INVERSE SPECTRAL PROBLEM FOR ANALYTIC (Z/2Z)*-SYMMETRIC
DOMAINS IN R”

HAMID HEZARI AND STEVE ZELDITCH

ABSTRACT. We prove that bounded real analytic domains in R™ with the symmetries of
an ellipsoid, and with one axis length fixed, are determined by their Dirichlet or Neumann
eigenvalues among other bounded real analytic domains with the same symmetries and axis
length. Some non-degeneracy conditions are also imposed on the class of domains. It follows
that bounded, convex analytic domains are determined by their spectra among other such
domains. This seems to be the first positive result on the well-known Kac problem, can one
hear the shape of a drum?, in higher dimensions.

1. INTRODUCTION AND THE STATEMENT OF RESULTS

The purpose of this article is to prove that bounded analytic domains 2 C R™ with +
reflection symmetries across all coordinate axes, and with one axis height fixed (and also
satisfying some generic non-degeneracy conditions) are spectrally determined among other
such domains. This inverse result (Theorem 1) gives a higher dimensional analogue of the
main result of [Z2] that “bi-axisymmetric” real analytic plane domains are spectrally deter-
mined among other bounded analytic plane domains with the symmetry of an ellipse. To
our knowledge, it is the first positive higher dimensional inverse spectral result for Euclidean
domains which is not restricted to balls. Negative results (i.e. constructions of non-isometric
isospectral pairs) are given in [U, GW, GWW] (see also [GS] for some non-Euclidean do-
mains). Higher dimensional inverse results for semi-classical Schrodinger operators with
similar symmetries have recently been proved in [GU, H].

1.1. Statement of results. We consider the eigenvalue problem on the domain €2 with
the Euclidean Laplacian A5 and with boundary conditions B:

Afpj(x) = =Np;(x), (@i, @) =0y, (v€Q)

Bpj(y) =0, y e .

The boundary conditions could be either Dirichlet By = ¢|sq, or Neumann By = 0,¢|sq
where 0, is the interior unit normal.
The (Z/2 7)™ symmetries of the title are the maps

(1)

(2) oj (1,0, %n) = (X1, .o, =X, T, -, Ty)

and we assume that they are isometries of 2. The symmetry assumption implies that the
intersections of the coordinate axes with €2 are projections of bouncing ball orbits preserved
by the symmetries. We recall that a bouncing ball orbit v is a 2-link periodic trajectory of
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the billiard flow, i.e. a reversible periodic billiard trajectory that bounces back and forth
along a line segment orthogonal to the boundary at both endpoints. The endpoints of the
projection to €2 of the bouncing ball orbit are fixed points of all but one of the isometries o;;
the remaining one fixes the projected orbit setwise but interchanges the endpoints. We add
the generic condition that at least one of these bouncing ball orbits is non-degenerate (see
(3) for the conditions). We also fix the length L. = 2L of this bouncing ball orbit ~.

We denote by Dy, to be the class of all bounded real-analytic domains 2 C R” satisfying
these assumptions. Thus, Dy, is the class of domains such that:

(3)
(1) o;:Q — Qis an isometry for all j =1,...,n;

ii) one of the coordinate axis bouncing ball orbits, called =, is of length 2L
iii) the lengths 2rL of all iterates 4" (r = 1,2,3,...) have multiplicity one in Lsp(Q);
iv) v is non-degenerate, i.e. 1 is not an eigenvalue of its Poincaré map P,;

if v is elliptic and {e*1, .. .e*@-1} are the eigenvalues of P, ,we

further require that {ay, ..., 1} are linearly independent over Q. We assume the
L same independence condition in the Hyperbolic case or mixed cases.

(
(
(
(

Here, Lsp(Q2) is the length spectrum of €, i.e. the set of lengths of closed billiard trajec-
tories (cf. [PS, Z3]). Multiplicity one means that there exists precisely one closed billiard
trajectory of the given length up to time reversal. Let Specg(2) denote the spectrum of the
Laplacian AZ of the domain Q with boundary conditions B (Dirichlet or Neumann).

THEOREM 1. For Dirichlet (or Neumann) boundary conditions B, the map Specg : Dy — Rf
s 1-1.

In other words, if two bounded real analytic domains €2, {29 C R™ possessing the symme-
tries of an ellipsoid and satisfying the non-degeneracy and length assumptions of (3) have
the same Dirichlet (resp. Neumann) spectra, then they are isometric. To our knowledge, the
only prior positive result on the inverse spectral problem for higher dimensional bounded
domains is that a domain with the Dirichlet (or Neumann) spectrum of a ball must be a ball
[KAC]. In that case the proof is based on the trace of the heat semi-group rather than the
wave group or resolvent kernel. The heat trace for the Dirichlet (or Neumann) Laplacian
AP of a bounded domain has the singularity expansion,

Tret™S ~ t7"2(CVol,(Q) + C.Voly 1 (0Q)t 2 +--2), t— 07,

where C,,, C), are constants depending only on the dimension. Hence the volume and surface
measure are spectral invariants. The ball is determined as the unique domain where the
isometric inequality Vol,_(99) > A,Vol,(Q)"+ (for a certain constant A,) is an equality.

Our proof of Theorem 1 has a similar form in that we calculate some special spectral
invariants and then use the invariants to uniquely determine the domain. But instead of the

heat semi-group we use the wave group eV ~A4 or more precisely the semi-classical resolvent
RE(k) = —(AL + k*)~! for k € C, which is a semi-classical Laplace transform of the wave
group (see §2.3). Here, we are assuming that the boundary conditions are Dirichlet, but the
methods and results are valid for the Neumann Laplacian AY with only minor modifications.
The spectral invariants we study are the ‘wave invariants’ associated to one of the bouncing
ball orbits defined by the coordinate axes. The key advantage of these wave invariants is
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that they are localized at the endpoints of the projected orbit, whereas heat invariants are
integrals of curvature invariants over 2 or 9€). In Theorem 2, the wave invariants of bouncing
ball orbits are expressed in terms of the Taylor coefficients of the defining function of {2 near
the endpoints. Under our symmetry assumptions, the Taylor coefficients are determined
from the wave invariants. That proves Theorem 1.

As a corollary, we obtain a result for convex analytic domains that does not require any
length to be marked.

COROLLARY 1. Let C be the class of analytic convexr domains with (Z/27)" symmetry, such

that the shortest closed billiard trajectory ~yy is non-degenerate and satisfies the conditions
(43i) and (iv) of (3). Then Specg: C — RY is 1-1.

This follows from Theorem 1 and a result of M. Ghomi [Gh] that the shortest closed
trajectory of a centrally-symmetric convex domain is automatically a bouncing ball orbit.
Hence the length of this orbit is self-marked, and it is not necessary to mark the length
L., = 2L of an invariant bouncing ball orbit .

1.2. Balian-Bloch and wave invariants at a bouncing ball orbit. As mentioned above,
the proof of Theorem 1 is based the study of spectral invariants of the Dirichlet or Neumann
Laplacian of © known as the Balin-Bloch (or wave trace) invariants at the closed billiard
trajectories v of 2. The Balian-Bloch invariants B, ; are coefficients of the regularized trace
expansion

(4) TrRQ (k) ~ Dpy(k) Y By k™, Rk — oo,
=0

of the smoothed semi-classical resolvent Rg’p(k) where p is localized at the length of the
closed orbit 7. The smoothed semi-classical resolvent is defined in (14) and the precise
statement of (4) is given in Theorem 2.1. The factor Dp (k) is a well-known symplectic
factor that is reviewed in §2.3 and discussed in more detail in [GM, PS].

The Balian-Bloch invariants are named after the physicists who introduced them in [BBI,
BB2] and studied them on a somewhat non-rigorous formal level. Since then, a long stream
of mathematical works have been produced on the dual singularity expansion of the trace
Trcosty/—AL of the wave group. The classical results on wave trace invariants on com-
pact Riemannian manifolds without boundary are due to Colin de Verdiere, Chazarain and
Duistermaat-Guillemin. The wave trace expansion was then generalized to manifolds with
boundary by Guillemin-Melrose in [GM] (see also [PS] for a very thorough study). The
semi-classical resolvent and wave group are related by a Laplace transform (see (13)) and so
the semi-classical (i.e. large k) expansion (4) is essentially the same as the singularity expan-
sion of Trcosty/—Af. Algorithms for calculating the coefficients in the boundaryless case
were given in [G, G2, Z1|. In [Z2, Z3] an algorithm was given for calculating the invariants
in the boundary case but it was only implemented for plane domains. In this article, the
algorithm is developed for higher dimensional domains and explicit formulae for the Balian-
Bloch or wave trace invariants are given in Theorem 2. The calculations also draw on the
analysis in [H] of similar invariants for semi-classical Schrodinger operators. This result is of
independent interest and is valid without any symmetry assumptions.
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We now state the formulae for the Balian-Bloch invariants. They require some more
notation which will be further discussed in §2 and §7. Almost the same notation is used in
[Z3]. We align the axes so that the bouncing ball orbit ~ is a vertical segment of length L
with endpoints at A = (0, %) and B = (0, —£), where 0 denotes the origin in the orthogonal
o' = (2%,..., 2" ') € R""! plane. In a metric tube T,(AB) of radius € around 7, we may
locally express 02 = 0T U JQ~ as the union of two graphs over a ball B.(0) around 0 in

the z’-hyperplane, namely
(5) 00 = {a" = [ (&), |o| <€}, 00 ={a" = f-(«'), |o| < e}

We will use the standard shorthand notatlons for multi-indices, i.e. 7 = (71, Yn-1),
7l =71 4 o+ Yoy X7 = X7 X", and by hi 'y » we mean the (n — 1)-vector

n—1
—
Pq 11,pg 7 22,pq (n=1,n—1),pq
hi,2r - (hi 2r hi 21 0 0t hi,ZT )7

where [h7 4 P9 i i<n—1.1<pq<ar is the inverse Hessian matrix of the length functional £ (), ..., x5,)
given in (11)
The following generalizes Theorem 5.1 in [Z3] from two to higher dimensions.

THEOREM 2. Let Q be a smooth domain with a bouncing ball orbit v of length 2L and let
B, ; be the wave invariants associated to " (see cf. 2.2). Then for each r =1,2,..., and
J there exists a polynomial P, ; such that:

1) By = P, D‘]‘f+ 0)}, D'ﬁ”f, 0)}) with |y| < 27 4+ 2; i.e. the highest order of
Y »J o 5
derivatives appearing in B ; is 2 + 2.
2) In the polynomial expansion of B.r ; the Taylor coefficients of order 25 + 2 appear in
. ’y 7]
the form {D%Hfi(())}.
(3) Byro is only a function of v, L and n, and for j > 1

B.r o TIL NA N2 — .
Byrj = (QZ)JJEI Zh\:jﬂ ﬁ{(h}&—l,Qr)ngf]?—i_Qf-‘r(O) - (hl—l,zr)yDgz;zf— (0)}

+ Ry (TP f1(0), TPH(0)),

where the remainder Ra, ;(JT* f1(0), T%*1f_(0)) is a polynomial in the designated

jet of f+.
(4) In the (Z/2Z)- symmetric case, where f, = f = —f_, we have the simplified formula

Byr ra 7 j i
By, = o e Zlvl it 7, (@ cot 7) D§%+2f(0) + Roy ; (THHLF(0)).
(5) In the (Z/27Z)"- symmetric case, formula (4) holds with remainder in R, ;(J % f(0)).
In the above notation, the (Z/27Z)"-symmetry assumptions in (5) are that

(6) fel@) = =f-(2"), feloj(a")) = fe(2),

where o; denotes the reflections in the coordinate hyperplanes of R"~!. The first assumption
implies that there exists a function f(z’) so that the top of the domain is defined by z,, =
f(2") and the bottom is defined by x, = —f(2'). The further symmetry assumptions then
say that f is an even function in every variable z¢, 1 < i <n — 1, i.e.
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(7) ', ) = (). @Y, Fec¥®RY.

The value of these explicit formulae is demonstrated by applications such as Theorem 1.
Theorem 2 may be viewed as an alternative to the use of Birkhoff normal forms methods
for calculating wave trace coefficients as in |G, G2, Z1, 72, ISZ, SZ]. Further discussion and
comparison of methods is given at the end of the introduction.

Our proof of Theorem 2 is rather different from that in [Z3, Z4]. It is based on the
construction and analysis of a microlocal monodromy operator associated to v, inspired by
the works of Sjostrand-Zworski [SZ] and Cardoso-Popov [CP] (see also [ISZ]), but employing
a layer potential analysis more closely related to that in [Z3, HZ]. The trace asymptotics are
eventually reduced to those of a boundary integral operator in Proposition 5.6 and Corollary
5.7, and then to the stationary phase asymptotics of a certain oscillatory integral in Theorem
6.3. Since the method and results give a higher dimensional generalization of the analogous
results of [Z3, Z4], there is some overlap in the arguments from the two-dimensional case;
we have tried to minimize the overlap, but it is necessary to give complete details on the
formulae in n dimensions since they differ in numerous ways from the two-dimensional case.

1.3. Determining Taylor coefficients from wave invariants. To prove Theorem 1, it
is only necessary to determine the Taylor coefficients of the defining function f = f, = —f_
of ) at the endpoints of a symmetric bouncing ball orbit ~ from the Balian-Bloch invariants
given in Theorem 2 for iterates of this orbit. This is done is §7.6. The proof builds on the
methods of [Z3, H].

In fact, our method could be extended to show that analytic domains with fewer symme-
tries are spectrally determined as in [Z3, H], but for the sake of brevity we do not prove that
here.

1.4. Discussion and Comparison of Methods. We obtain the formulae for the wave
invariants by applying the stationary phase method to the trace of a well-constructed
parametrix for the monodromy operator. A secondary purpose of this article is to con-
nect the very conceptual but somewhat abstract monodromy method of [ISZ, SZ] with the
methods of [Z1, Z2, Z3]. The articles [Z1, Z2] implicitly used the monodromy approach
in the form given in [BBa, L, LT]. In this article, we construct the monodromy operator
explicitly in terms of layer potentials, using in part the methods of [CP] and in part those
of [Z3, HZ]. The monodromy approach connects nicely with the ‘Balian-Bloch” approach of
[Z3] and simplifies remainder estimates for the Balian-Bloch (i.e. Neumann) expansion of
the resolvent.

In calculating the trace asymptotics, we do not put the monodromy operator into normal
form, but rather apply a direct stationary phase analysis to the parametrix. Terms of the
stationary phase expansion correspond to Feynman diagrams and the main idea (as in [Z3]) is
to isolate the diagrams which are necessary and sufficient to determine the Taylor coefficients
of the boundary defining function at the endpoints of v from the wave trace invariants of
iterates of . In this (Z/27)" symmetric case, there is a unique such diagram and that is
why the symmetries simplify the problem. It is an interesting but difficult problem to ‘invert’
the spectrum when some or all of the symmetries are absent.
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An alternative to the approach of this article is to use quantum Birkhoff normal forms
around the bouncing ball orbit as in [G, G2, Z1, Z2, ISZ, SZ]. It suffices to prove the
abstract result that the quantum normal form of the Laplacian or wave group at the invariant
bouncing ball orbit, hence that the classical Birkhoff normal form of the Poincaré map, is
a spectral invariant. At that point, one could generalize the result of Y.Colin de Verdiere
[CV] that the classical normal form determines the Taylor coefficients of f at the endpoints
of the bouncing ball orbit when f has the (Z/2Z)" symmetries. We plan to carry out the
details in a follow-up to this article. The methods of this article go further, since Theorem
2 determines much more than the classical Birkhoff normal form.

It would be interesting to obtain a more direct connection between the the ‘normal forms’
approach and the ‘parametrix approach’. In general terms, normal forms for Hamiltoni-
ans and for canonical transformations belong to the canonical Hamiltonian formulation of
quantum mechanics, while parametrix constructions, stationary phase methods and Feyn-
man diagrams belong to the Lagrangian or path integral approach. Normal forms are of
course canonical, while parametrices are not: there are many possible parametrices (finite
dimensional approximations to path integrals), and in the inverse problem it is essential
to construct computable ones. The two approaches are dual, and although they contain
the same information, it is formatted in different ways. In particular, the two approaches
highlight different features of the geometry and dynamics.

At the present time, explicit calculations and spectral inversion for boundary problems
have only been carried out in the Lagrangian approach, despite the existence of a quan-
tum normal form along bouncing ball orbits [Z2]. In the simpler setting of semi-classical
Schrodinger operators at equilibrium points, one may compare the normal forms approach
of [GU, CVG] to the Lagrangian approach of [H]. In this inverse problem, one has a one-
parameter family of isospectral operators depending on a Planck’s constant h, whereas in the
boundary problem one has only one operator and spectrum to work with. The Lagrangian
calculations in [H] reproduced the inverse results of [GU, CVG], and gave stronger ones
where some of the symmetries were removed. It directly gives formulae for wave invariants,
which are linear combinations of normal form invariants.

It is interesting to observe that formula in Theorem 2 is very similar to the formula in [H]
(Theorem 2.1) for the wave invariants at an equilibrium point for a Schrédinger operator on
R™ with a unique equilibrium point at (z,&) = (0,0). This perhaps indicates a similarity
between the quantum normal form of the Schrodinger operator at the equilibrium point
and that of the Laplacian at a bouncing ball orbit. The formula is also similar to a trace
asymptotics formula of T. Christiansen for an inverse problem for wave-guides [Chr], but
that is less surprising.

The methods of this paper have further applications. In a work in progress [HeZ], we use
the wave invariants to prove a certain spectral rigidity result for analytic deformations of an
ellipse.

Finally, we would like to thank the referees for their suggestions on improving the expo-
sition.
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2. BACKGROUND

In this section, we go over the basic set-up of the problem. It is very similar to that of
[Z3] but requires some higher dimensional generalizations. We use the same notation as in
[Z3] and refer there for many details.

2.1. Billiard map. The billiard map [ is defined on
BroQ = {(y,n); y € 00, n € T"0Q, |n| < 1}

as follows: given (y,n) € B*0, with |n| < 1, let (y, () € S*Q be the unique inward-pointing
unit covector at y which projects to (y,n) under the map T, — T*99. Then follow the
geodesic (straight line) determined by (y,() to the first place it intersects the boundary
again; let ¢y’ € 9 denote this first intersection. (If |n| = 1, then we let ¥/ = y.) Denoting
the inward unit normal vector at y' by v, we let (' = ( + 2(C - v ), be the direction of
the geodesic after elastic reflection at y', and let 1" be the projection of ¢’ to By,0Q. Then
we define
Bly,m) = (y',7).

The billiard map is a symplectic, hence measure preserving, map with respect to the standard
symplectic form on T*0€). We denote its graph of § by

(8) Chiniara := graph 8 = {(5(2), z) | z € B*0Q}.
In the case of a convex domain,
(9) C'billiard =Ty:= {(y; _vyd(ya y/)a y/v Vy’d(ya y/))}a

i.e. the Euclidean distance function d(y,7’) is a generating function for 4. For non-convex
domains, this graph is larger due to ‘ghost’ billiard trajectories which exit and re-enter €2
but satisfy the reflection law of equal angles at each intersection point. Such ghost orbits
are the price one pays for using a parametrix and distance function d(y,y’) defined on the
ambient space R".

2.2. Length functional. We define the length functional on (9€2)™ (the Cartesian product),
by

(10) L(ys, - ym) = lyr = ol + -+ [Ym-1 = Y| + |ym — 11.

Then L is a smooth away from the ‘large diagonals’ A, ,+1 = {y, = yp+1}. The condition
that dL = 0 is the classical condition that each 2-link defined by the triplet (y,—1, Yp, Yp+1)
makes equal angles with the normal at y,. Hence a smooth critical point corresponds to a
closed m-link billiard trajectory. See for instance §2.1 of [PS].

2.2.1. Length functional in graph coordinates mear the iterates of a bouncing ball orbit. A
bouncing ball orbit ~ is a 2-link periodic trajectory of the billiard flow, i.e. a reversible
periodic billiard trajectory that bounces back and forth along a line segment orthogonal to
the boundary at both endpoints. As in the Introduction we orient Q so that AB lies along
the vertical x,, axis, with A = (0, %), B = (0, —%) We parameterize the boundary locally as
two graphs x,, = fi(2') over the 2’-hyperplane. Thus, in a small tube T.(v) around AB, the
boundary consists of two components, which are graphs of the form y = f,(2’) near A and

y = f_(2') near B.
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We then define the length functionals in Cartesian coordinates for the two possible orien-
tations of the rth iterate of a bouncing ball orbit by

2r
(11) Li(z},...,25,)= Z \/(x;_H - x;)Q + (fwi(p+1)(x;)+1) - fwi(p)(x;>>2-
p=1

Here, wy : Zo, — {£}, where wy(p) (resp. w_(p)) alternates sign starting with w, (1) = +
(resp. w_(1) = —). Obviously the point (z,...,25.) = (0,...,0), corresponding to the
r-the iteration of the bouncing ball orbit, is a critical point of L.

2.3. Resolvent and Wave group. By the Dirichlet Laplacian A5 we mean the Laplacian
A=3" % with domain {u € H}(Q) : Au € L?}; thus, in our notation, Ag is a negative
operator. The resolvent RE (k) of the Laplacian AL on € with Dirichlet boundary conditions
is the family of operators on L?(Q) defined for k € C, Sk > 0 by

RE(k) = —(AR + k%), Sk>0.

The resolvent kernel, which we refer to as the Dirichlet Green’s function GE(k,z,y) of
Q) C R, is by definition the solution of the boundary problem:

(A + £2)GG (K, 2,y) = —6(x —y), (z,y€9Q)
(12)

GE(k,z,y) =0, x €.
The discussion is similar for Neumann boundary conditions except that its domain is {u €
H2() : 0,ulsq = 0}, and 0,GH (k,z,y) = 0 for x € I, where 9, is the interior unit normal.
As in the introduction, we superscript functions of the Laplacian with B to denote either
boundary condition.

The resolvent with either boundary condition may be expressed in terms of the even wave
operator EE(t) = cos(ty/—AL) as
i

(13) RS (k) = - /0 N eMES()dt,  (Sk > 0)

In this paper we will consider the resolvent RE (k) along the logarithmic ray k = A+ log ),
where A > 1 and 7 € R™.
Given p € C°(R"), we define the smoothed resolvent R (k) by

(14) RE (k) = px (uRE(n)) = / ok — 1) (uRE (1)) dp.

We note that p(k — ) is well-defined since p is an entire function. Let us discuss in what
sense the integral in (14) is defined. We notice that since p € R, we have defined the
resolvent RE (1) by RE(p+i0T). Hence we can write

RE (k) = limeo+ fo p(k — p)pRE (1 + ie) dpe
= —limc o+ f,_gp()(k — p)RE (K +de — ) dpt’

= Jap(w)(k — p)RE(k — p) dp,
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where the last equality is obtained by taking an appropriate contour. Thus we can also take
this last integral as our definition of the smoothed resolvent.
Now by (13) we can rewrite R (k) in terms of the wave operator as:

RE (k) = i [ foplu)e ™" EE(t)dtdp

(15) = i [ p(t)eMES (t)dt

= L(p(k+/—A8) + p(k — /—AE)).

The Poisson formula for manifolds with boundary [AM, GM, PS] gives the existence of a
singularity expansion for the trace of E5(t) near a transversal reflecting ray. If we substitute
this singularity expansion into the trace of (15) we obtain an asymptotic expansion in inverse
powers of k£ for the smoothed resolvent trace:

THEOREM 2.1. [AM, GM, PS| Assume that 7 is a non-degenerate periodic reflecting ray,
and let p € C(Ly — €, L, +¢€), such that p =1 on (L, — €/2, L, + ¢/2) and with no other
lengths in its support. Then for k = X + it log A with 7 € R, T?“Rg,p(k’) admits a complete
asymptotic expansion of the form (4) where

e Dp (k) is the symplectic pre-factor

ik Ly piTmy

|det(I — P,)|’

DD,W(k) = Co en(7)

P, is the Poincaré map associated to y;

ep(7y) is the signed number of intersections of v with 0S);
m., s the Maslov index of v;

Co is a universal constant (e.g. factors of 2m).

DEFINITION 2.2. The coefficients B, ; are called the wave trace invariants (or Balian-Bloch
invariants) associated to the periodic orbit ~y.

As emphasized above, the discussion in the case of the smoothed Neumann resolvent
R (k) is essentially the same.

3. RESOLVENT AND THE LAYER POTENTIALS

The method of layer potentials ([T] II, §7. 11) solves (12) in terms of the ‘layer potentials’
Go(k,2,y),0,,Go(k,z,y) € D'(Q x 0R), where v is the interior unit normal to €, and
0, = v -V, and where Gy(k,x,y) is the ‘free’ Green’s function of R", i.e. of the kernel of
the free resolvent —(Ag + k?)~! of the Laplacian Ay on R”. A key point, first recognized in
[BB1, BB2] and put on a rigorous mathematical basis in [Z3, HZ], is that the layer potentials
are semi-classical (i.e. non-homogeneous) Lagrangian distributions in the k parameter, with
additional homogeneous singularities on the diagonal. In effect we wish to make use of the
first property and suppress the second. This will be explained in §3.1.

First let us briefly recall the method of layer potentials. The free outgoing Green’s function
in dimension n is given by:

(16) Golk,z,y) = k” 2(2mkla — y|)~ "D/ Hal),_ (klz = y).
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In general, the Hankel function of index v has the integral representation ([T], Chapter 3,
§6)

61(2 Tv/2—m/4) —S _ s \v—
(17) Hall(2) = (m>l/2 Tw11/2) fo V2 (1 — 57 V2ds.

The single and double layer potentials, as operators from the boundary 052 to the interior
), are then respectively defined by

as) St(k) f(x) = [oq Golk,z,y) f(y)dS(y), zeqQ,
DUR)f(x) = [52 00, Golk, 2, 9) F(1)dS(y), =€ Q.

Similarly, for a function f on 0%, the boundary layer potentials S(k) and N(k), as operators
from the boundary 0f to itself are denoted by:

19) S(k)f() = Jaq Golk, z,y)f(y)dS(y), z € 09,
19
N(k)f(z) = [5020,,Golk,2,y)f(y)dS(y), x€ 0.
Given any function g on R"\0f2 and any = € 09, we denote by g, (z) (resp. g_(z)) the

limits of g(w) as w — x € 9Q from w € Q (resp. w € R™\Q). The layer potentials and the
boundary layer potentials introduced above are related by the following

(SUE) )4 () = (SR [)-(x) = S(k) f (=),

(DU(Ek)f)s(x) = (£ 1+ N(k))f(z), (The jump formula).
Using the above notation we also have the following interesting formula of Fredholm-Neumann
(21) Rg (k) — Ro(k) = =DL(k)(I + N(k))"'St(k)",

where Ry(k) is the free resolvent. This is true because the kernels of both sides of the equation
are solutions to the Helmholtz equation and also the restrictions to the boundary of these
kernels are the same by the jump formula (20). The formula follows by the uniqueness of
the solutions of the Helmholtz equation.

(20)

3.1. Structure of the operator N(k). We now state the precise sense in which N(k)
is a semi-classical Fourier integral operator quantizing the billiard map of 02 when k =
A+itlog A and A = Rk — oo. It additionally has homogeneous singularities on the diagonal.
The discussion here is adapted from [HZ]. Note that here our semiclassical parameter is %
which is a complex parameter.

We denote S*0Q = {(y,n) € T*0Q; |n| = 1} and define the diagonal set
(22) Agea0 = {(2,2); z € SO0} C T"0Q x T0N.
PROPOSITION 3.1. [HZ] Assume that Q) is a smooth domain. Let U be any neighborhood of
Ag+pq. Then there is a decomposition N (k) as
N(k) = No(k) + Ny (k) + Nak),

where No(k) is a pseudodifferential operator of order —1 |, Ny(k) is a semi-classical Fourier
integral operator of order zero associated with the canonical relation U'y (cf. (9)), and No(k)
has operator wavefront set contained in U.
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This proposition is valid whether or not €2 is convex, but in the convex case I'y = Chiniara
is the graph of the billiard map (cf §2.1).

From the integral formula (17), the Hankel function Ha!")

(2) is conormal at z = 0 and

n/2—1
as z — 00,
(23) a(z) =e " Has/)z_l(z) ~ 712 Z a;z"7.
=0

The kernel of the single-layer potential then has the form
S(k,,y) = Golk,,y) = CK"2(k|z — y))=" 2 Hal), , (klz — y)).
For the double layer potential it follows from the identity

d 14 1
T Ha(l(2) = ~Ha{!(z) — Ha!)s(2).
that
n— —(n— r—y
N(k,2,y) = 20, Golk,,) = CK* (ke = yl) "/ Rl (ko — o) (o 7o)

We now introduce cutoff functions as in [HZ]. When k£ = X +i7log A\, we put

L= @iz —yl) + ok |z — yl) + p2(lz — yl, [K])
where 1 (t) is supported in t > ¢, for some sufficiently small ¢y > 0 (see [HZ] for the choice
of this tg), and ¢g(t) is equal to 1 for ¢ < 1 and equal to 0 for t > 2. (The power 3/4 in ¢

could be replaced by any other power strictly between 1/2 and 1). We define the operator
Ni(k) to be the one with the kernel ¢;(|x — y|)N(k, z,y) which has the form

(24) Na(k, 2, ) = CK Do (= ylhas (bl = yl) (= o),

where a;(z) = "2 a(z) has an expansion in inverse powers of z as z — oo (see (23)), with
leading term z~(™~1/2_ The operator N; (k) is manifestly a semiclassical FIO of order 0 with
the phase function d(x,y) = |z — y|, and thus associated with the canonical relation I'y (cf.
(9)). The operators Ny(k) and Ny(k) are constructed similarly from the cut offs ¢y and @

respectively. See [HZ] for the details.

4. MONODROMY OPERATORS AND BOUNDARY INTEGRAL OPERATORS

It simplifies the resolvent trace calculation considerably to reduce it to a boundary trace.
In [Z4, 73] this was done by taking the direct sum R{ (k) @ R{. ,(k) of the interior Dirichlet
and exterior Neumann resolvents, and verifying that

d
Tr(RS (k) ® RY. (k) — Ro,(k)) = p* - log det(I + N(k)).

The construction for the interior Neumann resolvent and exterior Dirichlet resolvent is essen-
tially the same and is omitted for brevity. This relation was stated in the physics literature,
and we refer to [Z4] for references. In this article, we take a related but somewhat different
method to reduce the trace to the boundary using monodromy operator ideas similar to those
of Cardoso-Popov [CP] and of Sjéstrand-Zworski [SZ]. A novel feature is that we relate the
monodromy operators to the boundary integral operators Ny (k) and Ny(k).
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Before going into the details, let us note some motivating ideas. First, both the monodromy
operator M (k) and the boundary integral operator N;(k) are quantizations of the billiard
map in the sense of being semi-classical Fourier integral operators whose canonical relation
is Chiniara- This suggests that they must be closely related. However, M (k) is microlocally
constructed while N;(k) is global. Further, N;(k) is just a piece of N(k), which has the
more complicated structure described in §3.1, and in the boundary reduction N(k) is the
primary object. On the other hand, there is a simple exact formula for N (k) while M (k)
is only known through microlocal conjugation to normal form. Hence our purpose here is
to construct a monodromy operator resembling M (k) using N (k) and the layer potentials.
In doing so, we follow the approach to monodromy operators of [CP]. Since the resulting
monodromy operator does not seem to arise from the abstract set-up of Grushin reductions,
the proof that the trace reduces to the boundary is not the same as in [SZ].

4.1. Definition of the monodromy operator. In this section we will use the basic termi-
nologies in semi-classical analysis such as semi-classical pseudodifferential operators, Fourier
integral operators and semi-classical wave front sets. We refer to [GS, EZ, SZ, Al] for all
the definitions and properties. We just mention that in the following sections when we write
T(k) ~ S(k), for two operators T'(k) and S(k), we mean T'(k) — S(k) is a negligible (residual)
operator in the sense that its kernel is of order O(k~>°) in all C* norms.

Let v be an m-link periodic reflecting ray, with vertices at v; in 02, where there are m +1
vertices and vy, 41 = v1. Let n; be the projection to B, 0N of the direction of the ray v where
it hits the boundary at v;. We denote

Oy == A{(v,m), - (Um, ) }
Let T'; be microlocal neighborhoods of (vj,7;) in B*0Q = {(y,n)|y € 0Q, n € T*0Q, |n| < 1}.
We then define a microlocalization to I'; of the double layer potential operator by
Hy(k) = DIk (k) : C(00) — C(Q),
where W, (k) is a k-pseudodifferential operator microsupported in I';. In fact we will choose,
Wr (k) = (I + No(k)) " xr, (k).
where xr, is a microlocal cut off supported in I';. More precisely xr, (k) = Op% (a;(y,m)),

where supp(a;(y,n)) C I'; and a;(y,n) = 1 in a neighborhood of (v;,n;). Here (I + No(k))™*
is a parametrix for I+ Ny(k). Notice a parametrix exists because Ny (k) is a pseudodifferential
of order —1.

Clearly, by the jump formula (20), for any u € C(02),

(—A — k) H;(k)u = 0,

H;(k)(u)loo = (I + N(k))¥r, (k)u.
Next we put for every 1 <1i < m,
(25)
Py(k) = Hi(k) — Hip1(k)roaH; (k) + -+ - + (= 1) Hyy no1)(k)roo His (m—2) (k) - - - roo Hi (k),
where rgq 1 C(Q) — C(09) is the operator of restriction to the boundary. Also notice by
our notation the indices j +m and j are identified. Then we define
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(26) P(F) = — S Pi(b).

PROPOSITION 4.1. We have: (—A — k*)P(k)u = 0.

Proof. In fact for every i we have (—A—k?)P;(k)u = 0. We observe that P;(k) = DL(k)Q; (k)
with

(27)
Ql(k> = \I]Fi - \Isz‘+2 [(I + N(k))\lfplﬂ] et (_1)m_1qui+m71 [([ + N(k))\DFHmﬂ T (I + N(k>)quz]
The statement follows since D{(k) maps C(0€) into the solutions of the Helmholtz equation.

O
We now make a couple of useful technical observations:
PROPOSITION 4.2. We have:
ro H;(k) ~ (I + No(k) + N1(k))Vr,.

Proof. By the jump formula we know that raq H;(k) = (I + N(k))¥r,. The missing term
N has its wave front set contained in U x U where U is a small neighborhood S*0€2. But
then WEF'(N;) o WF'(Up,) = (0. So this term of the composition is negligible in k. O

PROPOSITION 4.3. For all 1 < 7 < m, we have:
We,, [(1+ Ny, - (T4 N(R) ] ~ W, [N (), - Ny (k)T .
Proof. We argue inductively. For j = 1, using the proof of Proposition 4.2 we have
Ur, [(I + N(k))Ur, ] ~ Ur, Ny (k)Ur, + ¥r, [(1 + No(k))Ur, |.

But the last term in the expression above is negligible in k, as the two semi-classical pseu-
dodifferentials Wr, and [(I + No(k))¥r, | are microsupported in the two disjoint open sets
['s and I'y respectively. Now assume the statement is true for j — 1. Then we write

Ur,,, [(I+ N(k)r, - (I + N(k)¥r,| ~ Ur,,, [N (k)Pr, - - Ny (k)Ur, |

Jj+1 [

U (TN (k) Up [N Wy -+ Ny (k)W ].
Similarly, Wr, (I 4+ No(k))¥r, is negligible in k and the second term above is negligible. [

Next we have the following important proposition which implicitly defines the monodromy
operator:

PROPOSITION 4.4. We have
roaP(k) ~ I+ M(k), (microlocally near 07)

where

1 m
(28) = E Z m 1N1 \I;F'H»'mfl o Nl(k:)quz
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DEFINITION 4.5. The monodromy operator for the m-link periodic reflecting ray ~ is the
operator M (k) on L*(0S2) defined by (28).

Proof. We define

Ml(k) = (_1)m_1N1(k)\IlFi+m—1 T Nl(k>qum
and we show that for every ¢
(29) roaP;(k) ~ xr, + M;(k), (microlocally near 07).

Since
E Mz(k) = M(k’) and —1 E Xr; = I (HliCI'OlOC&Hy near 87)
’ m < ! 7

taking averages of equatlons (29) over all ¢ implies Proposition 4.4. So we only prove (29)
for i = 1. Since P;(k) = Dl(k)Q1(k), by the jump formula (20) and by (27), we have

ronPL(R) = (1 + N(R) S (10, [(T+ N, - (I + N(k)) ],

J

3

Il
=)

where the 0-th term of the sum is defined to be ¥p,. Now we apply Proposition 4.3 to each
term of the above sum and we get

~1
roaPi(k) ~ (I + N(k)) Y (1), [Ni(k)Pr, - Ny (k)Pr,].

j:

Hence by substituting I + N = (I + Ny) + N; and collecting the terms corresponding to the

same number of iterations of the billiard map  (this number is the same as the number of
factors N7 in each term) we obtain

3

[e=]

m—1
Loa P (k) ~ 17N = xry,) [Ni(R)®r, - Ny (B)Wry | + (X, + Ma(k)).

J:1

The j-th term of the sum above is a k-FIO corresponding to (7. We show that each of these
terms is microlocally equivalent to 0 near 9. Hence only xr, corresponding to 3° and M; (k)
corresponding to ™ survive and the proposition follows.

Let us discuss why

(I = xr,40) [N1(K)Vrp, -+ Ny (k)¥p, | ~ 0. (microlocally near 0)
This is true because
WF'(Ny(k)¥r, -+ Ny (k)®r,) € {(# (v, ), (y,n)); (y,n) € T1} C Tjyq x Iy,

and because I — xr,,, is micro-supported away from (vj,7;). Thus by passing to a smaller
microlocal neighborhood of 9 in B*0f), we obtain a negligible operator. U
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4.2. Microlocal parametrix for the interior Dirichlet problem in terms of M (k).
In this section we construct a microlocal parametrix for the Dirichlet resolvent of (2 near ~
in terms of the monodromy operator M (k). It is a microlocal version of the global formula
(21) of Fredholm-Neumann. The discussion in the Neumann case is similar.

PROPOSITION 4.6. Microlocally in a neighborhood of v x v C T*Q x T*(Q2, we have
R (k) — Ro(k) ~ —P(k)(I + M(k))"'St(k)".

Proof. Let us look at the Schwartz kernels of the both hand sides in a microlocal neighbor-
hood of v x . We show that

G§(k,z,y)—Go(k,z,y) ~ —(P(k)(I+M (k)" ) (S(k) (k, z,y)), (microlocally near vx-)

where the operator P(k)(I + M(k))™! : C(992) — C(Q) acts on the first component x of the
kernel S¢(k)!(k,z,y). To prove this, since microlocal solutions are unique, it is enough to
show that for all y the right side is a solution of the Dirichlet problem

(—=Aq = B)(P(k)(I + M (k)= ) (S(k) (K, 2,)) =0,

roo(P(k)(I + M(k))"")(Sl(k) (k,z,y)) ~ —(G§ — Go)(k,z,y), microlocally for z near 0.

But this is clear because by Proposition 4.4, microlocally for x € 0f) near dv, we have for
all y € Q

roo (P(k) (I + M(K)) ) (SU(k) (k, 2,y)) ~ (I + M(K))(I + M (k)" St(k)' (k, z,y)
~ —(Gg = Go)(k,z,y).
We note that the operator I + M (k) is invertible by Lemma 5.5. O
5. TRACE FORMULA AND MONODROMY OPERATORS

Here we assume L., is the only length in the support of p € C§° and p(t) = 1 near L.,.
From Proposition 4.6, we immediately have a reduction of the trace to the boundary.

PRrRoOPOSITION 5.1. We have:

Tra(Rg,(k) = Rop(k)) ~ — Troa(p* kSU(k)'DLk)Q(R)(I + M(k))™).
Proof. First of all we note that the regularized trace Traq(R{ (k) — Ro,(k)) can be microlo-

calized to v, i.e. if x,, is a microlocal cutoff around ~, then
TT@Q<R£,p(k) - RO,p(k)) ~ TTBQ(X’Y(Rg,p(k) — Rop(k))x4)-
For a proof of this fact, see [Z4] §3.3. Now by Proposition 4.6, we have
Tro(RG (k) — Ro,(k)) ~ =Tra(p* kP(k)(I + M(k))~ St(k)")
~ —Traa(p* kSU(k)'P(k)(I + M(k))™).
The formula follows by substituting P(k) = DI(k)Q(k). O
This formula is useful but somewhat unwieldy. As proved in [Z3], S{(k)"De(k) = Do+ D,

where Dy is a k-pseudodifferential operator and where D; quantizes 3. The same analysis
could be used here. But it is simpler to use the alternative in the next section.
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5.1. Interior plus exterior. If we take the direct sum of the interior Dirichlet and exterior
Neumann resolvents, then the trace formula simplifies in that we can sum up the interior
and exterior S¢(k)" o DU(k) operators to obtain 5 N'(k) := 5-(8/0k)N (k).

PROPOSITION 5.2. We have:

Trre(Rg, (k) @ Re (k) — Ro (k) = — /Rp(u)Tr(N’(k — ) Qk — p)(I + M (k — 1)) ™" )dp.
Proof. We first derive an analogue of Proposition 4.6 for the exterior Neumann problem.
We then take the trace of the direct sum of the interior Dirichlet and exterior Neumann
resolvents.

We construct a parametrix for the exterior Neumann problem by a modification of the
method used for the interior Dirichlet problem. The discussion of the interior was motivated
by the double layer representation for the interior Dirichlet Green’s function. For the exterior
Neumann problem we use the single layer representation of the exterior Neumann Green’s
function, RY.(k) — Ro(k) = —Sl(k)(I + N'(k))~'DL(k)!, where the superscript ¢ denotes the
transpose. This formula is proved by expressing the left side as S¢(k)1) for some 1, taking
the normal derivative from the exterior and solving for ¢). We then consider

ras(Re (k) = Ro(k))rac,

where ry is the charateristic function of X. We observe that this operator is symmetric, i.e.
equals its transpose. It follows that

(ch(Rgc(k) — Ro(k))mc)(a:, y) = —(mcDé(k)([ + N)’lsf(k)tmc)(y,x).

Therefore, at least on the diagonal, we can use the same parametrix formula in the exterior.
We now complete the proof of Proposition 5.2 by taking the trace on R™ of the direct sum
of the two operators,
(30)
ro(RE (k) — Ro(k))rq ~ —rqP(k)(I + M(k))"'Sl(k)'rq  (microlocally near )

roc(RY.(k) — Ro(k))rqe ~ —roe P(k)(I + M (k))1Se(k)trqe (microlocally near )
In taking the trace we may cycle S¢(k)'rq to the front in the first trace and S€(k)'rqe to the
front in the second trace. We then add them to get,
(31) Tree (RE (k) ® R (k) — Ro(k)) ~ —TreoSE(k) Dl(k)Q(k)(I + M(k))™",
where S¢(k)* o DI(k) has the kernel

1
(32) [ Golk .00, Golkw,y)dw = 5N, ).

For a proof of this simple fact see equation (19) of [Z5]. This indeed is why the interior

Dirichlet and exterior Neumann problems were combined and explains the sense in which
they are complementary. We then convolve with p. 0

REMARK 5.3. We notice that here the exterior trace Tr(roe(Rf. ,(k) — Ro,(k))rae) is neg-
ligible in k and it is added only to simplify the expression in Prop 5.1 to the more convenient
expression in Prop 5.2.
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We now use Proposition 5.2 to obtain asymptotics of the trace. The next step is to expand
(I + M)~ in a finite geometric (Neumann) series with remainder. We have
no
(33) ([+M)_1 _ Z(_l)n M" + (_1)n0+1 MnO-H(I—{—M)_l,
n=0
The following proposition shows that, in calculating a given order of Balian-Bloch invariant

B, ;, we may neglect a sufficiently high remainder of the expansion (33).

PROPOSITION 5.4. Assume that k = A+itlog \. For each order |k|™” in the trace expansion
there exists no(J) such that

(i) Tr fq ()M (k — )" I+ M (k = 1) N'(k = p)Q(k — w)dp = O(Jk| =),

(i1) TroRE,(k) = Snt (= 1)"Tr [ p(pe) M(k — )" N'(k = m)Q(k — p)dp + O(|k|~/~1).

Proof. Part (ii) is easily proved by combining part (i), Proposition 5.2 and (33). It remains
to estimate the remainder and show pat (i). For this, we need to establish an L?- norm
estimate for the operator norm of M (k — p) = M(X — p+i7log \) for sufficiently large 7.

The proof is implied by the following norm estimate, which is analogous to Lemma 6.2 of
[SZ]. Let to be the constant in §3.1. We note that the monodromy operator depends on a
choice of ty although it is not indicated in the notation.

LEMMA 5.5. Let k = A+itlog \. For every a > 0 there exists T > 0 and constants b,C' > 0
such that,
1M (k= p)llr2 < Clk[7 < >

To prove the Lemma, we observe that by Proposition 4.4,
(34) 1Mk~ )| < C(Ik] < p>)"||Ni(k = )|,

For some integers C' and b. We will not relabel these constants in the course of our estimates.

We recall (see (24)) that N;(k — p) has Schwartz kernel

Y

(35) Ok — )"ty (jo — yl)ar ((k — )|z — yl)<ﬁa Vy),

where ¢4 (t) is supported in ¢ > ¢y for some t; > 0. We estimate its norm by the Schur
estimate,
(36)

[N (k=] < Clk = pl" ™ supseaq foo [ XN (Jr — ylay((k — )l — y])]dS(y)

< Cll— pl" e 82 sup,cn foq [01(l2 — yDar((k — )z — y[)]dS (y)

< C < L >2n e—(ﬂto—e)log)\7

where we estimate [k — u[" ™" sup, o oy >t [01((F = )|z —y|)| < ClE[" < p >>".
Since we can choose any small € > 0 and also any large 7 > 0, it is clear that, for any
a > 0, there exist € and 7 such that ||[M(k — p)|| < Clk|=® < p > . This proves the Lemma

and hence the first part of Proposition 5.4.
O
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5.2. Trace for the iterations of a bouncing ball orbit. We now analyze the trace in
part (ii) of Prop 5.4 when it is specialized to the rth iterate 4" of a bouncing ball orbit, which
has m = 2r links. We observe that Q(k — u) is a sum of terms quantizing 3° 3%, ..., 3% .
Let us write ¢;(k — u) for the term quantizing 3. We note that based on this notation, we
have g (k — p) = M (k — pu) where M (k — u) is the monodromy operator for 4. It follows
that

N'(k —p) Q(k — )

is a sum of terms quantizing 3°,...,5**!. On the other hand if we use the monodromy
operator for ", then (I+M (k—u))~! is a sum of terms quantizing 3°, 32", 3", - - - . Therefore
only three terms of N'(k—pu)Q(k—p)(I+M (k—p))~" are associated to v*" and can contribute
to the trace:

(1) =Ng(k — p) M(k — p);

(2) No(k = ) qar(k — p) = No(k — ) M(k — p);

(3) Ni(k — 1) @2r—1(k — p).
Here, we use that N is associated to 3° and Nj is associated to 3. We notice the terms (1)
and (2) cancel and hence only the term (3) contributes to the trace. Also we notice that for
the r-th iteration of a bouncing ball orbit we have only two vertices and therefore for ¢ odd
we have I'; = I'; and for ¢ even we have I'; = I's. Let us denote by

F+ = Fl, and I'_ = FQ,

the microlocal neighborhoods corresponding to the top and bottom vertex respectively. Thus,
by these notations we have

PROPOSITION 5.6. Let p € C°(R) be a cut off satisfying supp p N Lsp(Q) = {rL,}. Then

(37)
TT(RfDl,p(k» —1Ir fR p N/(k /’L)QQT‘ l(k ,U,) dlu’

ZiTT fRP ) Ni(k — p)

(2r—1) times

A

x (Ni(k — ) Or ) (Ny (k — )W, ) -+ (Ny (k — ) U ) (Vi (k — 1) Ur, ) dp.

We now express this trace as an explicit oscillatory integral. We consider both principal
(we will define the principal terms in the next section) and non-principal terms. All terms
arise as composition of 2r Fourier integral operators quantizing (3, hence may be expressed
as compositions of 27 oscillatory integrals. We recall that Wp, = (I + NO)*lxpj. Next we
expand

(I + No(k))™' =T+ N_y(k),

where N_;(k) is a (—1)st order pseudo-differential operator. If we plug (I + N_1(k))xr, for
Ur, into the expression (37), after expanding we get
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COROLLARY 5.7. Let k = A +irlog A. Up to O(|k|=), the trace Tr(R{ ,(k)) is a sum of
2r oscillatory integrals of the form

IO‘ (k) — fR fR f(aQ)2T ei[“(tfﬁ(yl:--~7y2'r))+k£(yl7-~~7y2r)]

2r,p

Agr(k — Y1, 7y2r)ﬁ(t) dt d:u’ ds<y1) T dS(yT)a

where the superscript o; 0 < o < 2r — 1, denotes the sum of the terms which contain o
factors of N_1, and where

Lyis--sy2) = lyr — vo| + -+ |y2r — w1,
and A3, (k — p, 1, ..., ya) € S5 71((09)2).

6. PRINCIPAL TERMS

The goal of this section is to identify the principal terms, which generate the highest
derivative data, and to prove that non-principal terms contribute only lower order derivative
data.

As in [Z3], we separate out a single oscillatory integral (the principal term I3, )) which
generates all terms of the wave trace (or Balian-Bloch) expansion which contain the maximal
number of derivatives of the boundary defining function per power of k (i.e. order of wave

invariant).

DEFINITION 6.1. Let vy be a 2-link periodic orbit, and let ¥" be its rth iterate. The principal
term is the term of (37) in which Wr, is replaced by xr,. Thus, the principal term is

(2r—1) times

A

Iy, =— ZTT p * Ni('Nixr, Nixry -+ Nixe, Nixrs )dp.
+

This oscillatory integral corresponds to ]SW, i.e. the one in 5.7 corresponding to 0 = 0. By
Corollary 5.7, the oscillatory integral I3

o, has the phase function L(y1, ..., y2.) = [y1 — ya| +
-+ |yor — y1|, where y, € 02. We may write each y, in graph coordinates as (z,, f+(z})).
We will use superscripts for the n — 1 components of z;,, i.e. ), = (x}), o ,zzfl). Hence the
integral is localized to [(—¢,€)"~']*". We notice that I3, , is the sum of 13;; and ]S;,;), Whgrf
I )

they correspond to the + and — term respectively. It is clear that the phase function of 15"

is given by

2r
Ei(x/b Tt 7x/2r) = Z \/($;)+1 - x;)2 + (fwj:(p-i-l) (x;—i—l) - fuJ:l:(P) (‘7:;7))2
p=1

Here, wy : Zo, — {£}, where wy(p) (resp. w_(p)) alternates sign starting with w, (1) = +
(resp. w_(1) = —).

Now we have the following Theorem 6.3. First we have a definition:
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DEFINITION 6.2. Let v be an m-link periodic reflecting ray, and let p € C§°(R) be a cut off
satisfying supp pN Lsp(Q) = {rL,} for some fized r € N. Given an oscillatory integral I(k),
we write

TrRE (k) = I(k) mod O(Z E(T¥f))
if
TrR§ (k) — 1(k)

has a complete asymptotic expansion of the form (4), and if the coefficient of k™7 depends
on < 27 derivatives of the defining functions f at the reflection points.

The following Theorem is the higher dimensional generalization of Theorem 4.2 of [Z3].

THEOREM 6.3. Let k = XA+ itlog\. Let v be a primitive non-degenerate 2-link peri-
odic reflecting ray, whose reflection points are points of non-zero curvature of 082, and let
p € CP(R) be a cut off satisfying supp p N Lsp(Q) = {rL,} and equals one near rL. for
some fivzed v € N. Orient Q so that v is the vertical segment {z' = 0} N, and so that 02
is a union of two graphs over [—¢,€]"~1. Then

(1) TrRG (k) = 15, ,, mod O3, k7 (5% f+))

2) We also have the following integral representation for I3. in the ' coordinates
2r,p p

(38)  I%,= > / L onth) B (o oty V- -y,
T J([—edn )T

where the phase Ly(z},...,2%,.) is given in (11), and where the amplitude is given
by:
pr, £ / / / / pr,t / / 1 a pr, £ / /
a27. (l{?,l'l,...7172T) :ﬁwi(fbl,...,lér)AQT (k,CCl,...,[EZT)—f—g%AQT (k,x17...,x2T).
Here

A (@l wh) = T2 o (k[ =20 P (Fa () = Fasiorn (750)? )
(39)

<@y 115 Vot fug () (@)>—(fuy (o) (@) = fu g (p+1) (@p11)) }
V@257 Fwy (0 @) = fuy (pr1y (@ 41))?

where ay is the Hankel amplitude in (24). Here wy(p) = (=1)P™ and w_(p) =
—w4 (p). Also we have identified x4, = .

X

Proof. To prove the first part of Theorem it is enough to show that for a given o > 1, the
coefficient of k77 in the stationary phase expansion of I3, ,(k), has only Taylor coefficients of
order at most 2j — o + 1. This is shown in §5.4 of [Z3]. The second part of Theorem follows
from the proof of Proposition 3.10 of [Z3]. It is basically just eliminating the variables ¢ and

i in the integral in Corollary (5.7) using the stationary phase lemma.
([l
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Theorem 6.3 is a crucial ingredient in the proof of Theorem 1. It gives explicit formula
for the phase and amplitude of the principal oscillatory integrals that determine the highest
order jet of  in each wave invariant. The notation A5"* ab"* refers to the amplitude of
the principal terms of the 2rth integral; these amplitudes contain terms of all orders in &
and principal here does not refer to the principal symbol, i.e. the leading order term in the

semi-classical expansion.

7. STATIONARY PHASE CALCULATIONS OF [9

2r.p AND THE WAVE INVARIANTS

It is easy to see that (see Proposition 4.4 of [Z3]) we have Ig;j; = Ig;; and therefore

. o= 2[3;; . Hence it suffices to consider the 4 term. The oscillatory integrals Ig;; have
the form (38) with the phase £, and the amplitude a5 ™.
The only critical point occurs when z; = 0 for all p. We denote by Hess £.(0) the

2r(n — 1) x 2r(n — 1) matrix with components

Ly -
(40) Hess £4(0) = — |, ,j=1,....n—1; p,g=1,...,2r.

004
It is the Hessian of £y at its critical point (2], ...,)5,) = 0 in Cartesian coordinates.

We denote by H the inverse Hessian operator in the variables (2], ..., ), ) at this critical
point. That is Hy = (Hess(L£,)™(0)D, D), where D is short for (52, --- 5-n—1). More
1 Lor
precisely,
2r n—1 82
41 H., = B 653),(psa) M
() o) S =
p,g=11i,j=1 p

Before we apply the Stationary Phase Lemma, in two subsections we state some properties
of the inverse Hessian matrix of £, and also some properties of the phase function £, and
principal amplitude a5* which may be derived directly from the formula in Theorem 6.3.

7.1. Properties of Hess (£;)~'. Let {v;+}/Z] denote the eigenvalues of the second fun-
damental form of 02 at the endpoints of the bouncing ball orbit. Without loss of generality
we can assume

(42) vie =D%f(0), j=1,..,n—1

This is because by an orthogonal change of variable (i.e. an isometry of the plane) we can
make Hess fi a diagonal matrix. Of course when all the symmetry assumptions are satisfied,
then Hess fi is automatically diagonal.

The following generalizes Proposition 2.2 of [Z3].

PROPOSITION 7.1. Puta;y = —2(1+Lv;, ), and let Ay = Diag(a; ) be the (n—1)x (n—1)
diagonal matriz with the diagonal entries a; . Then the Hessian Hs, of L1 at 2’ =0 has the
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form:
(A, I 0 ... I )
I A1 ... 0
-1
HQT:T O [ A+ I 0 >,
./ 0 o0 ... A_)

where there are 2r x 2r blocks and each block is of size (n — 1) x (n —1).

Proof. There are 2r sets of variables x;, and therefore there are 2r x 2r blocks and the (p, q)-th
block is given by Dx, o, £4(0). We have:

(43)

( ;) p+1)+(fwi(p)( ) fwi(p+1)( p+1))v ’fwi(p)(x ) ( p—1—T ) (fw:t(p 1)(33p 1) fwi(p)(z;))vz;}fwi(p)(x;))
VLo =

\/(z;_$p+1) +(fwi(p)(z ) fwi(p-!—l)( p+1))2 N \/(:l?’p—l‘P 1) (fwi(p)( L)_fwi(p—l)(a:;;fl))Q

A simple calculation (using (43) ) shows that all the blocks ng L.(0) are zero except the

ones with p=¢,p=¢q+ 1 and ¢ = p+ 1. From (43) we obtain
D2, x;£+(0) = 2(% I +w.(p)Hess fw+(p)(0)) = %1 Aw, ),

O

In the elliptic case, det Hy, is a polynomial in cosa;/2 (in cosha;/2 in the hyperbolic
case) of degree 2r(n — 1). Here, in the elliptic case, {e**@1,...eF@-1} are the eigenvalues of
the Poincare map P;.

PROPOSITION 7.2. We have
n—1
det H,, = L2147 H(2 — 2cosray).
j=1
We will use Proposition 7.3 in the following subsection to prove Proposition 7.2.

7.1.1. Poincaré map and Hessian of the length functional. The linear Poincaré map P, of
7 is the derivative at v(0) of the first return map to a transversal to ®' at (0). By a non-
degenerate periodic reflecting ray v, we mean one whose linear Poincaré map P, has no
eigenvalue equal to one. For the definitions and background, we refer to [PS, KT].

There is an important relation between the spectrum of the Poincaré map P, of a periodic
m-link reflecting ray and the Hessian H,, of the length functional at the corresponding
critical point of L : (0€2)™ — R. For the following, see [KT] (Theorem 3).

PROPOSITION 7.3. Let v be a periodic m-link reflecting ray in plane domain €2. Then we
have:

det(I — P,) = det(Hp,) ([ [ Hppe1) ™",
p=1
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where Hy 11 is the (p,p+ 1)-th entry of Hy,.

Proposition 7.3 is stated only for the plane domains. One can probably prove it for higher
dimensions, but the formulae for the plane domains is enough for us to prove Prop.7.2

Proof of Prop.7.2. Let us first assume n = 2. Let A\, A\ ! be the eigenvalues of P, so
that det(I — Pr) = 2— (A, + A1) Since in our case H,, 41 = —1/L, from Prop.7.3 it follows
that

(44) det(I — P,-) = L*"det Hy,; (v 2 — link.)

This is because if the eigenvalues of P, are {¢***} (say, in the elliptic case) then those of
P are {e*"*} hence the left side of (44) equals 2 — 2 cos ra. Now assume n > 2 and assume
{eFion . eFon-1} are the eigenvalues of P,. We just showed that if we define

(a;» 1 0 ... 1 )
1 a1 ... 0
-1
Hj,2r = T 0 1 Qj + 1 0 s
\ 1 O 0 o .. Cljy_ ) 2r X2

then detHj o = L™*"(2 — 2 cos(ra;)). Now we notice because all the blocks of the matrix
H,, are diagonal matrices, therefore they commute and we can write

n—1
detHy, = det (Diag(detHLgr, . ,detHn_LQT)) = >(-n) H(2 — 2cosray).

j=1
We now consider the inverse Hessian H, = H,,', which will be important in the calculation
of wave invariants. We denote its matrix elements by hfﬁ’p 7 which corresponds to the (i, j)-th
entry of the (p,q)-th block of the matrix H, . We also denote by H_ the matrix in which
the roles of A, A_ are interchanged; it is the Hessian of £_. We also notice since Hy, is a
block matrix with each block a diagonal matrix so is its inverse H ... Hence the only non-zero

entries of the inverse Hessian H are of the form h%"™.

PROPOSITION 7.4. The diagonal matriz elements hﬁ’pp are constant when the parity of p is
fixed, and for every 1 <1 <n —1 we have:

y L y o
p odd = AP =R, p oeven = AU =RY

i1l 22 22 péidl
RY =R R =R
Proof. Tt is enough to show this for n = 2. This is because Hs, is a block matrix with

commuting blocks and each block is diagonal. In fact based on our definition in (7.1.1) we
have
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(45) RitPe — (ng)ii’pq _ (Hi’ZT)pq.

Hence it is enough to prove the proposition for the entries of the inverse of the 2r x 2r matrix
H; 5,. This reduces the problem ton —1 = 1.

Now let us introduce the cyclic shift operator on R*" given by Pe; = e;11, where {e;}
is the standard basis, and where Pey, = e;. It is then easy to check that PH, P~1 = H_,
hence that PHIFIP*1 = H~'. Since P is unitary, this says

h2 = (H_ep,eq) = <PHJ:1P71€p>eq> = <H11P716papileq> = h]rl’qil-

It follows that the matrix Hy is invariant under even powers of the shift operator, which
shifts the indices p — p+ 2k (k= 1,...,r). Hence, diagonal matrix elements of like parity
are equal.

OJ

7.1.2. Inverse Hessian at (7/27)"-symmetric bouncing ball orbits. We first observe that in
the case of (Z/2Z)" symmetric domains, the (2r)(n—1) x (2r)(n — 1) Hessian of Proposition
7.1 simplifies to:

(A I 0 R | )
I A I 0
|0 1A T 0
(46) HQT:T

/I 0 o ... A

\ 7

which is a 2r x 2r block matrix, each block of size (n — 1) x (n — 1). Here A = Diag(a;)
and [ is the rank n — 1 identity matrix. The diagonal entries a; are given by
(47)
aj =2cosa;/2 = —2(1+Lv;) (elliptic case), a; =2cosha;/2 = —2(14+Lv;) (hyperbolic case).
We can express the inverse Hessian matrix elements hgjp % in terms of Chebychev polyno-
mials T}, resp. U,,, of the first, resp. second, kind. The Chebychev polynomials are defined
by:
i 1)0
Tn(cosf) = cosmb,  Up,(cosh) = w
sin 6
PROPOSITION 7.5. [Z3] Suppose that Hy, is given by (46). Then the matriz elements of H,,'
are given by

ha = sy [Uor—gip-1(=0i/2) + Uppa(=ai/2)), (1<p<q<2r 1<i<n—1)

hgPt =0,  i# ]
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Proof. This formula was proved in [Z3] for the case n = 2. For the general case n > 2, we
just use the equation (45) and reduce it to n = 2. O

We note that h9P? = h59% g0 this formula determines all of the matrix elements. It follows
in the elliptic case that

(—1)P—1 (sin(27“7q+p)o¢i/2 + sin(qu)ozi/Q) (1 Sp < q < 27”)

iipa 2(1—cosray) sina; /2 sina; /2
(48) hoi ™ = B . .
(—1)P—1 <s1n(2r7p+q)o<i/2 + sm(pfq)ozi/Z) (1 <g<p< 27”)

2(1—cosray) sina; /2 sina; /2

There are obvious analogues in the hyperbolic and mixed cases.

The case of interest to us is
y 1 sin roy; 1 oy
49 i L= cot —.
(49) 2 2(1 —cosray)sina; /2 sino;/2 2

7.2. Properties of the phase function £, and the amplitude a} . Since £, and
ab" are functions of 2r(n — 1) variables z2 where 1 < p < 2r and 1 < j < n— 1, to simplify

our notations we denote:

Let [y] = (7)), 1<p<2r,1<j<n-—1 bea?2rx(n—1) matrix of indices. We let
m = [yl =32, ;73 Then we define

m 8m
T @yt (O e

We will use ¥, for the p-th row of [y], and sometimes if 7, 7,, ... are the only non-zero rows
of [y] we write DZ' - for D} to emphasize that 7y, 7, ... are the only non-zero rows of [y].
The calculation of the highest derivative terms of the Balian-Bloch wave invariants uses only
the following properties of the phase and principal amplitude which may be derived directly
from the formulae in Theorem 6.3.

The following Lemma is the higher dimensional generalization of Lemma 4.5 of [Z3]. Tt is
proved in the same way, and the proof is therefore omitted.

IO,:i:

LEMMA 7.6. The phase and principal amplitude of the principal oscillatory integrals I,

have the following properties:

1. In its dependence on the boundary defining functions f+, the amplitude ab" has the

form ar(k> 33/7 fia f:,t)
2. As above, in its dependence on x’

10
a (ko xh)) = L2, wh AR (K2, ) ;%A§:’+(k, Th, ., Th,),
where
AL (k2 ah,) = TR Ap(2, @,,),  2r+1=1. (see (39))

3. At the critical point, the principal amplitude has the asymptotics
a8 (k,0) ~ (2rL) L= A(r) + O(k™),

where A(r) depends only on r and not on Q.
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ag:,-ﬁ- (k,O)ei(k+iT)£+ (0)+im/4sgnHessL (0)

~ (2rL) A(r) Dp (k) (1 + O(k™1)) (cf4).

4. \/det HessL

5. Vay T (k,a), ... ah)|w—o = 0.

6. DLy [wmo = 201 (D) DI fu(9(0) mod Rop (T f4(0), T f-(0)).
7. D%Hﬁﬁx:o = 2w+<p)D§;i+2fw+(p)(O) mod Ry (T f1(0), T% f-(0)).
8. If [y] has more than one non-zero row, say Vp, Vg, ..., then

DTl L,(0)=0 mod Ro (T f+(0), T¥ f_(0)),

’\/P’?/qa"'

and

DY L£,(0)=0 mod Ry (T f(0), T f-(0)).

Vo> Vqse
Above, = means equality modulo lower order derivatives of f.
7.3. Stationary phase diagrammatics. We briefly review the stationary phase expan-

sion from the diagrammatic point of view. For more details we refer to [A, E, Z3].
The stationary phase expansion gives an asymptotic expansion for an oscillatory integral

Z(k) = /n a(z)e*S® dy

where a € C§°(R") and where S has a unique non-degenerate critical point in supp(a) at
x = 0. Let us write H for the Hessian of S at 0. The stationary phase expansion is:

9 imsgn(H)/4
Z(k) = ()2S e*S0) 7, (k),

k \/|detH |

where

ZCED YD SR

(T0)eGy,1, I-V=j

where Gy,; consists of labelled graphs (I',¢) with V' closed vertices of valency > 3 (each
corresponding to the phase), with one open vertex (corresponding to the amplitude), and
with I edges. The function ¢ ‘labels’ each end of each edge of I with an index j € {1,...,n}.
Above, S(I") denotes the order of the automorphism group of I'; and I,(I") denotes the
‘Feynman amplitude’ associated to (I', ). By definition, I,(I") is obtained by the following
rule: To each edge with end labels j, k one assigns a factor of ih/* where H=! = (h/%). To
each closed vertex one assigns a factor of i% where v is the valency of the vertex and
i1 ...,1, at the index labels of the edge ends incident on the vertex. To the open vertex, one
assigns the factor %, where v is its valence. Then I,(T") is the product of all these
factors. To the empty graph one assigns the amplitude 1. In summing over (I',¢) with a
fixed graph I', one sums the product of all the factors as the indices run over {1,...,n}.
We note that the power of k in a given term with V vertices and I edges equals kX',
where xr» = V — I equals the Euler characteristic of the graph I defined to be I' minus
the open vertex. We note that there are only finitely many graphs for each y because the

valency condition forces I > 3/2V. Thus, V < 2j,1 < 3j.
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7.4. The stationary phase calculations of 12,+ The data D23+2fi(0). In this section
we will repeatedly use different parts of Lemma 7.6 without quotlng them.

We first claim that in the stationary phase expansion of ISTJ;, the data DQJ +2 f+(0) appears
first in the k™7 term . This is because any labelled graph (T, ¢) for which IZ(F) contains the
factor D;%J“Q f+(0) must have a closed vertex of valency > 2j + 2, or the open vertex must
have valency > 2j 4+ 1. The minimal absolute Euler characteristic |x(I")| in the first case is
j. Since the Euler characteristic is calculated after the open vertex is removed, the minimal
absolute Euler characteristic in the second case is j + 1 (there must be at least j + 1 edges.)
Hence the latter graphs do not have minimal absolute Euler characteristic. More precisely,
we have:

PROPOSITION 7.7. In the stationary phase expansion of IQ;J;, the only labelled graph (T, )
with x(I'") =V — I = —j and I,(I") containing D;f_;rzfi( ) is given by:
ol i1 € G (e V=11 =j+1). The graph I'1 j 11 has no open vertez, one
closed vertex and j + 1 loops at the closed vertez.
o The only labels producing the desired data are those £,, with 1 < p < 2r fized, which
labels all endpoints of all edges as (i,p) where 1 < i < n — 1. (Notice the label (i,p)

corresponds to the variable x},.)

In addition, the sum of the Feynman amplitudes corresponding to the labelled graphs (I'y j1+1,¢p)
above, for a fixed p, is

Jj+1)!

S I (M) = (D)L A 30
t o

where we neglect terms with < 25 + 1 deriwatives.

(B w0, () D fu ) (0)

Proof. We argued diagrammatically that the power k=7 is the greatest power of k in which
D?;Q f+(0) appears. We also showed that a labeled graph with Euler characteristic —; which

produces Dgé+2 f+(0) must have a closed vertex of valency > 25 + 2. Now it is clear that
such graph must have only one closed vertex and j + 1 loops. This proves the first part of

the proposition. The second part follows easily from Lemma 7.6.
Now let us determine 3, I, (I'1 j+1) for the labelled graphs ('t j41,¢,) above. We have

(50)

[~ (n=1)r -5 +1' n—1)(n— n—
ZIZ Coge) = @A 3 EUE gy e piig o),
'Yp"l‘ A 1_J+1 FYp' P ’

So by Lemma 7.6 and using short-hand notations for multi-indices we get

> 10, (Tgin) = (ArL) L Dr A2y s 1) (7Y w, (p) DS f (0)
p

I V!
[Vpl=j+1 P

O

7.5. Proof of Theorem 2. Now we are ready to prove Theorem 2. The discussion above
shows that modulus derivatives of order < 27 + 1

2 > T, (Trj)

B, ;= (2rL)” 1y (n=1)r T
J

p=1
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We notice that S(I'y ;1) = |Aut(Ty41)| = 27715 + 1)!. We then break up the sums over
p of even/odd parity and use Proposition 7.4 to replace the odd parity Hessian elements by
hi' and the even ones by h2*. Taking into account that wy(p) = 1(—1) if p is even (odd),
we conclude that ( by the formula in Proposition 7.7)

B r . —_— .
B’YTJ = (22;3’31 Z {(h-i- ZT)VD;]?JFQer(O) - <h1—1,27")’YD§]'7+2f7(0>}

Iyl=i+1

So far we have proved all parts of Theorem 2 except the last part which finds a formula for
the wave invariants in the case of symmetries.

7.5.1. Balian-Bloch invariants at bouncing ball orbits of (Z/2Z)" symmetric domains. Now
if we assume the (Z/27)" symmetry assumptions, namely f, = f = —f_ and f being even
in all variables, then using (49) the formula above simplifies to

Byr ra g 2542
(51) By = (2) @ Z|’Y| =j+1 v' (@ cot ?) D2?7+ f(0)

+{polynomial of Taylor coefficients of order < 2j}.
This finishes the proof of Theorem 2. Q.E.D.

7.6. Recovering the Taylor Coefficients and the Proof of Theorem 1. First of all
we prove the following lemma

LEMMA 7.8. If {aq, ..., 1} are linearly independent over Q then the functions

(03
cot —
2

are linearly independent over C as functions of r € N.

Proof. Suppose that there exist coefficients ¢y such that

N
ch <cot%) =0, VreN.

—

o
Consider the function

(21, .oy 2nm1) = Z c5 (cot 7)7.
8l
This function is meromorphic and periodic of period 27 in each variable z;, so it may be
regarded as a meromorphic function on (C/Z)"!. It vanishes when z; = ra;/2 modulo 27
for all 7 = 1,2,3,.... But such points are dense in the real submanifold (R/Z)""! and hence
the function vanishes identically on (C/Z)""!. This is a contradiction since the functions

H? 11 w are independent functions and by the change of variables w; = cot z; the functions

H;;ll (cot ;)" must also be independent. O

Now assume © C R” is a domain in the class Dy, defined in (3). Take a non-degenerate
bounding ball orbit 7 of length 2L which satisfies all the properties listed in (3). We would
like to use mathematical induction and recover the Taylor coefficients of the function f where
f and — f are the local defining functions of 02 near the top and bottom of the bouncing ball
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orbit respectively. First, it is possible to recover all the o;, 1 < j7 < n—1, under a permutation
[Fr]. This is because | det(/ — Pyr)| is a spectral invariant (the 0-th wave invariant). But
we know that |det( — Pyr)| = H;le(Q — 2cos(ra;)). Hence H;L;ll (sin?(ray;/2)) is a spectral
invariant for all » € N. It is easy to see that this condition determines c;; under a permutation.
We fix this permutation and we argue inductively to recover all the Taylor coefficients. Since

f is even in all the variables, the odd order Taylor coefficients are zero. Now assume Dg g' f(0)
are given for all |J| < j. Hence the remainder polynomial term of (51) is given. Now by the

—

above lemma, since all the functions (Cot %&)7 are linearly independent, we can recover the

Taylor coefficients D%ﬁ f(0). This concludes the proof of Theorem 1.
The analogous arguments will follow in the hyperbolic or mixed hyperbolic-elliptic cases.
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