes its values in a proper subspace of symmetric matrices which depends on the
prepotential of the Calabi-Yau moduli space [DD, DSZ3]. Moreover, there is an Itzykson-
Zuber type formula which seems best for numerical computations [DSZ3]. In the analogous
problem for extremal black holes, it is easy to compute the resulting integrals, and one finds
that the leading coefficient is bounded in the relevant parameters [DD, DSZ3]. However, it
is not clear whether the same is true in the string/M vacuum problem.

5.7. Statistics of vacua as a lattice point problem. We briefly discuss the proof of
Theorem 5.1. It involves summing over lattice points and then summing over the critical
points of the holomorphic section corresponding to each lattice point. We now explain the
lattice point aspect of Theorem 5.1.

A key property of the critical point equation ∇W = 0 is that it is homogeneous in W ,
i.e. the critical points of a multiple cW are the same as those of W . Hence the summand
〈CN , ψ〉 is homogeneous. We now observe that summing a homogeneous function (of degree
0) over lattice points is tantamount to studying the equidistribution of radial projections of
lattice points on the surface Q[W ] = 1. Equivalently, it amounts to counting lattice points
in cones through regions of Q[W ] = 1.

The simplest problem of this kind is to radially project all lattice points N ∈ R
n in the

ball of radius
√
L onto the unit sphere Sn−1. As L→ ∞, the lattice points become uniformly

distributed on the sphere with respect to its usual SO(n)- invariant probability measure dω.
The question is then, what is the rate of equidstribution? More generally, we could replace
the unit sphere by any ellipsoid, i.e. the quadratic form |x|2 by any elliptic quadratic form
Q[x].

Our problem actually involves a hyperbolic analogue of this problem: take a hyperbolic
quadratic form Q[x], and divide R

n into the interior Q[x] > 0 of the ‘light-cone’ Q[x] = 0 and
the exterior Q[x] < 0. Radially project the lattice points in the hyperbolic shell 0 < Q[x] < L
onto the surface Q[x] = 1 and determine their equidistribution law. Hyperbolic lattice point
problems are much harder than the elliptic problem and the number of lattice points in the
shell could be infinite. In the string problem, this problem is cured by the special nature
of the summand 〈CW , ψ〉: it vanishes unless the lattice point W lies within a sub-cone C of
Q > 0 that depends on the support of ψ, namely the sub-cone of flux superpotentials with
critical points in the support of ψ.

Thus, one of the two main ingredients in Theorem 5.1 is the following model problem:
Let Q ⊂ R

n (n ≥ 2) be a smooth, star-shaped set with 0 ∈ Q◦ and whose boundary has a
non-degenerate second fundamental form. Let |X|Q denote the norm of X ∈ R

n defined by

Q = {X ∈ R
n : |X|Q < 1} .
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Let f ∈ C∞
0 (∂Q) and consider the sums

Sf (L) =
∑

k∈Zn∩LQ\{0}
f

(
k

|k|Q

)
, with L > 0.

We extend f to R
n as a homogeneous function of degree 0, so that f(k) = f

(
k

|k|Q

)
.

Theorem 5.2. [DSZ3] If f is homogeneous of degree 0 and f |∂Q ∈ C∞
0 (∂Q), then

Sf (L) = Ln
∫

Q

f dX +O(Ln−
2n

n+1 ), L→ ∞.

Theorem 5.2 is reminiscent of the estimate of van der Corput, Hlawka, Herz and Randol
on the number of lattice points in dilates of a convex set [Ho, Ran]. It can be proved by a
related harmonic analysis method (Poisson summation and stationary phase) combined with
a dyadic decomposition to handle the singularity of the homogeneous function at 0. Despite
its classical seeming nature, we have not found prior results on this equidistribution problems;
the ones we know concern the more difficult problem of determining the distribution of lattice
points of fixed ‘height’ Q[x] = L (cf. [Pom, D, DO]), which involves delicate number theory
and larger remainder estimates.

Theorem 5.2 can be generalized (in work in progress) to f |∂Q = χK where K is a smooth
domain in ∂Q. However, the remainder estimate then depends on K. For instance, if
∂Q = S2 and K is a polar cap, then the remainder measures the concentration of lattice
points near ∂K, a lattitude circle. There is very little concentration compared to the main
term when the lattitude circle has positive height above the x − y plane, but ∼ L2 lattice
points concentrate at the equator.

Applying Theorem 5.2 to the string/M problem gives that

Nψ(L) = Lb3
[∫

{Q[W ]≤1}
〈CW , ψ〉 dW +O

(
L
− 2b3

2b3+1

)]
. (56)

As discussed above, we then write (56) as an integral over the incidence relation (53) and
change the order of integration to obtain the leading coefficient∫

{Q[W ]≤1}
〈CW , ψ〉 dW =

∫
C

∫
Fz,τ

ψ(W, z, τ)| detD∇W (z, τ)|χQz,τdWdVWP (z, τ) (57)

in Theorem 5.1. In general, this interchange brings in the additional Jacobian factor 1
detA(Z)

but here, as mentioned above, it equals one.

5.8. Problems. We close this section by highlighting some important problems on statistics
of vacua which deserve further attention.

(1) How are the order of magnitudes of b3(X) and L of (46) related as X varies over
Calabi-Yau manifolds?

(2) Obtain an effective estimate of the leading coefficient and remainder in Theorem 5.1,
in particular their b3-dependence. How large does L need to be to ensure that there
exists a vacuum consistent with the standard model? Find examples of Calabi-Yau
manifolds where it is certain that such a vacuum exists.
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(3) Estimate the remainder if ψ does not vanish near the discriminant variety D, or if ψ
is a characteristic function of a smooth region K ⊂ C.

(4) Separate out the number of fluxes which contribute to the sum and the number of
critical points per flux. The first quantity is measured by the sum

ΘK(L) =
∑

G∈H3(X,Z⊕iZ):Q[G]≤L
θ(

∑
Z:∇WG(Z)=0

χK(Z)),

where θ(x) = 1 for x > 0 and = 0 for x ≤ 0. Find the asymptotics of ΘK(L) as
L→ ∞. The second quantity is the ration NK(L)/ΘK(L).

6. Geometric asymptotics of zeros and critical points

In this final section, we return to the pure mathematics of critical points and discuss
some results on density of and correlations between critical points which are suggested by
statistics of vacua but which can be studied more effectively in model geometric settings
that have nothing apparent to do with string theory. As discussed in the last section, the
complications of the formula for the density of critical points given by Theorem 4.3 makes
it difficult to estimate the leading order term of Theorem 5.1 on statistics of vacua. In fact,
it is difficult to estimate on any manifold, not just the intrinsically difficult moduli space of
Calabi-Yau metrics. We would like to understand how, in principle, the number of critical
points of a ‘random’ holomorphic section depends on the geometry and dimensionality of
the underlying manifold.

These dependences simplify in asymptotic regimes where the number of critical points
grows quickly, i.e. in the limit of ‘high complexity’. Two natural regimes of this kind suggest
themselves: one is on a fixed manifold, where the ‘degree’ of the line bundle and sections
is taken to infinity. The second is where one lets the dimension tend to infinity and fixes
the degree of the line bundle. The former problem is a kind of semi-classical limit which
has no apparent physical meaning in string theory, but is undertaken simply to reveal the
key geometric features underlying the density of (and correlations between) critical points.
The latter problem has not yet been studied in the setting of this paper. A recent paper
of Fyodorov [Fy] studies a simpler but analogous model problem on R

N and shows that
the expected number of critical points grows exponentially in the dimension. We therefore
concentrate on high degree asymptotics of the density of and correlations between critical
points.

6.1. Kac-Hammersley for critical points. Let us begin by proving the analogue of The-
orem 2.2 for critical points. We would like to determine the limit distribution of critical
points in the classical d

dz
sense in the Kac-Hammersley type ensembles of §2 as the degree

N → ∞. The distribution of critical points is then

CN
f =

∑
z:f ′(z)=0

δz.

Theorem 6.1. Suppose that Ω is a simply-connected bounded Cω domain and ρ is a positive
Cω density on ∂Ω. Then the expected distribution of critical points for the Kac-Hammersley
ensembles has the asymptotics,

EN
∂Ω,ρ(

1

N − 1
CN
f ) = νΩ +O (1/N) ,
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where νΩ is the equilibrium measure of Ω̄.

Theorem 6.1 is new, but its proof is essentially the same as that of Theorem 2.2 for zeros.
Analogously to Proposition 2.4,we have:

Proposition 6.2. The expected distribution of critical points in the Kac-Hammersley en-
semble is given by:

EN
∂Ω,ρ(Cf ) =

√
−1

2π
∂∂̄ log[∆SN(z, z)].

Indeed, since critical points of f are zeros of f ′ we have CN
f = ZN−1

f ′ , and

CN
f =

√
−1

2π
∂∂̄ log |f ′|2,

and so

EN
∂Ω,ρ(Cf ) =

√
−1

2π
∂∂̄EN

∂Ω,ρ

(
log |f ′|2

)
.

Following through the calculation in the case of zeros, we get

EN
∂Ω,ρ(Cf ) =

√
−1

π
∂∂̄ log ‖∂∂̄P (z)‖ =

√
−1

2π
∂∂̄ log ∆SN(z, z) .

�
The formula of Theorem 4.1 becomes identical with the ‘flat’ formula if the curvature Θ

and r vanish.
As in the distribution of zeros, the Szegö kernel SN comes up, but instead of analyzing

its values we need to analyze the asymptotics of its derivatives. As mentioned above, the
analysis of the Szegö kernel is the delicate aspect of the proof. In the case at hand, the
asymptotic formula follows by tracing through the estimates in [SZ1] in the case of zeros.
It turns out that the same estimates hold for the derivatives of the Szegö kernel, and hence
the expected distribution of critical points has the same asymptotics as the distribution of
zeros.

The asymptotic equality of the distributions of critical points and of zeros in these ensem-
bles could be explained by the facts that critical points of random elements of PN are zeros
of random elements of d

dz
PN , and that the linear map d

dz
: PN → PN−1 does not distort the

Gaussian measures too much. Furthermore, the number N − 1 of critical points (counted
with multiplicity) is a topological invariant. None of these special features holds for smooth
critical points.

6.2. Positive line bundles. We now consider the deeper problem of distribution of zeros
on curved line bundles L → M over an m-dimensional complex manifold. We will assume
that L → M is a positive line bundle (cf. §3). The space H0(M,LN) of the Nth (tensor)

power of L then has many holomorphic sections, dimH0(M,LN) ∼ c1(L)m

m!
Nm. Moreover, the

sections behave like polynomials of degree Nc1(L) and hence oscillate quickly. The following
result determines the asymptotic number of critical points of random sections of the Nth
power of such bundles:



34 STEVE ZELDITCH

Theorem 6.3. [DSZ2] Let (L, h) be a positive hermitian line bundle. Let N crit(hN) denote
the expected number of critical points of random s ∈ H0(M,LN) with respect to the Hermitian
Gaussian measure (cf. Definition 3). Then,

N (hN) = πm

m!
Γcrit
m c1(L)mNm +

∫
M
ρdVωN

m−1 + Cm
∫
M
ρ2dVωN

m−2 +O(Nm−3) .

Here, ρ is the scalar curvature of ωh = i
2
Θh, the curvature of h. As for CP

1, the leading
coefficient Γcrit

m c1(L)m is larger than for a flat connection. It depends only on the dimension
and hence is universal. A rather surprising feature of the asymptotic expansion is that the
first two terms are topological invariants of a positive line bundle, i.e. independent of the
metric (both are Chern numbers of L). But the third term

Cm

∫
M

ρ2dVΩN
m−2

is a non-topological invariant as long as Cm �= 0. It is a multiple of the Calabi functional.
These calculations are based on the Tian-Yau-Zelditch (-Catlin) expansion of the Szegö
kernel (cf. [Ze]) and on Zhiqin Lu’s calculation of the coefficients in that expansion [Lu].

As one can see from (18), the expected number of critical points reflects both the com-
plexity (degree) of the sections and the complexity of the Hermitian metric. A metric which
minimizes the expected number of critical points is in this sense least complex. Which
hermitian metrics minimize the expected number of critical points? This seems difficult to
determine for a fixed bundle, but has an interesting answer in an asymptotic sense.

Definition: We say that h ∈ P (M,L) (cf. (13)) is asymptotically minimal if

∃N0 : ∀N ≥ N0, N (hN) ≤ N (hN1 ), ∀h1 ∈ P (M,L). (58)

From Theorem 6.3, we have:

Theorem 6.4. [DSZ2] If Cm > 0, then the Calabi extremal metric in c1(L) is the unique
asymptotically minimal metric.

We recall that Calabi extremal metrics are metrics which are critical for
∫
M
ρ2dV olh. When

they exist, they are unique. We have proved Cm > 0, hence the conclusion of the conjecture,
in dimensions m ≤ 5 and conjecture Cm > 0 in all dimensions. A conjectural new formula
for Cm has been proposed by B. Baugher on the basis of numerical calculations which easily
implies that Cm > 0 in all dimensions. The formula is correct for m ≤ 5 and that gives
strong circumstantial evidence that it is true in all dimensions.

6.3. Zero point and critical point correlations. So far we have only discussed the dis-
tribution of zeros and critical points, but deeper and more interesting are their correlations,
i.e. their tendency to repel or attract. In this section, we briefly review scaling asymptotics
of correlations of zeros [BSZ1, BSZ3] and state the analogue for critical points in dimension
one. We believe that analogues for critical points should exist in all dimensions.

As we saw in §2, zeros of random holomorphic polynomials in one dimension behave in
some ways like electrically charged particles. But how far does this analogy go? Do the
simultaneous zeros of m sections in dimension m repel each other like charged particles?
Or behave independently like particles of an ideal gas? Or attract like gravitating particles?
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Exactly the same questions can be posed for critical points. For these, the defining equations
∇W (w) = 0 are dependent; does that make a difference?

These questions involve correlation functions, which may be defined intuitively as follows:
Simultaneous zeros of m independent sections or critical points of one random holomorphic
section on a manifold M define a point process on M , that is, a measure on the configu-
ration space Conf(X) of finite subsets of M . The critical point process is the measure on
Conf(M) which gives the probability distribution of X ⊂ M being the critical point set of
a holomorphic section. It is determined by its n-point correlations K(z1, . . . , zn) which give
the probabilities of critical points occurring at the points z1, . . . , zn ∈ M. They determine
whether critical points tend to cluster or to repel each other. More precisely, the n-point
zero correlation function for zeros of m independent sections in dimension m is defined by

KN
nm(z1, . . . , zn)dz = E |Zs|n,

where |Zs|n denotes the product of the measures |Zs| (cf. (15) on the punctured product
Mn = {(z1, . . . , zn) ∈ M × · · · ×M : zp �= zq for p �= q} and where dz denotes the product
volume form on Mn. In the case of m sections in dimension m, Zs is of course a discrete
measure given by summing delta-functions at the simultaneous zeros of the sections.

In [BSZ1, BSZ3] with P. Bleher and B. Shiffman, we proved that simultaneous zeros of m
independent polynomials or sections of degree N behave almost independently if they are of
distance ≥ D√

N
apart for D � 1, i.e. only interact on distance scales of size 1√

N
. We therefore

rescale the zeros in the 1/
√
N -ball B1/

√
N(z0) by a factor of

√
N to get configurations of zeros

with a constant density as N → ∞. In [BSZ1]-[BSZ3], we proved that the rescaled correlation
functions have scaling limits

K̃∞
nm(z1, . . . , zn) = lim

N→∞
KN

1k(z0)
−nKN

nm(z0 +
z1

√
N
, . . . , z0 +

zn√
N

) (59)

which are universal, i.e. independent of M,L, ω, h and depend only on the dimension m of
the manifold. There exist explicit formulae for the pair correlation functions, i.e. n = 2.

In this case, K̃∞
2m(z1, z2), depends only on the distance between the points z1, z2, since it is

universal and hence invariant under rigid motions. Hence it may be written as:

K̃∞
2km(z1, z2) = κkm(|z1 − z2|) . (60)

Theorem 6.5. The pair correlation functions of zeros when k = m are given by

κmm(r) =

⎧⎨⎩
m+1

4
r4−2m +O(r8−2m) , as r → 0

1 +O(e−Cr
2
), (C > 0) as r → ∞.

(61)

When m = 1, κmm(r) → 0 as r → 0 and one has “zero repulsion.” When m = 2,
κmm(r) → 3/4 as r → 0 and one has a kind of neutrality. With m ≥ 3, κmm(r) ↗ ∞ as
r → 0 and there is some kind of attraction between zeros; i.e., zeros tend to clump together
in high dimensions.

We conjecture that the correlation functions of critical points also have scaling limits with
a similar small distance behavior. The calculations are of a similar nature to zeros, but
are much more complicated. They are a good deal easier for meromorphic flat connections,
and it appears that in dimension one the scaling limit of the pair correlation function for
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critical points relative to a meromorphic connection is the same as for zeros. It is natural
to conjecture that the similarity persists in higher dimensions and for smooth as well as
meromorphic connections. Thus we conjecture that critical points tend to cluster together
once the complex dimension of the configuration space is > 2, as tends to be the case for
string theory models.
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[Ze] S. Zelditch, Szegö kernels and a theorem of Tian, Int. Math. Res. Notices 6 (1998), 317–331.
[Ze2] S. Zelditch, Quantum ergodicity on the sphere, Comm. Math. Phys., 146, 61-71 (1992).
[Zw] B. Zwiebach, A First Course in String Theory, Cambridge U. Press (2004).

Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA

E-mail address: zelditch@math.jhu.edu


