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Themes of talk

This talk is about large deviations (LD) for
empirical measures of zeros of random holo-
morphic polynomials in one variable, and more
generally about holomorphic sections of line
bundles over Riemann surfaces.

• Use geometry (volume forms, hermitian met-
rics) to define inner products, hence Gaus-
sian measures.

• How does the geometry influence zeros of
random holomorphic polynomials (or sec-
tions)?

• Large deviations of empirical measures of
zeros as the degree N → ∞.
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Complex Kac-Hammersley polyno-
mials

To introduce our problem, consider

f(z) =
N∑
j=1

cjz
j

where the coefficients cj are independent com-

plex Gaussian random variables of mean zero

and variance one. Complex Gaussian:

E (cj) = 0 = E(cjck), E(cjc̄k) = δjk.

This defines a Gaussian measure γKAC on P(1)
N :

dγKAC(f) = e−|c|2/2dc.
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Expected distribution of zeros

The empirical measure of zeros of a polynomial

of degree N is the probability measure on C

defined by

Zf = μζ =
1

N

∑
z:f(z)=0

δz,

where δz is the Dirac delta-function at z.

Definition: The expected distribution of ze-

ros of random polynomials of degree N with

measure P is the probability measure E PZf on

C defined by

〈E PZf, ϕ〉 =
∫
P(1)
N

{ 1

N

∑
z:f(z)=0

ϕ(z)}dP (f),

for ϕ ∈ Cc(C).

4



How are zeros of complex Kac poly-
nomials distributed?

Complex zeros concentrate in small annuli around

the unit circle S1. In the limit as the degree

N → ∞, the zeros asymptotically concentrate

exactly on S1:

Theorem 1 (Kac-Hammersley-Shepp-Vanderbei)

The expected distribution of zeros of polyno-

mials of degree N in the Kac ensemble has the

asymptotics:

ENKAC(ZNf ) → δS1 as N → ∞ ,

where (δS1, ϕ) := 1
2π

∫
S1 ϕ(eiθ) dθ.

5



Gaussian measure and inner prod-
uct

It was the (implicit) choice of inner product

that produced this concentration of zeros on

S1.

The inner product underlying the Kac Gaus-

sian measure on P(1)
N is defined by the basis

{zj} being orthonormal. Thus, they were or-

thonormalized on S1. An inner product induces

an orthonormal basis {Sj} and associated as-

sociated Gaussian measure dγ:

S =
d∑

j=1

cjSj,

where {cj} are independent complex normal

random variables.

Orthonormalizing on S1 made zeros concen-

trate on S1.
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Gaussian random polynomials adapted
to domains and weights

We now orthonormalize polynomials on the in-

terior Ω or boundary ∂Ω of any simply con-

nected, bounded domain Ω ⊂ C. Introduce a

weight e−Nϕ and a probability measure dν on

Ω and define

〈f, ḡ〉Ω,ϕ :=
∫
Ω
f(z)g(z) e−Nϕ(z)dν .

Let γNΩ,ϕ = the Gaussian measure induced by

〈f, ḡ〉Ω,ϕ on P(1)
N .

How do zeros of random polynomials adapted

to Ω concentrate?
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Equilibrium distribution of zeros

Denote the expectation relative to the ensem-

ble (PN, γNΩ) by ENΩ.

Theorem 2 (Shiffman-Z, 2003)

ENΩ(ZNf ) = νΩ +O (1/N) ,

where νΩ is the equilibrium measure of Ω̄ with

respect to ϕ.

The equilibrium measure of a compact set K

is the unique probability measure dνK which

minimizes the energy

E(μ) = −
∫
K

∫
K

log |z−w| dμ(z) dμ(w)+
∫
K
ϕdμ.

Thus, zeros behave like electric charges in the

potential ϕ.
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Hermitian metrics and line bundles:
SU(2) polynomials

There exists an inner product in which the ex-

pected distribution of zeros is ‘uniform’ on CP1

w.r.t. to the usual Fubini-Study area form ωFS.

We define an inner product on P(1)
N which de-

pends on N :

〈zj, zk〉N =
1(
N
j

)δjk.

Thus, a random SU(2) polynomial has the form

f =
∑

|α|≤N λα

√(
N
α

)
zα,

E(λα) = 0, E(λαλβ) = δαβ.

Proposition 3 In the SU(2) ensemble, E (Zf) =

ωFS, the Fubini-Study area form on CP1.
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SU(2) and holomorphic line bundles

The SU(2) inner products may be written in

the form∫
C
f(z)g(z)e−N log(1+|z|2) dz ∧ dz̄

(1 + |z|2)2.

The factor e−N log(1+|z|2) defines a Hermitian

metric on the line bundle O(N), and its curva-

ture form is ω = dz∧dz̄
(1+|z|2)2.

This gives a geometric interpretation of the

inner product

〈f, ḡ〉Ω,ϕ :=
∫
Ω
f(z)g(z) e−Nϕ(z)dν .

We should regard f, g as sections of the Nth

power of a line bundle with Hermitian metric

e−Nϕ.
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Gaussian random holomorphic sec-
tions of line bundles

We now consider more general Hermitian met-
rics h = e−ϕ on O(1) → CP1 and area forms on
CP1. In fact, everything we do generalizes to
any Riemann surface M of any genus.

The Hermitian metric h on O(1) induces Her-
mitian metrics hN = e−Nϕ on the powers O(N),
a volume form dV , and an inner product

〈s1, s2〉N =
∫
M
s1(z)s2(z)e

−NϕdV (z).

We let {Sj} denote an orthonormal basis of
the space H0(M,LN) of holomorphic sections
of LN .

Then define the Gaussian measure γhN on s ∈
H0(M,LN) by

s =
∑
j

cjSj, 〈Sj, Sk〉 = δjk

with E(cj) = 0 = E(cjck), E(cjck) = δjk.
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Why and wherefore line bundles?
Compact complex manifolds have no non-constant

holomorphic functions. The replacement for

them is ‘holomorphic sections of line bundles’.

I.e. twisted holomorphic functions. Line bun-

dles (and their holomorphic sections) have a

degree, just like polynomials.

Examples:

• g = 0: polynomials of degree N

• g = 1: theta functions θN of degree N ;

• g ≥ 2: holomorphic differentials of type

(dz)N .
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Expected distribution of zeros

Here is a general result on the expected dis-
tribution of zeros of random holomorphic sec-
tions over all of C:

Theorem 1 (Shiffman-Z) Let (L, h) → C be
any (positive) Hermitian line bundle over any
Riemann surface C and let ω = i∂∂̄ϕ be the
curvature form of h = e−ϕ. Consider the ‘pow-
ers’ LN– analogous to polynomials of degree
N . Then,

1

(N)m
EN(Zf) → ω

in the sense of weak convergence; i.e., for any
open U ⊂ C∗m, we have

1
NEN

(
#{z ∈ U : f(z)) = 0}

)

→ ω(U) .

Zeros concentrate in curved regions. Curva-
ture causes sections to oscillate and hence ze-
ros to occur.
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Almost sure distribution of zeros

The distribution of zeros is ‘self-averaging’:

typical sections behave in the expected way.

To prove this, we define the space of sequences

of sections as the Cartesian product probability

space

Π∞
N=1H

0(M,LN), γ∞ := Π∞
N=1dγN.

THEOREM. (S–Zelditch, 1998) Consider a

random sequence {fN} of sections of LN (or

polynomials of degree N), N = 1,2,3, . . . .

Then

1

N
ZfN → ω almost surelyw.r.t.γ∞.
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A measure on the space of mea-
sures

We turn to large deviations for empirical mea-

sures of zeros.

The empirical measure of zeros defines a map

δ : (CP1)N → M1(CP1)

δ(ζ1, . . . , ζN) = dμζ :=
1

N

N∑
j=1

δζj,

to the space M1(CP1) of probability measures

on CP1.

A Gaussian probability measure γN on PN in-

duces the probability measure the probability

measure

(1) ProbN = δ∗γN
on M1(M).
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Main result in genus zero

Theorem 4 (Zeitouni-Z, in progress) Let C =
CP1, let h = e−ϕ be a Hermitian metric of
non-negative curvature on O(1) → CP1 and let
dν be a positive measure on CP1. Then the
sequence of probability measures {ProbN} on
M1(CP1) induced by the Gaussian ensemble
(H0(CP1,O(N), dγhN,ν) satisfies a large devia-

tions principle with speed N2 and rate func-
tional

1
2Iϕ(ν) =

∫
C

∫
C Gϕ(z, w)dν(z)dν(w)

+maxz∈suppν{− ∫
C Gϕ(z, w)dν} − 1

2

∫
C ϕdν,

where Gϕ is the Green’s function for the metric
ωh = Ric(h) given by the curvature (1,1) form
of h = e−ϕ.

The two terms reflect the competition between
the repulsion between zeros and the uphill climb
against the potential ϕ which acts against the
dispersion of zeros.
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Discussion

Roughly speaking this means that for any Borel

subset E ⊂ M1(Ω),

1

N2
logProbN{ν ∈ M1 : ν ∈ E} ∼ − inf

ν∈E I(ν),

i.e. the configurations of zeros concentrate

exponentially fast in the equilibrium configu-

ration, i.e. according to the equilibrium mea-

sure which minimizes the rate functional. This

strengthens the conclusion that the expected

distribution of zeros is the equlibrium measure.

Most of the work goes into higher genus!
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Outline of proof

The proof involves three main ingredients:

• An explicit formula for the JDP of zeros.

In genus g = 0 it has the form

dV (ζ1, . . . , ζN) =
|Δ(ζ1, . . . , ζN)|2d2ζ1 · · · d2ζN(∫
CP1

∏N
j=1 |(z − ζj)|2dν(z)

)N+1

This is much harder in higher genus.

• extraction of a rate functional out of the

JPD.

• Proof of LDP.
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JPD: Step 1

A Gaussian measure is equivalent to a Fubini-

Study probability measure on the projective

space PVN of polynomials:

dVFS =

∧ (
∂∂̄||f ||2

)d
(||f ||2)d+1

.

Here, f is the independent variable and ∂∂̄ is

the derivative in the f variable.

In coordinates (w1, . . . , wd) relative to an ONB,

dVFS =
Πdj=1dwj ∧ dw̄j

(1 + ||w||2)(d+1)
.
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JPD: Step 2

Generalize the Vieta formula Vieta’s formula:

ΠNj=1(z − ζj) =
N∑
k=0

(−1)keN−k(ζ1, . . . , ζN)zk

so that the basis {zk} is replaced by the ONB

{ψj}w.r.t the inner product:

N∏
j=1

(z − ζj) :=
N+1∑
j=1

EN+1−j(ζ1, . . . , ζN)ψj(z).

Then the numerator of the JPD is

ΠNj=1dwj ∧ dw̄j = dE1 ∧ dE1 ∧ · · · ∧ dEN ∧ dEN

= AN(h)|Δ(ζ)|2 dζ1 ∧ dζ̄1 ∧ · · · ∧ dζr ∧ dζ̄N,
for a non-zero constant AN(h) depending only

on N and the Hermitian metric h.
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JPD: Step 3The denominator is the (N +

1)st power of

||s||2
L2 =

∫
C

exp
(
−2N

∫
C
G0(z, w)dμζ

)
e−Nϕdν(z),

where G0(z, w) = − log |z − w|. In more gen-

eral settings, G0 is the Green’s function of the

metric. We then use:

− 1
N2 log |Δ(ζ1,...,ζN)|2(∫

D

∏N
j=1 |(z−ζj)|2e−Nϕdμ

)N+1 ∼ Σ(μζ) + Jϕ(μζ

where

Σ(μ) =
∫
C
log

1

|z − w|dμ(z)dμ(w)

is the logarithmic energy and where

Jϕ(μ) := lim N+1
N2 log

∫
e−2N

∫
G0dμe−Nϕdν

→ maxz∈suppμ{−2
∫
M G0(z, w)dμ− ϕ(z)}.
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