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Abstract. This article contains a detailed study in the case of a toric variety of the geodesic
rays ϕt defined by Phong-Sturm corresponding to test configurations T in the sense of
Donaldson. We show that the ‘Bergman approximations’ ϕk(t, z) of Phong-Sturm converge
in C1 to the geodesic ray ϕt, and that the geodesic ray itself is C1,1 and no better. In
particular, the Kähler metrics ωt = ω0 + i∂∂̄ϕt associated to the geodesic ray of potentials
are discontinuous across certain hypersurfaces and are degenerate on certain open sets.

A novelty in the analysis is the connection between Bergman metrics, Bergman kernels
and the theory of large deviations. We construct a sequence of measures µz

k on the polytope
of the toric variety, show that they satisfy a large deviations principle, and relate the rate
function to the geodesic ray.
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1. Introduction

This article is inspired by recent work of Phong-Sturm [PS2] on test configurations and
geodesic rays for ample line bundles L → M over Kähler manifolds (M,ω). The main
construction in [PS2] associates to a test configuration T = (L → χ → C) and a hermitian
metric h0 on L an infinite geodesic ray R(h0, T ) = e−ψth0 starting at h0 in the infinite
dimensional symmetric space H of hermitian metrics on L in a fixed Kähler class in the
sense of Mabuchi, Semmes and Donaldson [M, S, D1]. At this time, it seems to be the only
known construction of an infinite geodesic ray with given initial point in the incomplete
space H (see also [AT] for other constructions of geodesic rays). The geodesic rays in [PS2]
are constructed by taking limits of ‘Bergman geodesic rays’, i.e. geodesic rays in the finite
dimensional symmetric spaces Bk of Bergman metrics. The purpose of this paper is to
analyze the construction in detail in the case of toric test configurations on toric varieties.
We give explicit formulae for the Bergman geodesic rays and for the limit geodesic ray. The
formulae show clearly that the geodesic rays produced by toric test configurations are C1,1

and not C2, and that the approximating Bergman geodesics converge in C1([0, L] ×M) for
any L > 0. Furthermore, the metrics ωt = ω0 + i∂∂̄ψt are only semi-positive for t > 0, i.e.
ωmt = 0 on certain open sets (cf. Theorem 1.4). Hence, both in terms of regularity and
positivity, the rays lie in some sense on the boundary of H, and we obtain a weak solution
of the Monge-Ampère equation which saturates the known C1,1 regularity results [Ch].

Two other articles have recently appeared which contain regularity results on test config-
uration geodesic rays. First, C1,1 geodesic rays are constructed by Phong-Sturm [PS3] from
any test configuration using a resolution of singularities. At least when the total space of the
test configuration is smooth, the rays must be the limits of Bergman rays. In our toric set-
ting, the total space is never smooth and it is not clear at present how our regularity results
overlap. Second, the C1,1 regularity of test configuration geodesic rays with smooth total
space was also observed in the article [CT] of Chen-Tang. The authors also give examples
of toric test configuration geodesic rays which are not smooth [CT].

In proving the convergence result, we employ a novel connection between analysis on toric
varieties and the theory of large deviations. As we will show in Theorems 1.4 and 8.1, the
Phong-Sturm geodesic ray ψt arises from Varadhan’s Lemma applied to a family {µzk} of
probability measures on the polytope P of M which are defined by the test configuration. It
is closely related to the rate functional of a large deviations principle for another ‘time-tilted’
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family µz,tk of probability measures on P . We believe that this connection is of independent
interest and therefore develop it in some depth for its own sake. The measures µzk are closely
related to the random variables and probability measures on R defined in [PS] for the geodesic
problem on a general Kähler variety (see the first remark in Section 5). To be precise, the
Phong-Sturm measures are the pushforwards to R under a certain function of the µzk. In
subsequent work, we study the asymptotic properties and large deviations properties of the
R measures on any Kähler manifold.

To state our results, we need some notation. Let M be a smooth m-dimensional toric
variety, let Tm denote the real torus (S1)m which acts on M , and let L → M be a very
ample toric line bundle. Let h0 ∈ H be a positively curved reference metric on L in the give
Kähler class, let ω0 denote its curvature (1, 1) form and let µ0 denote the moment map for
the Tm action on M with respect to µ0. We denote by T a test configuration. In the case of
a toric variety, Donaldson [D1] shows that general toric test configurations are determined
by rational piecewise linear convex functions

f = max{λ1, . . . , λp}, with λj(x) = 〈νj, x〉 + vj (1)

on the polytope P of the toric variety, where λj(x) are affine-linear functions with rational
coefficients. Roughly speaking, the graph of R − f(x) for a large integer R > 0 is the
‘top’ of an m+ 1-dimensional polytope Q with base the m-dimensional polytope P and the
degeneration occurs as one moves from the bottom to the top. By multiplying f by d we
may assume the affine functions λj have integral coefficients. We denote by Pj ⊂ P the
subdomain where f = λj.

In [PS2], the geodesic ray e−ψth0 is constructed as a limit of Bergman geodesic rays
h(t; k) = h0e

−ψk(t,z) which are constructed from the test configuaration T (see Definition 3).
In the following Proposition, we given an exact formula for ψk in the case of a toric test
configuration. It is stated in terms of monomial sections corresponding to lattice points in
the polytope of M . We refer to §2 for as yet undefined terminology.

Proposition 1.1. Let (M,L, h0, ω0) be a polarized toric Kähler variety of dimension m,
and let P denote the corresponding lattice polytope. Then the Phong-Sturm sequence of
approximating Bergman geodesics is given by

ψk(t, z) =
1

kd
log Ẑk(t, z) (2)

with ⎧⎪⎪⎨
⎪⎪⎩

Ẑk(t, z) = e
−2t 1

dk

∑
α∈kdP∩Zm kd(R−f( α

kd
))
Zz,t
k ,

Zt,z
k :=

∑
α∈kdP∩Zm e2tkd(R−f( α

kd
))

||sα(z)||2
hkd
0

Q
hkd
0

(α)
,

(3)

where {sα} is the basis of H0(M,Lkd) corresponding to the monomials zα on C
m with α ∈

kdP , dk = H0(X,Lkd), and where Qhkd
0

(α) is the square of its L2 norm with respect to the

inner product Hilbkd(h0) induced by h0 (see (10), (11) and (23) for the precise formula).

The Phong-Sturm geodesic ray is by definition the limit ψt(z) (in a certain topology) of
the sequence ψk(t, z). Our next result gives an explicit formula for it. One of the main points
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of this article is that this relative Kähler potential is naturally expressed in terms of the rate
functions Iz for the large deviations principle of the sequence of probability measures,

µzk =
1

Πhkd
0

(z, z)

∑
α∈kdP∩Zm

|sα(z)|2hkd
0

||sα||2hkd
0

δ α
kd
, (4)

where Πhkd
0

(z, z) is the contracted Szegö kernel on the diagonal (or density of states); see §2
for background. We obviously have

ψk(t, z) =
1

kd
log

∫
P

ekdt(R−f(x))dµzk(x) + 2t
1

dk

∑
α∈kdP∩Zm

kd(R− f(
α

kd
)), (5)

and since the second term has an obvious limit, the determination of ψt reduces to the
uniform asymptotics of the first term. For notational simplicity we henceforth often write

Ft(x) = t(R− f(x)). (6)

Our first observation is the following measure concentration result, which follows easily
from the Bernstein polynomial results of [Ze2].

Proposition 1.2. Let µ0 : M → P be the moment map with respect to the symplectic form
ω0. Then for any z ∈M , the measures µzk tend weakly to δµ0(z). Thus,

µ0(z) = lim
k→∞

1

Πhkd(z, z)

∑
α∈kdP

(
α

kd
)

||sα(z)||2hkd
0

Qhkd
0

(α)
.

A much deeper result is that µzk satisfy a large deviations principle (LDP), and that the
logarithmic asymptotics in (5) are therefore determined by Varadhan’s Lemma. Heuristically,
an LDP means that the measure µzk(A) of a Borel set A is obtained asymptotically by
integrating e−kI

z(x) over A, where Iz is known as the rate functional and k is the rate. The
rate functions Iz for {dµzk} depend on whether z lies in the open orbit M o of M or on the
divisor at infinity D; equivalently, they depend on whether the image µ0(z) of z under the
moment map for ω0 lies in the interior P o of the polytope P or along a face F of its boundary
∂P . The definition of uniformity of the Laplace large deviations principle will be given in
section §6. The notation and terminology will be defined and reviewed in §2.

Theorem 1.3. For any z ∈M , the probability measures µzk satisfy a uniform Laplace large
deviations principle with rate k and with convex rate functions Iz ≥ 0 on P defined as
follows:

• If z ∈ M0, the open orbit, then Iz(x) = u0(x) − 〈x, log |z|〉 + ϕP o(z), where ϕP o is
the canonical Kähler potential of the open orbit and u0 is its Legendre transform, the
symplectic potential;

• When z ∈ µ−1
0 (F ) for some face F of ∂P , then Iz(x) restricted to x ∈ F is given by

Iz(x) = uF (x)−〈x′, log |z′|〉+ϕF (z), where log |z′| are orbit coordinates along F , ϕF
is the canonical Kähler potential for the subtoric variety defined by F and uF is its
Legendre transform. On the complement of F̄ it is defined to be +∞.

• When z is a fixed point then Iz(v) = 0 and elsewhere Iz(x) = ∞.
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The large deviations principle seems to us of independent interest. The statement for
fixed z follows from the Gärtner-Ellis theorem (cf. [DZ, dH, E]), once it is established that
the hypotheses of this theorem are satisfied. In addition, we prove that the upper and lower
bounds are in a certain sense uniform in the z parameter. This is a rather complicated
matter in our setting, since the rate functions Iz are highly non-uniform, and we follow the
definition of Laplace large deviations principles of [DE] in defining uniform large deviations.
They are precisely adapted to Varadhan’s Lemma and will imply that ϕk → ϕ in C0. From
this large deviations result and a more substantial one below (Theorem 8.1), we obtain our
convergence result:

Theorem 1.4. Let L→ X be a very ample toric line bundle over a toric Kähler manifold.
Let h0 be a positively curved metric on L and T a test configuration. Then ψk(t; z) converges
in C1 to the C1,1 geodesic ray ψt(z) in H given by (cf. (6))

ψt(z) = sup
x∈P

[Ft − Iz] (7)

Moreover, ψt has a bounded but discontinuous second spatial and t derivatives and ωt =
ω0 + ∂∂̄ψt has a zero eigenvalue in certain open sets. Explicitly

• When z ∈M o, the open orbit, ψt(z) = LRm(u0 + tf)−ϕP o where LRm is the Legendre
transform on R

m. There is a simpler formula which uses the moment map µt asso-
ciated to ωt which is introduced in Proposition 1.5. As will be shown in Proposition
7.15, in the region µ−1

t (Pj), we have ψt(e
ρ/2+iθ) = ϕP o(e(ρ+tνj)/2+iθ)−tvj−ϕP o, where

z = eρ/2+ıθ.
• When z ∈ µ−1

0 (F o), then ψt(z) = LF o(uF + tf) − ϕF where LF o denote the Legendre
transform on the quotient of R

m by the isotropy subgroup of z;
• When z = µ−1

0 (v) is a vertex, then ψt(z) = −tf(v).
• A point z = eρ/2+iθ ∈ µ−1

0 (Pj ∩ Pk) only if ρ ∈ tCH(νj, νk), where CH denotes the
convex hull. In that case, µt(ρ) is a constant point x0 for ρ ∈ tCH(νj, νk), and
ψt(z) = 〈ρ, x0〉 − u0(x0) − t(〈νj, x0〉 + vj) − ϕP o(z). In these open sets, ωmt ≡ 0.
Analogous formulae hold on the faces of ∂P .

We obtain the formula for ψt by applying Varadhan’s Lemma to the integrals (5). Unifor-
mity of the limit is a novel feature. An additional part of the proof of Theorem 1.4 is to show
that (7) is in fact a C1,1 function on M . Even on the open orbit, it requires some convex
analysis to see that L(u0 + tf) ∈ C1,1(Rm). Roughly speaking, the Legendre transforms
smooths out the corners of f to C1, but no further than C1,1. We must then verify that the
extension to M of ψt remains C1,1. Since ψt is C1 it determines a moment map, given over
the open orbit by

µt : M o → P, µt(e
ρ/2+iθ) = ∇ρψt(e

ρ/2+iθ) on M o. (8)

An interesting feature of the convex analysis is that µt fails to be a homeomorphism from
M/Tm to P as in the smooth case. Indeed, the usual inverse map defined by gradient
of the symplectic potential pulls apart the polytope discontinuously into different regions.
However, in §7.2 we explain how the moment map of the singular metrics ψt is rather a
homeomorphism from the underlying real toric variety MR (cf. §2) to the graph of the
subdifferential of u+ tf . More precisely, this statement is correct on the open orbit and has
a natural closure on the boundary.
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The proof of C0 convergence to the limit is already an improvement on the degree of
convergence in [PS2]. To prove C1 convergence, we consider integrals of bounded continuous
functions on P against the ‘time-tilted’ probability measures

dµz,tk :=
1

Zt,z
k

∑
α∈kdP∩Zm

e2kd(Ft(
α
kd

))
||sα(z)||2hkd

0

Qhkd
0

(α)
δα

k
. (9)

It follows from the ‘tilted’ Varadhan Lemma and from Theorem 1.3 that the sequence dµz,tk
of probability measures on P satisfies a large deviations principle with convex rate function

Iz,t = Iz + tf(x) + sup
x∈P

[Ft − Iz].

On the open orbit, Iz,t(x) = −〈x, log |z|〉+u0(x)+ϕP o(ρ). Thus, the Kähler potential of the
singular metric corresponding to u+ tf , given in Theorem 1.4 (see (7)), is closely related to
the rate functional for µz,tk .

The importance of these tilted measures is that the first derivatives dψk(t, z) in t and z
variables can be expressed as integrals of continuous functions on the compact set P against
dµt,zk . We prove the following parallel to Proposition 1.2:

Proposition 1.5. For all (z, t), there exists a unique limit point µt(z) ∈ P

µt(z) = lim
k→∞

∫
P

xdµz,tk ,

which is the same as (8). We have µz,tk → δµt(z) in the weak sense as k → ∞. Further,
dz,tψk(t, z) → dz,tψ(t, z) uniformly as k → ∞. More precisely,⎧⎨

⎩
dψk(t, z) → x̄(t, z) = limk→∞

∫
P
xdµz,tk ,

ψ̇k(t, z) → R− f(x̄(t, z)) = limk→∞
∫
P
(R− f(x))dµz,tk .

The organization of this article is as follows: After reviewing the basic geometric and
analytic objects in §2, we introduce the measures dµzk in §4 and prove Proposition 1.2 and
state Theorem 1.3. In §5 we begin the proof of Theorems 1.3 by studying the scaling limit
of the logarithmic moment generating function of dµzk. In §5.2 we prove Theorem 1.3. In
§3, we introduce toric test configurations and prove Proposition 1.1. In §6, we prove the C0

convergence part of Theorem 1.4 using Varadhan’s Lemma (Theorem 6.1). This proves the
explicit formula (7). We then study the regularity of ψt in §7.2, define the moment map µt
and study its regularity and mapping properties. The analysis shows that ψt ∈ C1(M) for
each t. In §8 we show that ψk → ψ in C1([0, L] ×M) for any L > 0. We cannot of course
obtain convergence in C2 since ψt /∈ C2.

In conclusion, we would like to thank D.H. Phong and J. Sturm for many discussions of
the subject of this article as it evolved. We also thank V. Alexeev for tutorials on toric test
configurations and in particular for corroborating Proposition 3.2. We thank O. Zeitouni for
tutorials in the theory of large deviations. The initial results of this paper were presented
at the Complex Analysis and Geometry XVIII conference in Levico in May, 2007.
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2. Background on toric varieties

We employ the same notation and terminology as in [D1, SoZ1, SoZ2]. We briefly recall
the main definitions for the reader’s convenience.

We recall that a toric Kähler manifold is a Kähler manifold (M,J, ω0) on which the complex
torus (C∗)m acts holomorphically with an open orbit M o. We choose a basepoint m0 on the
orbit open and identify M o ≡ (C∗)m. The underlying real torus is denoted Tm so that
(C∗)m = Tm × R

m
+ , which we write in coordinates as z = eρ/2+iθ in a multi-index notation.

We fix the standard basis { ∂
∂θj

} of Lie(Tm) (the Lie algebra) and use the same notation

for the induced vector fields on M . We also denote by { ∂
∂ρj

} the standard basis of Lie(Rm
+ ).

We then have ∂
∂ρj

= J0
∂
∂θj

where J0 is the standard complex structure on C
m. We use the

same notation for the induced vector fields on M .
We assume that M is projective and that P is a Delzant polytope; we view M as defined

by a monomial embedding. The polytope P is defined by a set of linear inequalities

lr(x) := 〈x, vr〉 − αr ≥ 0, r = 1, ..., d,

where vr is a primitive element of the lattice and inward-pointing normal to the r-th (n−1)-
dimensional face of P . We denote by P o the interior of P and by ∂P its boundary; P =
P o ∪ ∂P . We normalize P so that 0 ∈ P and P ⊂ R

m
≥ . Here, and henceforth, we put

R≥ = R+ ∪ {0}. For background, see [G, A, D1, Fu].
Underlying the complex toric variety M is a real toric variety MR, namely the closure of

R
m
+ under the monomial embedding. It is a manifold with corners homeomorphic to P (cf.

[Fu], Ch. 4). Every metric moment map we consider below defines such a homeomorphism.

2.1. Monomial basis of H0(M,Lk), norms and Szegö kernels. Let #P denote the
number of lattice points α ∈ N

m ∩ P . We denote by L → M the invariant line bundle
obtained by pulling back O(1) → CP

#P−1 under the monomial embedding defining M . A
natural basis of the space of holomorphic sections H0(M,Lk) associated to the kth power
of L → M is defined by the monomials zα where α is a lattice point in the kth dilate
of the polytope, α ∈ kP ∩ N

m. That is, there exists an invariant frame e over the open
orbit so that sα(z) = zαe. We denote the dimension of H0(M,Lk) by Nk. We equip L
with a toric Hermitian metric h = h0 whose curvature (1, 1) form ω0 = i∂∂̄ log ||e||2h0

lies in

H. We often express the norm in terms of a local Kähler potential, ||e||2h0
= e−ψ, so that

|sα(z)|2hk
0

= |zα|2e−kψ(z) for sα ∈ H0(M,Lk).

Any hermitian metric h on L induces inner products Hilbk(h) on H0(M,Lk), defined by

〈s1, s2〉hk =

∫
M

(s1(z), s2(z))hk

ωmh
m!

. (10)

The monomials are orthogonal with respect to any such toric inner product and have the
norm-squares

Qhk(α) =

∫
Cm

|zα|2e−kψ(z)dVϕ(z), (11)

where dVϕ = (i∂∂̄ϕ)m/m!.
The Szegö (or Bergman) kernels of a positive Hermitian line bundle (L, h) → (M,ω) are

the kernels of the orthogonal projections Πhk : L2(M,Lk) → H0(M,Lk) onto the spaces of
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holomorphic sections with respect to the inner product Hilbk(h),

Πhks(z) =

∫
M

Πhk(z, w) · s(w)
ωmh
m!

, (12)

where the · denotes the h-hermitian inner product at w. In terms of a local frame e for L→M
over an open set U ⊂M , we may write sections as s = fe. If {skj = fje

⊗k
L : j = 1, . . . , dk} is

an orthonormal basis for H0(M,Lk), then the Szegö kernel can be written in the form

Πhk(z, w) := Fhk(z, w) e⊗k(z) ⊗ e⊗k(w) , (13)

where

Fhk(z, w) =

Nk∑
j=1

fj(z)fj(w) , Nk = H0(M,Lk). (14)

In the case of a toric variety with 0 ∈ P̄ , there exists a frame e such that sα(z) = zαe on the
open orbit, and then

Fhk(z, w) =

Nk∑
j=1

zαw̄α

Qhk(α)
. (15)

Along the diagonal, (Fhk(z, z))−1 is a Hermitian metric. The product Fhk(z, z)||e||2hk is then
the ratio of two Hermitian metrics and it balances out to have a power law expansion,

Πhk(z, z) =

Nk∑
i=0

||ski (z)||2hk
= a0k

m + a1(z)k
m−1 + a2(z)k

m−2 + . . . (16)

where a0 is constant; see [T, Ze]. We note that by a slight abuse of notation, Πhk(z, z)
denotes the metric contraction of (13). It is sometimes written Bhk(z) and referred as the
density of states. If we sift out the αth term of Πhk by means of Fourier analysis on Tm, we
obtain

Phk(α, z) :=
|zα|2e−kψ(z)

Qhk(α)
, (17)

which play an important role in this article (as in [SoZ2]).

2.2. Kähler potential on the open orbit and symplectic potential. On any simply
connected open set, a Kähler metric may be locally expressed as ω = i∂∂̄ϕ where ϕ is a
locally defined function which is unique up to the addition ϕ → ϕ + f(z) + f̄(z̄) of the
real part of a holomorphic or anti-holomorphic function f . Of course, the potential is not
globally defined. We now introduce special local Kähler potentials adapted to the open orbit,
respectively the divisor at infinity on a toric variety.

Without loss of generality, we assume that L is very ample. Then on the open orbit
M o ⊂ M , there is a canonical choice of the open-orbit Kähler potential once one fixes the
image P of the moment map:

ϕP o(z) := log
∑
α∈P

|zα|2 = log
∑
α∈P

e〈α,ρ〉. (18)

This is the potential appearing in Theorem 1.3 for the open orbit. For instance, the Fubini-
Study Kähler potential is ϕ(z) = log(1 + |z|2) = log(1 + eρ). We observe that, since 0 ∈ P ,
(18) defines a smooth function to the full affine chart z ∈ C

m in the closure of the open orbit
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chart when we use the first expression with z = eρ/2. As will be discussed in §2.3, this affine
chart corresponds to the choice of the vertex 0 and the associated fixed point µ−1

0 (0). There
is a corresponding affine chart and Kähler potential on the chart for any vertex.

Since it is invariant under the real torus Tm-action, ϕP o only depends on the ρ-variables
and we have

ω0 = i
∑
j,k

∂2ϕP o

∂ρk∂ρj

dzj
zj

∧ dz̄k
z̄k
.

Since ω0 is a positive form, ϕP o is a strictly convex function of ρ ∈ R
n. We may view ϕP o(ρ)

as a function on the Lie algebra Lie(Rm
+ ) of R

m
+ ⊂ (C∗)m or equivalently as a function on

the open orbit of the real toric variety MR.
The action of the real torus Tm on (M,ω0) is Hamiltonian with moment map µ0 : M → P

with respect to ω0. We recall that the moment map µ0 : M → (LieTm)∗ is defined by
〈µ(z), X〉 = HX(z) where HX is the Hamiltonian of X∗; X∗ is the induced Hamiltonian
vector field on M induced by natural map X ∈ Lie(Tm). Over the open orbit, the moment
map may be expressed as

µ0(z1, . . . , zm) = (
∂ϕP o

∂ρ1

, · · · , ∂ϕP o

∂ρm
); (z = eρ/2+iθ). (19)

Although the right side is an expression in terms of the locally defined Kähler potential ϕP o ,
which is singular ‘at infinity’, the components ∂ϕPo

∂ρj
extend to all of M as smooth functions.

This follows from the fact that µ0 is globally smooth. For instance, for the Fubini-Study

metric on CP
m, the moment map is µ0(z) = (|z1|2,|z2|2,...,|zm|2)

1+||z||2 , where ||z||2 = |z1|2 + · · ·+ |zm|2
and the Kähler potential on the open orbit is ϕP o(ρ) = log(1 + eρ1+···+ρm), with ∂ϕPo

∂ρj
=

eρj

(1+eρ1+···+ρm )
.

The moment map defines a homeomorphism µ0 : MR → P . Later we will need to define
the inverse of the map (19) on MR so we take some care at this point to make explicit the
identifications implicit in the formula. First, we decompose Lie(C∗)m = Lie(Tm)⊕Lie(Rm

+ ).
Viewing ϕP o as a function on Lie(Rm

+ ), dϕP o(ρ) ∈ T ∗
ρLie(R

m
+ ) � Lie(Rm

+ )∗. Under J0 :
Lie(Rm

+ )∗ � Lie(Tm)∗ so we may regard dϕP o : MR → Lie(Tm)∗ as the moment map.
We now consider the symplectic potential u0 associated to ϕP o , defined as the Legendre

transform of ϕP o on R
m:

u0(x) = ϕ∗
P o(x) = LϕP o(x) := sup

ρ∈Rm

(〈x, ρ〉 − ϕP o(eρ/2+iθ)). (20)

It is a function on P , or in invariant terms it is a function on Lie(Tm)∗ � Lie(Rm
+ )∗. In

general, the Legendre transform of a function on a vector space V is a function on the dual
space V ∗. The symplectic potential has canonical logarithmic singularities on ∂P . According
to [A] (Proposition 2.8) or [D1] ( Proposition 3.1.7),

u0(x) =
∑
k

�k(x) log �k(x) + f0 (21)

where f0 ∈ C∞(P̄ ).
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The differential du0 in a sense defines a partial inverse for the moment map. More precisely,
we have

(
∂u0

∂x1

, . . . ,
∂u0

∂xm
) = 2 log µ−1

0 (x) ⇐⇒ µ−1
0 (x) = exp

1

2
(
∂u0

∂x1

, . . . ,
∂u0

∂xm
), (22)

where exp : Lie(Rm
+ ) → R

m
+ is the exponential map. In coordinates, this follows from the

fact that

u0(x) = 〈x, ρ〉 − ϕP o(eρ/2+iθ) =⇒ ∇u0(x) = ρ− 〈x,∇xρ〉 − 〈∇ϕP o(eρ/2+iθ),∇xρ〉 = ρ,

when ∇ϕP o(eρ/2+iθ) = x. To interpret (22) invariantly, we note that du0(x) ∈ T ∗
x (Lie(Tm)∗) �

Lie(Tm) � Lie(Rm
+ ) while µ−1

0 (x) ∈ M o
R � R

m
+ so that 2 log µ−1

0 (x) ∈ Lie(Rm
+ ). We observe

that (22) defines an inverse of µ0 from the open orbit of the base point under Rm
+ to its

image P o and that it extends to a homeomorphism between the manifolds with corners
R
m
≥ ⇐⇒ µ0(R

m
≥ ). Here, R≥ = R+ ∪ {0}.

It will also be important to write the norming constants in terms of the symplectic poten-
tial:

Qhk(α) =

∫
P

ek(u0(x)+〈α
k
−x,∇u0(x)〉dx. (23)

It follows from [SoZ2] (Proposition 3.1) and from [STZ] that for interior α, and αk with
|α− αk| = O( 1

k
),

Qhk(αk) ∼ k−m/2eku0(α), (24)

and for all α and αk with |α− αk| = O( 1
k
) that

1

k
logQhk(αk) = u0(α) +O(

log k

k
). (25)

2.3. The divisor at infinity D and the boundary ∂P of P . The above definitions
concern the behavior of the Kähler potential on the open orbit (C∗)m and the dual behavior
of the symplectic potential. As noted above, the Kähler potential extends smoothly to the
full affine chart C

m. This is but one affine chart needed to cover M in the distinguished
atlas {Uv} parameterized by vertices v of P . We briefly explain how to modify the above
constructions so that they apply to the other charts, referring to [SoZ1, STZ] for further
discussion.

For each vertex v ∈ P , we define the chart Uv by Uv := {z ∈M ; sv(z) �= 0}, where sv is the
monomial section corresponding to v. Since P is Delzant, there exist α1, . . . , αm ⊂ N

m ∩ P
such that each αj lies on an edge incident to v, and the vectors vj := αj − v form a basis of
Z
m. We define

ηv : (C∗)m → (C∗)m, ηv(z) := (zv
1

, . . . , zv
m

). (26)

The map η is a Tm-equivariant biholomorphism of (C∗)m with inverse

z : (C∗)m → (C∗)m, z(η) = (ηΓe1 , . . . , ηΓem

), (27)

where ej is the standard basis for C
m, and Γ is defined by

Γvj = ej, vj = αj − v. (28)

The corner of P at v is transformed to the standard corner of the orthant R
m
+ by the affine

linear transformation
Γ̃ : R

m � u→ Γu− Γv ∈ R
m, (29)
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which preserves Z
m, carries P to a polytope Qv ⊂ {x ∈ R

m ; xj ≥ 0} and carries the facets
Fj incident at v to the coordinate hyperplanes = {x ∈ Qv0 ; xj = 0}. The map η extends a
homeomorphism: η : Uv → C

m, and

η(µ−1
P (F̄j)) = {η ∈ C

m ; ηj = 0}.
For each v we then define the Kähler potential ϕUv on Uv � C

m by

ϕUv(η) = log
∑
α∈P

|ηΓ̃(α)|2. (30)

The Legendre transform of ϕUv as a function on R
m defines a dual symplectic potential uUv

on P . Generalizing (22), the inverse of the moment map may be expressed near the corner
at v by

µ−1
0 (x) = exp

1

2
(
∂uUv

∂x1

, . . . ,
∂uUv

∂xm
), (31)

where the right side is identified with a point in Uv∩MR. Thus (31) defines a homeomorphism
from the corner at v to its inverse image under µ0.

To illustrate the notation in the simplest example of CP
1 with its Fubini-Study metric

and with v = 1 we note that ηv(z) = z−1, Γ̃(u) = 1 − u, ϕU1(η) = log(1 + |η|2), and
uU1(y) = y log y + (1 − y) log(1 − y). On the overlap U0 ∩ U1, we have duU0(x) = −duU1(y).

Indeed, y = Γ̃(x) and so du(y) = log y
1−y = log 1−x

x
= −du(x). Hence, e

1
2
du(y) = y

1−y is the

inverse of e
1
2
du(x) and µ−1

0 is locally expressed as a map from a neighborhood of v = 1 up to
y = 0.

We also need to discuss moment maps and Kähler potentials for the toric sub-varieties
corresponding to boundary faces. As in [Fu, SoZ1, STZ], a face of P is the intersection of
P with a supporting affine hyperplane; a top m − 1-dimensional face is a facet; while at
the other extreme, the lowest dimensional faces are the vertices. We denote the relative
interior of a face by F o. Each face defines a sub-toric variety MF = µ−1(F ) ⊂ D. This
subtoric variety also has an open orbit and a moment map. In particular, over the open
orbit µ−1(F o), there is a canonical Kähler potential for ω0|MF

:

ϕF (z) = log
∑
α∈F

|zα|2 = log
∑
α∈F

e〈α,ρ
′′〉, (32)

where now ρ′′ ∈ R
m−k if dimTm

z = k. Further the Legendre transform of ϕF on R
m−k defines

a symplectic potential uF (x′′) along F . Note that u0 = 0 on ∂P , so uF is not the restriction
of u0 to F . These ϕF , uF appear in Theorem 1.3 in the formula for the rate function when
z ∈ F . In the extreme case of a vertex v corresponding to a fixed point of the (C∗)m, ϕv = 0.

2.4. Summary of Kähler potentials. We summarize the different notions of Kähler po-
tential we have introduced:

• ψt is the relative Kähler potential with respect to h0 for the geodesic ray ht = e−ψth0.
It is globally defined on M and ψ0 = 0;

• The Bergman geodesic ray potentials ψk(t, z) (see Definition 3) are also relative
Kähler potentials, with respect to hk arising from Hilbk(h0). They are also glob-
ally defined on M and are o(1) as k → ∞ at t = 0;

• ϕP o(z) is the open orbit Kähler potential corresponding to h0, i.e. it is the potential
for ω0 on the open orbit. Similarly, ϕF is the potential valid near µ−1

0 (F ).
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3. Toric test configurations

The purpose of this section is to give the proof of Proposition 1.1. We include the basic
definitions on toric test configurations for the sake of completeness. Proposition 1.1 is then
simple to prove and is known to experts; the statement can also be found in [ZZ].

We first recall that a test configuration as defined by Donaldson [D1] consists of the
following:

• A scheme χ with a C
∗ action ρ;

• A C
∗ equivariant line bundle L → χ which is ample on all fibers;

• A flat C
∗ equivariant map π : χ→ C where C

∗ acts on C by multiplication.
• The fiber X1 is isomorphic to X and (X,Lr) is isomorphic to (X1, L1) where for
w ∈ C, Xw = π−1(w) and Lw = L|Xw .

For this article, only the weights ηα of the test configuration play a role, i.e. the weights of
the C

∗ action on H0(X0, L
k
0) where X0 is the central fiber (i.e. the eigenvalues of Bk in the

notation of [PS2]). We define the normalized weights (i.e. the eigenvalues of the traceless
part Ak of Bk in the notation of [PS2]) by

λα = ηη − 1

Nk

Nk∑
j=1

ηj (33)

The geodesic ray associated to the test configuration is defined in terms of the normalized
weights as follows:

Definition: The Phong-Sturm test configuration geodesic ray is the weak limit of the
Bergman geodesic rays h(t; k) : (−∞, 0) → Hk given by

h(t; k) = hŝ(t,k) = h0e
−ψk(t),

with

ψk(t, z) =
1

k
log

(
k−n

Nk∑
α=0

e2tλα

|sα(z)|2hk
0

||sα||2hk
0

)

3.1. Calculation of the weights. In this section, we outline the calculation of the weights
in the case of a toric test configuration and prove Proposition 1.1

As above, let P be the Delzant polytope corresponding to M , and let f : R
m → R be the

convex, rational piecewise-linear function,

f = max{λ1, . . . , λp}, (34)

where the λj are affine-linear functions with rational coefficients.
Fix an integer R such that f ≥ R on P̄ and following [D1], §4.2, we define a new polytope

Q = Qf,R ⊂ R
m+1, Q = {(x, t) : x ∈ P, 0 < t < R− f(x)}. (35)

By taking a multiple dQ it may be assumed that Q is defined by integral equations. Then dQ
is a Delzant polytope of dimension m+ 1 and corresponds to a toric variety W of dimension
m+ 1 and a line bundle L → W . When t = 0 we obtain a natural embedding ι : (M,Ld) →
(W,L). Intuitively, the toric degeneration is the singular toric variety corresponding to the
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‘top’ of the polytope kdQ. It has p components, one component for each facet of the top or
equivalently for each of the affine functions λj defining f . More precisely,

Proposition 3.1. (cf. [D1] Proposition 4.2.1): There exists a C
∗-equivariant map p :

W → CP
1 so that p−1(∞) = ι(M) such that p restricted to W\ι(M) is a test configuration

for (M,L) with Futaki invariant

F1 = − 1

2V ol(P )

(∫
∂P

fdσ − α

∫
P

fdµ

)
, α =

V ol(∂P )

V ol(P )
.

The map p is defined as follows: For any j, the ratios
sα,j

sα,j+1
define C

∗ equivariant meromor-

phic functions on W . In fact, up to scale all of these meromorphic functions agree. Hence
we may define p as the common value of the ratios. The map is defined outside the common
zeros of sα,j, sα,j+1. The sections for j > 0 all vanish on ι(M), so p maps ι(M) to ∞.

The fibers p−1(t) are toric varieties isomorphic to M . The central fiber is p−1(0) = M0.
Then by definition, M0 is the zero locus of a holomorphic section σ0 of p∗(O(1)). By using
the exact sequences

0 → H0(W,Lk(−1)) → H0(W,Lk) → H0(M0,Lk) → 0

and

0 → H0(W,Lk(−1)) → H0(W,Lk) → H0(ι(M),Lk) → 0

defined by multiplication by σ0, resp. σ1, one finds that

dimH0(M0,Lk) = dimH0(M,Lk).
The prinicipal fact we need about toric test configurations is the following Proposition,

which is implicit in [ZZ] (Proposition 3.1):

Proposition 3.2. The weights of the C
∗ action on the spaces H0(M0,Lk) are given by

ηα = kd
(
R− f(

α

kd
)
)
, α ∈ kdP.

Proof. The monomial basis of H0(W,Lk) corresponds to lattice points in the associated
lattice polytope kdQ. The base of this polytope is thus kdP and the height over a point x
is kd(R− f( x

kd
)). The space H0(M0,Lk|M0) is thus spanned by the monomials

zαwkd(R−f( α
kd

))

where α ∈ kdP . The C
∗ action whose weights we are calculating corresponds to the standard

action in the w coordinate and clearly produces the stated weights.
�

The following Corollary immediately implies Proposition 1.1.

Corollary 3.3. The eigenvalues (normalized weights) λα,k are given by

λα,k = kd(R− f(
α

kd
)) − 1

dk

∑
α∈kP

kd(R− f(
α

kd
)). (36)
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4. The measures dµzk

In this section we discuss the measures dµzk (4). Our first purpose is to give the precise
statement of Theorem 1.3, and to recall the relevant definitions from the theory of large
deviations [dH, DZ]. We then prove Proposition 1.2 using Bergman kernels and Berstein
polynomials. Without loss of generality, we assume that d = 1 to simplify the calculation.

A function I : E → [0,∞] is called a rate function if it is proper and lower semicontinuous.
A sequence µk (k = 1, 2, . . .) of sequence of probability measures on a space E is said to
satisfy the large deviation principle with the rate function I (and with the speed k) if the
following conditions are satisfied:

(1) The level set I−1[0, c] is compact for every c ∈ R.
(2) For each closed set F in E, lim supk→∞

1
k

log µk(F ) ≤ − infx∈F I(x).
(3) For each open set U in E, lim infk→∞ 1

k
log µk(U) ≥ − infx∈U I(x).

Heuristically, in the sense of logarithmic asymptotics, the measure µk is a kind of integral of
e−kI(x) over the set.

In [DE], Dupuis-Ellis gave an alternative definition in terms of Laplace type integrals and
in particular gave a definition of uniform large deviations which is very suitable for our
problem. We will state it only in our setting, where the parameter space is the compact
toric variety M . Put:

F (z, h) = − inf
x∈P

(h(x) + Iz(x)). (37)

Then dµzk satisfies the Laplace principle on P with rate function Iz uniformly on M if, for
all compact subsets K ⊂M and all h ∈ Cb(P ) we have:

(1) For all c ∈ R,
⋃
z∈M(Iz)−1[0, c] is compact for every c ∈ R.

(2) For each h ∈ Cb(P ), lim supk→∞ supz∈M
(

1
k

log
∫
P
e−khdµzk − F (z, h)

) ≤ 0.

(3) For each h ∈ Cb(P ), lim infk→∞ infz∈M
(

1
k

log
∫
P
e−kh(x)dµzk(x) − F (z, h)

) ≥ 0.

The upper and lower bounds of course imply, for each h ∈ Cb(P ),

lim
k→∞

sup
z∈M

(
1

k
log

∫
P

e−kh(x)dµzk(x) − F (z, h)

)
= 0.

The probability measures of concern in this article are the measures (4), which we often
write in the form

µzk =
1

Πhk
0
(z, z)

∑
α∈kP

Phk(α, z) δα
k
, (38)

where Phk(α, z) is given in (17). It is simple to see that µzk is a probability measure since
the total mass of the numerator equals Πhk(z, z).

We note that the formula for µzk simplifies when z ∈ D:

Proposition 4.1. If µ(z) ∈ F where F is a face of P , then

µzk =
1

Πhk
0
(z, z)

∑
α∈kF̄

Phk(α, z) δα
k
.

In the extreme case where z is a fixed point of the Tm action and µ0(z) is a vertex, the
measures µzk always equal δµ0(z).
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Proof. It follows easily from [STZ] that sα(z) = 0 for all α such that α /∈ F̄ . In the extreme
case where µ(z) is a vertex v, the only monomial which does not vanish at z is the monomial
corresponding to the vertex. We then have

µzk =
1

Phk(v, z)
Phk(v, z) δv = δv.

�

4.1. Bernstein polynomials and Proposition 1.2. In this section, we prove Proposition
1.2 as an application of Bernstein polynomials in the sense of [Ze2]. We recall here that the
kth Bernstein polynomial approximation to f ∈ C(P̄ ) was defined in [Ze2] by the formula,

Bhk(f)(x) :=
1

Πhk(z, z)

∑
α∈kP

f(
α

k
)Phk(α, z), x = µ(z). (39)

The definition extends to characteristic functions of Borel sets A ⊂ P̄ by

µzk(A) = Bk(χA)(x) =
∑
α∈kP

χA(
α

k
)Phk(α, z), x = µ(z).

The proof of Proposition 1.2 is as follows:

Proof. For any f ∈ C(P̄ ), ∫
fdµzk =

∑
α∈kP

f(
α

k
)Phk(α, z)

and the latter is precisely the Bernstein polynomial Bk(f)(x). In [Ze2] it is proved to tend
uniformly to f(z). �

We pause to relate Theorem 1.3 to prior results on Bernstein polynomials for characteristic
functions. In dimension one, it is a classical result (due to Herzog-Hill) that at a jump
discontinuity, the Bernstein polynomials tend to the mean value of the jump. If A is an open
set, they converge uniformly to 1 on compact subsets of A, and converge uniformly to zero
at an exponential rate on the compact subsets of the interior of Ac as k → ∞. The large
deviations result determines the exponential decay rate. Intuitively, Iz(x) defines a kind of
distance from x to z using the (C∗)m action, and the limit infx∈A Iz defines a kind of Agmon
distance from z to A. If A ⊂ P o and z ∈ ∂P then Bk(χA)(x) = 0, and the distance is infinite.
In the case where P = Σm, the unit simplex in dimension m, and with h the Fubini-Study
metric on CP

m and A ⊂ P is a convex sublattice polytope, such Bernstein polynomials were
studied under the name of conditional Szegö kernels in [SZ], since

Bk(χA)(x) = Πhk|kA(z, z) =
∑
α∈kA

Phk(α, z), x = µ(z)

is the diagonal of the kernel of the orthogonal projection onto the subspace spanned by
monomials zα with α ∈ kA. The exponential decay rate was determined there when z ∈M o.
In subsequent (as yet unpublished) work, Shiffman-Zelditch have extended the results of [SZ]
to non-convex subsets as well.
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4.2. Outline of the proof of Theorem 1.3. The proof of Theorem 1.3 is based on the
proof of the Gärtner-Ellis theorem [DZ, dH] and on the Laplace large deviations principle
of [DE]. The key idea of the Gärtner-Ellis theorem is that the rate function should be the
Legendre transform of the scaling limit of the logarithmic moment generating function. But
a key component, the uniformity in z, is not a standard feature of the proof and indeed the
lower bound is non-uniform (and the upper bound is). However, we only need uniformity of
the Laplace large deviations principle in the sense of [DE], and this LDP is uniform. Note
that the large deviations principle for each fixed z is equivalent to the Laplace principle for
each z, but that the uniformity of the limits is different in the two principles. In outline the
proof is as follows:

(1) In §5, we introduce the logarithmic moment generating function Λz
k, and in Proposi-

tion 5.1 we determine its scaling limit Λz.
(2) We then introduce its Legendre transform Iz = Λz∗, and in Proposition 5.2 we

calculate Iz.
(3) In §5.2 we prove the large deviations principle of Theorem ?? for fixed z.
(4) IN §6, we use a special analysis of the weights underlying the measure dµzk given in

Lemma 6.2 to prove the uniform Laplace large deviations principle.

Let us also give a heuristic proof for z ∈ M o before the formal one. Writing z = eρ/2+iθ,
we then have

Phk(z, α) ∼ k−m/2ek(〈
α
k
,ρ〉−uϕ(x)−ϕ(z)),

where uϕ is the symplectic potential corresponding to the Kähler potential ϕ. Hence, for
any set A ⊂ P̄ ,

1

k
log µzk(A) =

1

k
log

∑
α∈kA∩Zm

e−k(uϕ(α
k
)+〈ρ,α〉) − ϕ(z) +O(

log k

k
). (40)

Visibly, the rate function Iz is the function on P̄ defined by uϕ(x) − 〈ρ, x〉 + ϕ(z). It is a
convex proper function of x ∈ P .

If z ∈ µ−1
0 (F ) for some face F , then by Proposition 4.1 the previous argument goes through

as long as we restrict all the calculations to α ∈ F . This gives Theorem 1.3 formally in all
cases.

5. Large deviations principle for µzk for each z

In this section we prove the pointwise large deviations principle stated in Theorems 1.3
and ??. We begin by discussing the logarithmic moment generating function and its scaling
limit. These are key ingredients in the Gärtner-Ellis theorem, which we use to conclude the
proof. Uniformity in z will be considered in the following section.

In this section we consider the moment generating function (with t ∈ R
m)

Mµz
k
(t) : =

∫
P
e〈t,x〉dµzk(x)

=
∑

α∈kP e
〈α

k
,t〉 Phk (α,z)

Π
hk (z,z)

.
(41)

Clearly, Mµz
k
(t) is a convex function of t and is a Bernstein polynomial in the sense of [Ze2]

for the function ft(x) = e〈t,x〉, and by Proposition 1.2, Mµz
k
(t) → e〈t,x〉 uniformly in z and
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t ∈ [0, L] and k → ∞. However, the relevant limit

Λz(t) := lim sup
k→∞

Λz
k(t), with Λz

k(t) :=
1

k
logMµz

k
(kt) (42)

is the scaling limit of the logarithmic moment generating function.
By a simple and well-known application of Hölder’s inequality (see e.g. [E], Proposition

IVV.1.1), Λz
k(t) and Λz(t) are convex functions on R

m for every z.

Proposition 5.1. We have

sup
z∈M

|Λz
k(t) − Λz(t)| = o(1), uniformly as k → ∞,

where Λz(t) is given as follows:

• For z = eρ/2+iθ ∈ M0, the open orbit, Λz(t) = ϕP o(z(t+ρ)/2+iθ) − ϕP o(ρ). Here,
et/2z denotes the action of the real subgroup R

m
+ on the open orbit, and ϕP o is the

Tm-invariant Kähler potential on the open orbit.
• For µ0(z) ∈ F , a face, Λz(t) = ϕF (e(t

′+ρ′)/2+iθ) − ϕF (eρ
′/2), where ϕF is the open

orbit invariant Kähler potential for the toric Kähler subvariety defined by F .
• When z is a fixed point, then Λz(t) = 0.

Proof. When z lies in the open orbit, we may write z = eρ/2+iθ and sα(z) = zαe where e is
a Tm-invariant frame satisfying ||e||2h0

(z) = e−ϕPo (z). Then,

Mµz
k
(kt) =

∑
α∈kP

e〈α,ρ〉e〈t,α〉e−kϕPo (z)

Q
hk
0
(α)Π

hk
0
(z,z)

= ek(ϕPo(et/2z)−ϕPo (z))
∑

α∈kP
e〈t+ρ,α〉e−kϕPo (et/2z)

Q
hk
0
(α)Π

hk
0
(z,z)

= ek(ϕPo(et/2z)−ϕPo (z)))
Π

hk
0
(et/2z,et/2z)

Π
hk
0
(z,z)

.

(43)

Here, et/2z denotes the C
∗-action (restricted to R

m
+ ).

It follows that

Λz
k(t) = ϕP o(et/2z) − ϕP o(z) + 1

k
log Πhk

0
(et/2z, et/2z) − 1

k
log Πhk

0
(z, z)

= ϕP o(et/2z) − ϕP o(z)) +O( log k
k

),

(44)

with remainder uniform in z by (16).
The calculation for other z is similar, using Proposition 4.1 to reduce the Tm action to

the subtoric variety corresponding to F , and replacing ϕP o by the open orbit toric Kähler
potential ϕF on the subtoric variety. At the vertex, the sum reduces to the vertex and the
logarithmic moment generating function equals zero by Proposition 4.1. Since the remainders
all derive from a uniform Bergman-Szegö kernel expansion (16), there is a uniform limit as
k → ∞ for all z.

�
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5.1. The Legendre duals Λz∗
k and Λz∗. The Fenchel-Legendre transform of a convex func-

tion F is the convex lower semicontinuous convex function defined by

F ∗(x) = LF (x) = sup
t∈Rm

{〈x, t〉 − F (t)}.

We are concerned with the convex functions F (t) = Λz
k(t) and F (t) = Λz(t).

In the following Proposition, we refer to the relative interior ri(A) of a set A ⊂ P̄ . By
definition, ri(P ) = P o and for a face F , ri(F ) = F o, the interior of F viewed as a convex
subset of the affine space of the same dimension which it spans.

Proposition 5.2. Λz∗(x) = Iz is the convex function on P̄ given by the following:

(1) When z = eρ/2+iθ lies in the open orbit, then Λz∗(x) = u0(x) + ϕP o(eρ/2+iθ) − 〈x, ρ〉
for all x ∈ P̄ and D(Λz∗) = P̄ ;

(2) When µ0(z) lies in a face F , and z = eρ
′/2+iθ′ with respect to orbit coordinates on

µ−1
0 (F ), then Λz∗(x) = uF (x) + ϕF (eρ

′/2+iθ)− 〈x′, ρ′〉 when x ∈ F and Λz∗(x) = ∞ if
x /∈ F̄ . Thus, DΛz∗ = F̄ (cf. (50))

(3) When µ0(z) is a vertex v, then Λz∗(v) = 0 and Λz∗(x) = ∞ if x �= v and DΛz∗ = {v}.
(4) For each z ∈ M , and for any x ∈ riD(Λz∗), there exists t = t∗(x, z) ∈ R

m so that
∇tI

z(t) = x.

Proof. (1) If z = eρ/2+iθ lies in the open orbit,

Λz∗(x) = sup
t∈Rm

(〈x, t〉 − ϕP o(et/2z)
)

+ ϕP o(z). (45)

We observe that 〈x, t〉 − ϕP o(et/2z) is concave in t and that

∇tϕP o(et/2z) = ∇ρϕP o(et/2z) = µ0(e
t/2z).

The supremum in (45) can only be achieved at the unique critical point t = t∗(x, z) such
that

x = µ0(e
t/2z) ⇐⇒ et/2z = µ−1

0 (x).

We note that et/2z lies in the open orbit. If x ∈ P o, then there exists a unique t = t∗(x, z)
(denoted τPx (z) in [STZ]) such that µ−1

0 (x) = et/2z, given by

t∗(x, z) = log µ−1
0 (x) − log |z|. (46)

In this case, we have

Λz∗(x) = 〈x, t∗(x, z)〉 − ϕP o(et∗(x,z)/2z) + ϕP o(z)

= 〈x, log µ−1
0 (x)〉 − ϕP o(2 log µ−1

0 (x)) − 〈x, ρ〉 + ϕP o(z))

= u0(x) + ϕP o(z) − 〈x, ρ〉.
This proves (1) when x ∈ P o.

Now consider the case where z ∈ M o and x ∈ ∂P . We note that Lz(x) := u0(x) −
〈x, ρ〉 + ϕP o(z) is a continuous function of x ∈ P̄ . We claim that Λz∗(x) is continuous, i.e.
it continues to equal this function when x ∈ ∂P , where u0(x) = 0. Since the closure of the
open orbit is all of M , there exists a one parameter subgroup τω with |ω| = 1, τ ∈ R so that
limτ→∞ µ0(e

τωz) = x.
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Since Λz∗(x) is lower semicontinuous, we automatically have

Λz∗(x) ≤ lim inf
τ→∞

Λz∗(µ0(e
τωz)) = Lz(x).

To prove the reverse inequality, we use that

Λz∗(x) ≥ lim
τ→∞

(〈x, τω〉 − (ϕP o(eτω/2z) − ϕP o(z))
)
, z = eρ/2+iθ.

We now claim that(〈x, τω〉 − (ϕP o(eτω/2z) − ϕP o(ρ))
)−Lz(x) = 〈x, ρ+τω〉−ϕP o(eτω/2z)−u0(x) → 0, as τ → ∞.

Indeed, u0(µ0(e
τω/2z)) = 〈µ0(e

τω/2z), ρ + τω〉 − ϕP o(eτω/2z), and u0 is continuous, so the
claim reduces to showing that 〈x − µ0(e

τω/2z), ρ + τω〉 → 0. Near the boundary, we may
approximate the moment map by that of the linear model to check that the expression tends
to zero exponentially fast. For instance, in one dimension, with x = 0 and |z| = 1 = −ω the
expression becomes e−τ (ρ− τ). It follows that Λz∗(x) ≥ Lz(x). This proves (1) and also (4)
when x ∈ P̄ and z ∈M o.

(2) Now let us consider the case where z ∈ F o. We then consider the toric subvariety equal
to the closure of µ−1

0 (F ) in M . We pick a base point on this toric subvariety and consider
orbit coordinates z′ = eρ

′/2+iθ′ for the quotient of Tm\Tm
z where Tm

z is the isotropy group
of z. Then,

Λz∗(x) ≥ sup
t∈Rm

(〈x, t〉 − ϕF (t′ + ρ′)) − ϕF (ρ′). (47)

Here, we note that et · z = et
′ · z where et

′
is a representative of et in Tm\Tm

z .
As above, we find that the supremum is only achieved when x ∈ F and then the calculation

becomes the open orbit calculation for the sub-toric variety. By the previous argument, the
open orbit formula extends to the closure of µ−1

0 (F ) by continuity and in addition (4) holds
for x ∈ F o.

On the other hand, if x /∈ F then the supremum is not achieved. Write x = (x′, x′′) and
similarly for t. Then (47) is the sum of 〈x′′, t′′〉 plus terms depending only on t′. If x′′ �= 0
we can let t′′ = rx′′ with r > 0 and find that the supremum equals +∞.

(3) In this case, Λz = 0 and it is obvious that the supremum is infinite if x �= 0. Here, the
coordinates are chosen so that the vertex occurs at 0.

�

Remark: As a check on signs, we note that Λz∗(x) should be non-negative and convex.
Indeed, Λz∗(x) is convex and takes its minimal value of 0 at µ(z) = x.

We end this section with the following important ingredient in the uniform estimates:

Proposition 5.3. We have

Λz∗
k (t) = Λz∗(t) +O(

log k

k
), Λz∗

kδ(t) = Λz∗
δ (t) +O(

log k

k
)

where the remainder is uniform in z, t (and δ).
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Proof. By (44) and by (16), we have

Λz∗
k (x) = supt∈Rm

(
〈t, x〉 − ϕP o(et/2z) − 1

k
log Πhk

0
(et/2z, et/2z)

)
+ ϕP o(z) + 1

k
log Πhk

0
(z, z)

= supt∈Rm

(〈t, x〉 − ϕP o(et/2z)
)

+ ϕP o(z) +O( log k
k

).
(48)

5.2. Proof of Theorem 1.3: Pointwise large deviations. We now prove that for each
z, dµzk satisfies the large deviations principle with rate function

Iz = Λz∗. (49)

We use the two notations interchangeably in what follows. The proof is an application of the
Gärtner-Ellis theorem as in [DZ, dH, E]. We postpone a discussion of uniformity to the next
section. For the sake of completeness we recall the statement of the Gärtner-Ellis theorem:

Let µk be a sequence of probability measures on R
n. Assume that

(1) the scaled logarithmic moment generating function Λ(t) of {dµk} exists and that 0
lies in its domain D(Λ);

(2) Λ is lower-semicontinuous and differentiable on R
n.

Then µk have an LDP with speed k and rate function Λ∗. Here, the domain of a convex
function F is defined by

DΛ = {t ∈ R
m : F (t) <∞}. (50)

Proof of the large deviations statement: It suffices to verify that the hypotheses of the
Gärtner-Ellis theorem are satisfied. All the work has been done in the previous section.

It follows from Proposition 5.1 that Λz(t) satisfies the assumption (1) of the Gärtner-Ellis
theorem: the limit (42) exists for all t, and the origin belongs to its domain DΛz . Indeed,
for all z ∈M , DΛz = R

m.
Further, Λz is differentiable everywhere for every z with

∇tΛ
z(t) = ∇ϕP o(et/2z) = µ0(e

t/2z). (51)

It follows that µzk satisfy for each z the LDP with speed k and rate function Iz = Λz∗.
�

6. Uniform Laplace Principle and uniform Varadhan’s Lemma

We now consider uniformity of the large deviations principle and in particular, the key
issue of uniformity of Varadhan’s Lemma. Our goal is to prove the first part of Theorem
1.4, which we restate for clarity:

Theorem 6.1. For any L > 0, sup(z,t)∈M×[0,L] |ψk(t, z) − ψt(z)| = 0.

In view of Proposition 1.1, we need to understand the convergence of the sequence of
relative Kähler potentials (5), of which the key issue is the convergence of

ψ̃k(z, t) :=
1

k
log

∫
P

ekt(R−f(x))dµzk(x). (52)



TEST CONFIGURATIONS, LARGE DEVIATIONS AND GEODESIC RAYS ON TORIC VARIETIES 21

We prove the C0 convergence of ψk → ψ as an application of Varadhan’s Lemma to (52)
(cf. [dH], Theorem III. 13). We recall the statement of the Lemma:

Varadhan’s Lemma Let dµk be probability measures on X which satisfy the LDP with rate
k and rate function I on X. Let F be a continuous function on X which is bounded from
above. Then

lim
k→∞

1

k
log

∫
X

ekF (x)dµk(x) = sup
x∈X

[F (x) − I(x)].

It follows immediately from Varadhan’s Lemma and the pointwise large deviations result
of §5 that ψk(t, z) → ψ(t, z) pointwise for each (t, z). However we would like to prove uniform
convergence for t ∈ [0, L] and z ∈M .

In proving C0 convergence, we do not use any special properties of t(R−f) beyond the fact
that it is a continuous function on the closed polytope P . Hence, our uniform convergence
proof automatically implies the uniform Laplace principle stated at the beginning of §4.

6.1. Weights and rates. �
The following Lemma reflects the fact that the weights of our special measure are already

very close to the rate function:

Lemma 6.2. Let Lk(z,
α
k
) = 1

k
log

|sα(z)|2
hk

Q
hk (α)

+ Iz(α
k
). Then Lk(z,

α
k
) = − 1

k
logQhk(α) + u(α

k
)

for z ∈M o and satisfies

Lk(z,
α

k
) = O(

1

k
), (k → ∞)

uniformly in z ∈ M o and α ∈ kP . The same formula and uniform asymptotics hold when
α
k
∈ F and z ∈ µ−1(F ).

Proof. First assume that z ∈M o. Then,

1
k

log
|sα(z)|2

hk

Q
hk (α)

= 〈α
k
, ρ〉 − ϕP o(ρ) − 1

k
logQhk(α), (53)

while
Iz(

α

k
) = −〈α

k
, ρ〉 + u0(

α

k
) + ϕP o(ρ). (54)

Hence,
1

k
log

|sα(z)|2hk

Qhk(α)
+ Iz(

α

k
) = −1

k
logQhk(α) + u0(

α

k
). (55)

We observe that the right side is independent of z and extends continuously from 1
k
-lattice

points α
k

to general x ∈ P , proving the first statement of the Proposition.

Now suppose that z ∈ F , a face of ∂P . Then sα(z) = 0 and log
|sα(z)|2

hk

Q
hk (α)

= −∞ unless
α
k
∈ F . Also, Iz(α

k
) = +∞ when α

k
/∈ F . The formula above gives a meaning to Lk(z,

α
k
) in

this case. When z ∈ F and α
k
∈ F then in slice-orbit coordinates for F ,

1

k
log

|sα(z)|2hk

Qhk(α)
= 〈α

′′

k
, ρ′′〉 − ϕF (ρ′′) − 1

k
logQhk(α),

while

Iz(
α

k
) = −〈α

′′

k
, ρ′′〉 + u0(

α

k
) + ϕF (ρ′′).
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Thus, the same formula holds in the case z ∈ D. Indeed, the extension of Lk(z,
α
k
) by

constancy to M ×P is consistent with its extension using the definition of Iz. The estimate
(25) then completes the proof.

�

6.2. Uniform large deviations upper bound. In this section we prove that the large
deviations upper bounds are uniform.

Proposition 6.3. For any compact subset K ⊂ P̄ , we have the uniform upper bound

1

k
log µzk(K) ≤ − inf

x∈K
Iz(x) +O(

log k

k
),

where the remainder is uniform in z.

Proof. By definition,
1

k
log µzk(K) =

1

k
log

∑
α∈kP :α

k
∈K

Phk(α, z)

Πhk(z, z)
.

By Proposition 4.1, if z ∈ D then µzk is supported on the face of µ(z). Hence for any z,
Lemma 6.2 applies to all terms in the sum for µzk and termwise we have

Phk(α, z) = e−kI
z(α

k
)eO(1),

where O(1) is uniform in z, α. Since log Πhk(z, z) = O(log k) uniformly in z, it follows that

1

k
log µzk(K) =

1

k
log

∑
α∈kP :α

k
∈K

e−kI
z(α

k
) +O(

1

k
) +O(

log k

k
)

The Proposition then follows from the facts that e−kI
z(α

k
) ≤ e−k infx∈K Iz(x) for every term in

the sum, and that the number of terms in the sum is O(km). �

6.3. Lower bound. Unfortunately, the lower bound in the large deviations principle for
open sets is not uniform in z. However, for Varadhan’s Lemma, we only need a special
case. The following gives an example of it, although we will need to generalize it later. For
z ∈M,x0 ∈ P , and ε > 0, put

U(z, x0, ε) = {x ∈ P : Iz(x) < Iz(x0) + ε}. (56)

Proposition 6.4. We have

1

k
log µzk(U(z, x0, ε)) ≥ −Iz(x0) − ε+ o(1), (57)

where the remainder is uniform in z and tends to zero as k → ∞.

Proof. First, U(z, x0, ε) ∩ 1
k
Z
m �= ∅ and indeed, there exists αk(z) ∈ U(z, x0, ε) ∩ 1

k
Z
m satis-

fying:

(1) |x0 − αk(z)| ≤
√
m
k

;
(2) When z ∈M o, 〈αk(z)−x0, log |z|〉 ≥ 0. When z ∈ µ−1(F ) then 〈α′

k(z)−x0, log |z′|〉 ≥
0.
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As in the upper bound,

1
k

log µzk(U(z, x0, ε)) = 1
k

log
∑

α∈kP :Iz(α
k
)<Iz(x0)+ε

P
hk (α,z)

Π
hk (z,z)

= 1
k

log
∑

α∈kP :Iz(α
k
)<Iz(x0)+ε e

−kIz(α
k
) +O( 1

k
) +O( log k

k
)

≥ 1
k

log
∑

α∈kP :Iz(α
k
)<Iz(x0)+ε e

−k(Iz(x0)+ε) +O( 1
k
) +O( log k

k
)

≥ −Iz(x0) + ε+O( 1
k
) +O( log k

k
).

(58)

In the last inequality, we used that

Iz(αk) − Iz(x0) = −〈αx − x0, log |z|2〉 + u0(x) − u0(αk),

and used the continuity of u0 to see that |Iz(αk) − Iz(x0)| ≤ o(1) as k → ∞.
�

6.4. Proof of Theorem 6.1. We now prove Theorem 6.1. We employ the notation Ft as
in (6). We derive it from the more general uniform Laplace large deviations principle: for
each h ∈ Cb(P ),

lim
k→∞

sup
z∈M

(
1

k
log

∫
P

e−kh(x)dµzk(x) − F (z, h)

)
= 0,

where F (z, h) is defined in (37). Theorem 6.1 is the special case with h = −Ft.
Proof. We begin with the uniform lower bound, first proving a generalization of Proposition
6.4:

Lemma 6.5. Let h ∈ C(P ). Then,

1

k
log

∑
α∈kP :Iz(α

k
)+h(α

k
)<Iz(x0)+h(x0)+ε

e−kh(
α
k
)Phk(α, z)

Πhk(z, z)
≥ −Iz(x0) − h(x0) + ε+ o(1), (59)

where the remainder is uniform in z and x0 and tends to zero as k → ∞.

Proof. With no loss of generality we may assume h ≥ 0, i.e. e−kh(x) ≤ 1; if not, we may
replace h by h− minh. Then the left side is

= 1
k

log
∑

α∈kP :Iz(α
k

)+h(α
k
)<Iz(x0)+h(x0)+ε e

−kh(α
k
)e−kI

z(α
k
) +O( 1

k
) +O( log k

k
)

≥ 1
k

log
∑

α∈kP :Iz(α
k
)+h(α

k
)<Iz(x0)+h(x0)+ε e

−k(Iz(x0)+h(x0)+ε) +O( 1
k
) +O( log k

k
)

≥ −Iz(x0) − h(x0) + ε+O( 1
k
) +O( log k

k
).

(60)

�
Since x0, ε are arbitrary, it follows that

1

k
log

∫
P

e−kh(x)dµzk(x) ≥ inf
x∈P

(−h(x) − Iz(x)) + o(1), (61)

giving a uniform lower bound.
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For the upper bound, we use that

1
k

log
∑

α∈kP∩Zm ekh(
α
k
)Phk (α,z)

Π
hk (z,z)

= 1
k

log
∑

α∈kP e
−kh(α

k
)e−kI

z(α
k

) +O( 1
k
) +O( log k

k
)

≤ maxα∈kP∩Zm − (h(α
k
) + Iz(α

k
)
)

≤ maxx∈P − (h(x) + Iz(x)) .

(62)

�
This completes the proof of uniform Laplace large deviations principle and also of Theorem

6.1.

7. Moment map µt and subdifferential of u+ tf

We recall that the moment map µ = µω of a smooth toric Kähler variety is defined by
µω(z) = (H1, . . . , Hm) ∈ P ⊂ R

m, with dHj = ω( ∂
∂θj
, ·) where { ∂

∂θj
} is a basis for Lie(Tm).

On the open orbit it is given by µω(e
ρ/2) = ∇ρϕ(ρ) where ϕ is the open orbit Kähler

potential. On a non-open orbit µ−1
ω (F ) for some face F , it is given by the analogous formula

but with ϕF replacing ϕ and the ρ′′ orbit coordinates of §2 replacing ρ. Thus, the moment
map defines a stratified Lagrangian torus fibration µ : M → P which is a fibering M o → P o

away from the divisor at infinity and boundary of P . In the real picture, if we divide by Tm,
the moment map on the quotient, µω : M/Tm → P is a diffeomorphism of manifolds with
corners.

Our first purpose in this section is to prove that the interior and face-wise gradient maps
are well-defined for the singular potentials ψt, and define a moment map µt for the singular
form ωt (cf. (8)). We then study the regularity and mapping properties of µt. We would like
to generalize the homemorphism property µω : M/Tm → P to the singular Kähler forms ωt.
To do so, we observe that the diffeomorphism from M o/Tm → P o is the standard inverse
relation between the gradient map ∇ϕP o defined by the Kähler potential and the inverse
gradient map ∇u0 defined by its Legendre transform, the symplectic potential. For the
singular metrics ωt, the moment maps µt is no longer a homeomorphism of this kind. Indeed,
the gradient ∇(u0+tf) of its symplectic potential is not differentiable on its codimension-one
corner set

C = {x ∈ P̄ ,∃i �= j : λi(x) = λj(x)}.
The derivative is discontinuous and its image disconnects the complementary regions. We
write P\C =

⋃R
j=1 Pj, where u0 + tf = u0 + t(〈λj, x〉+ ηj) and refer to Pj as the jth smooth

chamber.
However, the inverse relation between µt and ∂(u0+tf) can be re-instated as a homeomor-

phism if we replace the gradient map ∇(u0 + tf) by the set-valued subdifferential ∂(u0 + tf)
and P by its graph G∂(u0 + tf). This explains why ψt can be C1 although u0 + tf is not.

At the boundary ∂P , ∇u has logarithmic singularities and hence the graph of ∇u, hence
of ∇(u0 + tf), is not well-defined. This is because ∇u in the smooth case must invert ∇ϕ
and send points of ∂P to D. The polytope P already compactifies this picture, and this
suggests that we replace the graph of the subdifferential ∂(u0 + tf) by the graph G∂(tf)
of the subdifferential of the relative symplectic potential, i.e. ∂(tf) over P . It is of course
homeomorphic to the graph of ∇(u0 + tf) away from ∂P and compactifies the graph on ∂P .
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We therefore prove:

Theorem 7.1. µt is Lipschitz continuous on M for each t ≥ 0. Moreover, µt has a natural
lift µ̃t : M → tG∂f which is a homeomorphism (see Definition 7.4).

7.1. Regularity of ψt and definition of µt on orbits. Using standard results of convex
analysis, we can immediately obtain the regularity of ψt on the open orbit and along any
other orbit.

Let us first recall the relation between the relative Kähler potential ψt and the open orbit
absolute Kähler potential

Proposition 7.2. For t ≥ 0,

(1) L(u0 + tf) ∈ C1(Rm). Hence ψt|Mo ∈ C1(M o).
(2) For any face F of P , LF (u+ tf) ∈ C1(Rm−k). Hence ψt|MF

∈ C1(MF ).

Proof. The first statement follows immediately from Theorem 26.3 of [R]: A closed proper
convex function is essentially strictly convex if and only if its Legendre conjugate is essentially
smooth; see also [St] for a short proof in the one dimensional case. It suffices to recall the
definitions and to verify that u+ tf is essentially strictly convex on P o.

A proper convex function g is called essentially strictly convex (see [R], page 253) if g is
strictly convex on every convex subset of dom(∂g) = {x : ∂g(x) �= ∅}. Here, ∂g(x) is the
subdifferential of g at x. This property is satisfied by g = u+ tf since u is strictly convex on
P̄ and since f is convex so that u+ tf is strictly convex for t > 0. It follows that L(u+ tf)
is essentially smooth.

We recall that g is essentially smooth ([R], page 251) if its domain dom(g) has non-empty
interior C, if g is differentiable on all of C and if |∇g(xj)| → ∞ when xj → ∂C (the last
condition is vacuous if C = R

m.) Thus, L(u + tf) is differentiable on R
m. To complete the

proof, it suffices to recall that an everywhere differentiable convex function is automatically
C1 (cf. [R], Corollary 25.5.1).

The same proof shows that the restrictions of ψt to the sub-toric varieties MF of ψt are
also C1 along the sub-toric varieties, proving the second statement.

�
Corollary 7.3. The gradient maps

• ∇ρϕt(ρ) : R
m → P o,

• ∇ρ′′ϕt|MF
(ρ′′) : R

m−k → F

are well defined and continuous.

The Corollary serves to define the moment map µt:

µt(z) =

⎧⎨
⎩

∇ρ(ψt + ϕP o)(ρ), z = eρ/2+iθ ∈M0;

∇ρ′′(ψt + ϕP o)(ρ′′), z = eρ
′′/2+iθ′′ ∈MF .

(63)

7.2. Moment map µt and subdifferential map. So far, we have shown that µt as defined
by (63) is continuous in (t, z) on the interior and along each boundary face. To complete
the study of µt we need to prove the homeomorphism properties and to analyze continuity
across D. We will need to recall some further definitions in convex analysis on R

m, following
[R, HUL]. First, a convex function g is called proper if g(x) < ∞ for at least one x and
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g(x) > −∞ for all x (cf. [R], page 24). When g is a proper convex function, it is closed if it is
lower semi-continuous ([R], page 54). These conditions are trivially satisfied for g = u+ tf .
A subgradient of g at x ∈ R

m is a vector x∗ ∈ R
m such that

g(y) − g(x) ≥ 〈x∗, y − x〉, ∀y,
i.e. if g(x) + 〈x∗, y − x〉 is a supporting hyperplane to the epi-graph epi(g) at (x, g(x)). The
subdifferential of g at point x0 is the set of subgradients at x, i.e.

∂g(x0) = {ρ : g(y) − g(x) ≥ 〈ρ, y − x〉, ∀y},
A convex function g is differentiable at x if and only if ∂g(x) is a single vector (hence ∇g(x)).

The graph of the subdifferential of g is the set

G(∂g) = {(x, ρ) : ρ ∈ ∂g(x)} ⊂ T ∗
R
m. (64)

In the smooth case, it is a Lagrangian submanifold. In the cornered case it is a Lagrangian
submanifold with corners. An illustration in the one-dimensional case may be found [HUL]I
(p. 23). As the illustration shows, the derivative has a jump at each corner point x, and the
graph fills in the jump at x with a vertical interval [D−f(x), D+f(x)] where D∓f(x) are the
left/right derivatives.

7.3. Legendre transforms, gradient maps and Lagrangian graphs. We recall that
the Legendre transform of a convex function g on R

m is defined by Lg(x) = g∗(x) =
supρ∈Rm(〈x, ρ〉 − g(x)).

When the gradient map ∇g is invertible, its inverse is the gradient map ∇g∗. Another
way to put this is that the graph gr∇ = (x,∇g(x)) of ∇g is a Lagrangian submanifold
Λ ⊂ T ∗

R
m = R

2m
x,ξ which projects without singularities to the base R

m
x . One says that g

parameterize Λ. Open sets of Λ which project without singularities to the fiber R
m
ξ can be

parameterized as graphs (∇g∗(ξ), ξ) of ∇g∗ : R
m
ξ → T ∗

R
m. We put ι(x, ξ) = (ξ, x) so that

Λ is (locally) given as ιG∇g∗. One then says that g∗ parameterizes Λ (locally). Applying ι
is equivalent to the statement that ∇g,∇g∗ are inverse maps.

When g is not differentiable, one can replace the graphs of ∇g and ∇g∗ by the sub-
differentials ∂g, ∂g∗. The graph of ∂g is a piecewise smooth Lagrangian manifold Λ with
corners over the non-smooth points of g. Λ is also the graph of ι∂g∗ over the subset of R

m
ξ

where it projects. As a simple example consider g(x) = |x|: The graph of ∂g consists of
the graph of ξ = −1 on R− together with the vertical segment x = 0, ξ ∈ (−1, 1) together
with the graph of ξ = 1 on R+. We see that the graph projects to the interval [−1, 1] ⊂ Rξ.
Hence the domain of L|x| is [−1, 1]. Further, L|x| = 0 on [−1, 1] and ±∞ for ξ > 1, resp.
ξ < −1. Hence, (∂L|x|)(ξ) = 0 for ξ ∈ (−1, 1) and it is the half-line x > 1 at ξ = 1, the
half line x < −1 at ξ = −1 and it is undefined elsewhere. We see that ιG∂L|x| = G∂|x| and
hence in a generalized sense the set-valued maps ∂|x| and ∂L|x| are inverses.

7.4. The moment map and subdifferential of u+ tf on the interior. We now return
to the moment map µt, where the convex function of interest ψt (cf. (7)).

When t = 0, the moment map µ0 = ∇ϕP o(ρ) is a homeomorphism from M o
R → P o

which is inverted by exp 1
2
du0 (cf. (22)). In the non-smooth case, the gradient map is

undefined at the corner set. We then replace the gradient at the corner by the subdifferential
∂(u0 + tf) [R, HUL]. The following Proposition identifies this set. Given x, we denote by
Jx = {j : λj(x) = max{λ1(x), . . . , λr(x)}.
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Proposition 7.4. Let f = max{λ1, . . . , λr} be a piecewise affine function on P . Then for
x ∈ P o,

∂(u0 + tf)(x) = ∇u(x) + tCH{νj : j ∈ Jx}.
Proof. Clearly, ∂(u0 +tf)(x) = ∇u0(x)+t∂f(x), so it suffices to show that ∂f(x) = CH{λj :
j ∈ Jx}. But it is well known that the subdifferential of the maximum g = maxj gj of r convex
functions is the convex hull of the gradients of those gj such that g(x) = gj(x) (see e.g. [IT]
for much more general results). �

Proposition 7.5. The graph of the subdifferential, G∂(u0 + tf)(x) ⊂ T ∗P o, is a piecewise
smooth Lagrangian submanifold with corners. The graph of the subdifferential of the relative
symplectic, G∂(tf)(x) ⊂ T ∗P , is a piecewise linear Lagrangian submanifold with corners
over P .

Proof. The term ∇u0 is clearly irrelevant to the first statement and hence the second state-
ment implies the first.

The statement is local and can be checked in the model examples where the affine func-
tions are the coordinates x1, . . . , xp of R

m. The corner set consists of the large diagonal
hyperplanes x1 = · · · = xp = 0 for some p ≤ m and distinct indices among 1, . . . ,m. On the
complement of the large diagonal hyperplanes, the subdifferential is a constant vector ej for
some j. Over any point x of the diagonal hyperplanes xi = xj, the subdifferential contains
the one-dimensional convex hull CH(ei, ej). This convex hull over the hyperplane is an m
dimensional linear manifold bridging the two constant graphs and the union is a piecewise
linear Lagrangian submanifold Λ1. Over higher s-codimension intersections, the subdifferen-
tial contains s such one-dimensional convex sets and equals their convex hull. It follows that
the full subdifferential is piecewise linear of dimension m. The canonical symplectic form of
T ∗M vanishes on all smooth faces and on all vectors tangent to the corners. �

Although ∂(u+ tf) is multi-valued, ∂ϕt(ρ) is a singleton for all ρ:

Proposition 7.6. For each ρ ∈ R
m, there exists precisely one x ∈ P o so that (x, ρ) ∈

G(∂(u0 + tf)).

Proof. This is actually equivalent to Proposition 7.2 and is the key step in the proof we
quoted from Theorem 26.3 of [R]: a convex function f is differentiable at x if and only if ∂f
consists of just one vector (i.e. ∇f(x).)

Let us verify that ∂(u0 + tf)(x1) ∩ ∂(u0 + tf)(x2) = ∅ when x1 �= x2. We argue by
contradiction: suppose that x∗ ∈ ∂(u0 + tf)(x1)∩∂(u0 + tf)(x2). Then the graph of 〈x∗, z〉−
(u0 + tf)∗(x∗) is a non-vertical supporting hyperplane to epi(u0 + tf) containing (x1, (u0 +
tf)(x1)) and (x2, (u0 + tf)(x2)). But then the line segment joining these points lies in the
hyperplane, so (u0 + tf) cannot be strictly convex along the line segment joining x1 and x2.

�

Corollary 7.7. If ψt is associated to a non-trivial test configuration, then ψt /∈ C2(M).

Proof. Indeed, ψt|Mo /∈ C2(M o) since ∇2ψt has a kernel at each point in the image of the
subdifferential of the corner set but it is strictly positive definite in the smooth regions.

�
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Definition: The lifted interior moment map is the composite map

µ̃t(ρ) = (µt(ρ), ρ) : M o → G(∂(u0 + tf)) ⊂ T ∗P o

↓

G(∂(tf)) ⊂ T ∗P o.

(65)

The downwards arrow is the map (µt(ρ), ρ) → (µt(ρ), ρ −∇u0(µt(ρ)). We define analogous
maps along other orbits where we replace ϕP o by ϕF and u0 by uF (the F -Legendre transform
of ϕF .)

Corollary 7.8. The ‘lifted moment map’ µ̃t(ρ) : M o
R → G(∂(u + tf))|Po is a homeomor-

phism. The same is true for restrictions to orbits in D and the corresponding boundary
faces.

Proof. The graph of µt = ∇ψt is homeomorphic to the graph of ∂(u0 + tf) under ι, since
they are Legendre duals: i.e. ιG∂ψt = G∂(u0 + tf). The ‘projection’ to G(tf) obtained by
composing with the subtraction map ρ−∇u0(µt(ρ)) is clearly a homeomorphism, hence so
is the composition. �
7.5. Moment map near the divisor at infinity D∩MR. So far, we have proved that the
lifted moment maps are homeomorphisms from orbits to graphs of the subdifferential of tf
on faces of P . Since such orbits (resp. faces) form a partition of M (resp. P ), the remaining
steps in the proof of Theorem 7.1 are to prove that µt is continuous on all of M and has a
continuous inverse µ−1

t from P to the closure of the real open orbit.
We study the behavior of µt near D and the boundary behavior of its inverse by expo-

nentiating the subdifferential. To understand this from an invariant viewpoint, we recall
that du(x) ∈ T ∗(Lie(Tm)∗) � Lie(Rm

+ ), so that we may regard (x, du0(x)) ∈ (Lie(Tm)∗) ⊕
Lie(Rm

+ ). In the same way, we define the graph of the subdifferential by

G(∂(u0 + tf) := {(x, ρ) ∈ Lie(Tm)∗ ⊕ Lie(Rm
+ ) : ρ ∈ ∂(u0 + tf)(x)}. (66)

We also view (ρ, µt(ρ)) as an element of Lie(Rm
+ )⊕Lie(Tm)∗ and define the graph of µt over

M o by
G(µt) = {(ρ, x) ∈ Lie(Rm

+ ) × Lie(Tm)∗ : x ∈ ∂ψt(ρ)}. (67)

As discussed in §2.3, we can cover M with affine charts Uv which straighten out the corner
of MR at each vertex so that it becomes the standard orthant. Hence, we will only discuss
the fixed point corresponding to the vertex v = 0 of P and the chart U0 � C

m in which the
Kähler potential has the form (18). Recall also that u0 is attached to the chart U0, and that
there are analogous potentials for the other charts Uv.

We now define the ‘exponentiated’ subdifferential by

E(∂(u0 + tf)) := {(x, eρ/2) ∈ P × Lie(Rm
+ ) : ρ ∈ ∂(u0 + tf)(x)}. (68)

The basic point is that although |du0(x)| = ∞ for x ∈ ∂P , exp 1
2
du0(x) is well-defined as

an element of R
m
+ for x in the corner facets incident at v = 0, and indeed exp 1

2
du0(x) has

a continuous (in fact, smooth) extension to the corner facets incident at v = 0. This is
easily checked by writing u0 = uP + g where uP is the canonical symplectic potential and
g ∈ C∞(P ). As an example, we note that in the case of CP

1, u′ = log x
1−x + g′ blows up at



TEST CONFIGURATIONS, LARGE DEVIATIONS AND GEODESIC RAYS ON TORIC VARIETIES 29

x = 0 while its exponential exp 1
2
u′ = x

1−xe
g′ is well defined and takes the value 0 when x = 0

for any g′. Essentially the same calculation verifies that the exponentiated subdifferential
has a smooth extension to the boundary for the canonical symplectic potential plus any
piecewise linear convex function on the polytope of any toric variety.

Proposition 7.9. E(∂(u0 + tf)) ⊂ P × R
m
+ is a C0 submanifold of T ∗P which is homeo-

morphic to G(tf). Its boundary consists of the union over open faces F of

E(∂(uF + tf)) := {(x′′, eρ′′/2) ∈ F × Lie(Rm−k
+ ) : ρ′′ ∈ ∂(uF + tf)(x)} (69)

Proof. To prove this, we split the coordinates into (x′, x′′) ∈ R
k×R

m−k so that x′ = 0 defines
a given face F , and split the sub-differential vectors in ∂(u+ tf) into their x′, x′′ components
to obtain component subdifferentials ∂′, ∂′′. To obtain the limit along F o, we let x′ → 0 while
keeping x′′ bounded away from zero. Then as x′ → 0 and for ρ′ ∈ ∂′(u+ tf), e

1
2
ρ′ → 0 ∈ R

k.

Indeed, e
1
2
d′u(x) → 0 and the addition of t∂′f only adds a bounded amount to the exponent.

On the other hand, the ‘slices’ u0(x
′, x′′)+ tf(x′, x′′) for fixed x′, viewed as functions of x′′,

have a subdifferential ∂′′(u0(x
′, x′′) + tf(x′, x′′)) in x′′. As is easily seen from the canonical

(or Fubini-Study) symplectic potential, the subdifferential is bounded as x′ → 0 as long as
x′′ stays in the interior of F . Further, ∂′′(u0(x

′, x′′)+ tf(x′, x′′)) is a continuously varying C0

submanifold (or manifold with corners) as x′ varies. The same is true if we exponentiate the
subdifferential as in (69). Hence as x′ → 0 the exponentiation of ∂′′(u0(x

′, x′′) + tf(x′, x′′))
tends C0 to (69). Combining with the fact that the exponentiated ∂′ subdifferential vanishes
as x′ → 0 we conclude that E(∂(u+ tf)) in the interior extends continuously to the corner,
where it coincides with (69). �

We now define a lifted moment map in the chart Uv; as above, we may assume v = 0.

Definition: The exponentiated lifted moment map in U0 is the map which to z = eρ/2 ∈M o

assigns
µ̃t(z) = (µt(z), e

ρ/2) : U0 → E(∂(u+ tf)). (70)

For z ∈ µ−1(F ) of the form z = eρ
′′/2 it assigns

µ̃t(z) = (µt(z), e
ρ′′/2) : U0 → E(∂(u+ tf)). (71)

Corollary 7.10. The ‘exponentiated lifted moment map’ µ̃t(ρ) : U0R → E(∂(u+ tf))|Po is
a homeomorphism. Hence the lifted moment map µ̃t is a homeomorphism M → G(tf).

Proof. By construction, the graph of µt on Uv is inverse to the exponentiated subdifferential
on its image.

�
Thus we have proved that µt is continuous and we have determined its homeomorphism

property. The above results also imply the regularity statement of Theorem 7.1

Lemma 7.11. µt is Lipschitz continuous on all of M .

Proof. This follows from Corollaries 7.8 and 7.10: µt must be Lipschitz because its graph
is the ι-image of the graph of ∂(u + tf) on the interior (and its exponentiation near the
boundary). These graphs are manifestly given by piecewise smooth manifolds with corners,
hence so is the graph of µt. �
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We note that the Lipschitz property of µt also follows from a standard result of convex
analysis on the open orbit and along the divisor facesMF : Since u0+tf is a convex continuous
function on P , its Legendre transform, L(u0 + tf)(ρ) is a convex lower semi-continuous
function on R

m = Lie(Tm). The same description is true along the boundary faces of P .
If z ∈ µ−1(F ), Iz = ∞ unless x ∈ F , so we may restrict the supremum in the Legendre
transform to F and it becomes the Legendre transform LF along the vector space spanned by
F . It follows that LF (u0 + tf) is a convex lower semi-continuous function on Lie(Tm/Tm

z ),
where Tm

z is the stabilizer of z.

Lemma 7.12. The ρ-gradient map ∇ψt(ρ) is Lipschitz continous from R
m → P . Similarly,

∇ψt|MF
(ρ′′) is Lipschitz.

Proof. The proof is an application of the following fact ([HUL], Theorem 4.2.1):

If g : R
m → R is strongly convex with modulus c > 0, i.e.

g(αx1 + (1 − α)x2) ≤ αg(x1) + (1 − α)g(x2) − c

2
α(1 − α)||x1 − x2||2

then ∇g∗ is Lipschitz with constant 1
c
, i.e.

||∇g∗(s1) −∇g∗(s2)|| ≤ 1

c
||s1 − s2||.

On the open orbit, ψt = (u+ tf)∗. We claim that u+ tf is strongly convex. Indeed, as in
[A, SoZ1], the Hessian G = ∇2

xu0 of the symplectic potential has simple poles on ∂P and is
uniformly bounded below, G ≥ cI for some c > 0 on P . Then,

u(αx1 + (1 − α)x2) ≤ αu(x1) + (1 − α)u(x2) − c

2
α(1 − α)||x1 − x2||2.

Since tf is convex, it follows that u+ tf is strongly convex with modulus c. It follows that
dψt is Lipschitz on M o and hence that µt is.

Using the boundary symplectic potentials, the same proof shows that µt|MF
: µ−1

0 (F ) → F
is Lipshitz continuous for any face F .

�

7.6. Explicit formula for µt and ψt. It is useful to give explicit formulae the moment
map µt and for ψt. First, we give the formula on the inverse image of the smooth domains
Pj and then we give the formula on the inverse image of the corner set.

Proposition 7.13. For each t ≥ 0, the moment map µt defines a diffeomorphism µt,j :
etνjµ−1

0 (Pj) → Pj given by

µt,j(z) = µ0(e
−tνjz).

Further, the union
⋃R
j=1 e

tνjµ−1
0 (Pj) is disjoint and therefore

µt :
R⋃
j=1

etνjµ−1
0 (Pj) → P\C

is a diffeomorphism with inverse µ−1
t

(x) = etνjµ−1
0 (x).
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Proof. For x ∈ Pj, we have

log µ−1
t (x) = ∇u0(x) + t∇f(x)) = ∇u0 + tνj. (72)

Hence,
log µ−1

t
(x) := ∇ut(x) := ∇u0 + tνj

= log µ−1
0 (x) + tνj

= log(etνjµ−1
0 (x)

⇐⇒ µ−1
t

(x) = etνjµ−1
0 (x).

It follows that x = µt(e
tνjµ−1

0 (x)) and therefore µt(z) = µ0(e
−tνjz) when z ∈ etνjµ−1

0 (Pj).
It is easy to see that images of the smooth regions under ∇(u0 + tf) are disjoint (see

Proposition 7.6 for details), and therefore ∇(u0 + tf) is a diffeomorphism from the smooth
chambers to their images, with inverse ∇(ψt + ϕP o).

�
We now give an analogous formula on the inverse image of the subdifferential lying over

the corner set. To give the formula, we introduce some notation. The corner set is a union
of hyperplanes of the form

Hjk = {x : λj(x) = λk(x)} = {x : 〈νj − νk, x〉 = vk − vj}. (73)

The inverse image of one hyperplane under µ0 is the smooth hypersurface of M given by

Lij := µ−1
0 (Hjk) = {z ∈M : 〈νj − νk, µ0(z)〉 = vk − vj}. (74)

Proposition 7.14. For each t ≥ 0,

µ−1
t (C) =

R⋃
j,k=1

⋃
ξ∈CH(νj ,νk)

etξLjk.

For z ∈ ⋃ξ∈CH(νj ,νk) e
tξLjk, we have

µjkt (z) = µ0(π
jk
t (z)),

where µjkt :
⋃
ξ∈CH(νj ,νk) e

tξLjk → Ljk is the fibration etξw → w. Further,

µt :
R⋃

j,k=1

⋃
ξ∈CH(νj ,νk)

etξLjk → G(∂(u+ tf))|C

is a homeomorphism whose inverse is defined for (x,∇u0(x) + tξ) ∈ G∂(u+ tf(x)) by

µ̃−1
t (x, ξ) = etξµ−1

0 (x).

Proof. By Corollaries 7.8 and 7.10, the region µ−1
t (Hjk) is parametrized by the map,

Mt : (z, ξ) ∈ Ljk × CH(νj, νk) → etξz, (75)

where etξ ∈ R
m
+ . By (75), it follows that µ−1

t (Hjk) fibers over Ljk with fibers given by the

orbits of etξ with ξ ∈ CH(νj, νk). Then for z ∈ µ−1
t (Hjk), π

jk
t (z) = µ−1

0 (µt(z)).
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In the inverse direction, for x ∈ C and ξ ∈ ∂f(x), we have by definition of the lifted
moment map µ̃t,

ι(2 log µ̃−1
t (x, ξ), x) = (x,∇u0(x) + tξ), (76)

or equivalently,
2 log µ̃−1

t
(x, ξ) : = log µ−1

0 (x) + tξ

= log(etξµ−1
0 (x)

⇐⇒ µ̃−1
t (x, ξ) = etξµ−1

0 (x).

It follows that x = µt(e
tνjµ−1

0 (x)) and therefore µt(z) = µ0(e
−tνjz) when z ∈ etνjµ−1

0 (Pj).
�

We observe the analogy between etξµ−1(Ljk) and etνjµ−1(Pj), and that the union of these
domains fills out M . The smooth and corner domains meet along their common boundary,

∂

(
R⋃
j=1

etνjµ−1
0 (Pj)

)
=

R⋃
j,k=1

⋃
ξ∈∂CH(νj ,νk)

etξLjk. (77)

Now that we have an explicit formula for µt we can give simpler formulae for ψt than
those of (7) and the expressions following. They are stated in Theorem 1.4. For clarity of
exposition we restate them in the following

Proposition 7.15. For any z, ψt(z) = Ft(µt(z)) − Iz(µt(z)). Hence,

• (i) When z = eρ/2+iθ ∈ µ−1(Pj), then ψt(ρ) = ϕP o(ρ− tνj) − tvj − ϕP o(ρ).
• (ii) When z ∈ µ−1

0 (F o), then ψt(z) = ϕF (ρ′′ − tν ′′j ) − tvj − ϕF (ρ′′).
• (iii) A point z = eρ/2+iθ ∈ µ−1

0 (Pj ∩Pk) only if ρ ∈ tCH(νj, νk). In that case, µt(ρ) is
a constant point x0 for ρ ∈ tCH(νj, νk), and ψt(ρ) = 〈ρ, x0〉−u(x0)− t(〈νj, x0〉+ vj).
Analogous formulae hold on the faces of ∂P .

Proof. In the formula (7) for ψt, it is now clear that the supremum is obtained at x = µt(z),
giving the first formula.

We can simplify the expression by substituting the expression for Iz. We illustrate with
the open orbit: In the open real orbit, ψt(ρ) + ϕP o(ρ) = 〈ρ, xt(ρ)〉 − (u0 + tf)(xt(ρ)) where
xt(ρ) solves ρ = ∇(u0 +tf)(xt(ρ)). On the subdomains Pj, ∇(u0 +tf) is a map which inverts
µt. Hence, µt(ρ) = xt(ρ). Since µt(ρ) = µ0(ρ− tνj) and f(µ0(ρ− tνj)) = 〈νj, µ0(ρ− tνj)〉−vj
in this region,

ψt(ρ) + ϕP o(ρ) = 〈ρ, µt(ρ)〉 − (u+ tf)(µt(ρ))

= 〈ρ, µ(ρ− tνj)〉 − u(µ(ρ− tνj)) − tf(µ(ρ− tνj))

= 〈ρ− tνj, µ(ρ− tνj)〉 − u(µ(ρ− tνj)) − tf(µ(ρ− tνj)) + t〈νj, µ(ρ− tνj)〉

= ϕP o(ρ− tνj) − t (f(µ(ρ− tνj)) − 〈νj, µ(ρ− tνj)〉)

= ϕP o(ρ− tνj) − tvj.

Similarly, when z ∈ µ−1(F o), then ψt(z) + ϕF = ϕF (ρ′′ − tν ′′j ).
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�

Remark: These expressions are consistent with ψt(z) = Ft(µt(z)) − Iz(µt(z)). For instance,
on the open orbit,

ψt(z) = −tf(µt(z)) − u0(µt(z)) + 〈µt(z), log |z|〉 − ϕP o(z)), (78)

which is the same as (i) by the previous calculation.

As a corollary, we have:

Corollary 7.16. There exist open sets such that ωmt ≡ 0.

Proof. The sets µ−1(Pj ∩ Pk) in (iii) of Proposition 7.15 have non-empty interior. Indeed,
they are homeomorphic to the graph of ∂(u+ tf) along Pj ∩ Pk, and hence to the graph of
∂f there. But clearly the graph is a line-segment bundle over a hyperplane and thus has full
dimension.

�

7.6.1. Example. We work out the full formula in the case of CP
1, with f(t) = |x − 1

2
|.

Thus, ν1 = −1, v1 = 1
2
; ν2 = 1, v2 = −1

2
. The symplectic potential at time t > 0 is

ut(x) = x log x+ (1 − x) log(1 − x) + t|x− 1
2
|. Then the subdifferential of ut is given by

∂ut(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log x
1−x − t, x < 1

2
,

log x
1−x + t(−1, 1), x = 0,

log x
1−x + t, x > 1

2
.

The moment map on the open orbit R is defined by

µt(e
ρ/2) = xt(ρ) : ρ ∈ ∂ut(xt(ρ)),

and µt(ρ) = 1
2

for ρ ∈ (−t, t). Since ψt(ρ) = 〈ρ, µt(ρ)〉 − (u+ tf)(µt(ρ)), we have

ψt(ρ) + ϕP o(ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− t
2

+ log(1 + eρ+t), ρ ∈ (−∞,−t)
ρ
2

+ log 2 ρ ∈ (−t, t)
t
2

+ log(1 + eρ−t), ρ ∈ (t,∞)

7.6.2. Formula for ψ̇t.

Proposition 7.17. We have: ψ̇(t, z) = −f(µt(z)).

Proof. We recall that on the open real orbit, ψt(ρ) = 〈ρ, xt(ρ)〉− (u0 + tf)(xt(ρ)) where xt(ρ)
solves ρ = ∇(u0 + tf)(xt(ρ)). Hence,

ψ̇t(ρ) = −f(µt(ρ)) +
(〈ρ, d

dt
xt(ρ)〉 − ∇(u+ tf)(xt(ρ))

d
dt
xt(ρ)

)
,

and the parenthetical expression vanishes. There are analogous restricted expressions on
µ−1(F ) for any boundary facet F , confirming that the identity holds for all z ∈M .

�
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7.7. ψt ∈ C1,1([0, L]×M). In this section, we complete the proof of the regularity statement
in Theorem 1.4. We do this in two steps to separate interior from boundary estimates: first
we prove that µt is Lipschitz and then we prove that dψt is Lipschitz. The latter improves
the former in terms of behavior along D.

Proposition 7.18. µt(z) is Lipschitz uniformly in (t, z) ∈ [0, 1] ×X.

Proof. In view of Proposition 7.1, we only have to verify that µt is uniformly Lipschitz in t.
Fix t = t0 ≥ 0 and z0 ∈ X.

(1) Suppose z0 ∈ (C∗)n, ρ0 ∈ µ−1
t0 (P ◦

j ) and xt = µt(z). Then µt is smooth in both ρ and

t near ρ0 and t0. In fact, ∇(u+ tf)(xt) = ρ and D2(u0 + tf)(xt) · ẋ = −∇f(xt) after
taking t-derivative. Therefore

d

dt
µt(z) = − (D2(u0 + tf)(xt)

)−1 ∇f(xt) =
(
D2(u0)(xt)

)−1 ∇f(xt)

and so d
dt
µt(z0) at t = t0 is uniformly bounded in µ−1

t0 (∪jP ◦
j ).

(2) Suppose z0 ∈ (C∗)n and ρ0 ∈ Rn\µ−1
t0 (∪jP ◦

j ). Then ρ0 ∈ Vxt0 ,t0
and µt(z0) = µt0 for

t sufficiently close to t0. Hence at t = t0

d

dt
µt(z0) = 0.

(3) Suppose z0 ∈ (C∗)n and ρ0 ∈ ∂(µ−1
t0 (∪jP ◦

j )). One sided derivatives of µt(z0) exist
and fall into the above cases at t = t0.

(4) Suppose z0 ∈ D. One only has to restrict µt on the subtoric variety and repeat the
above argument.

�
We now complete the proof that ψt ∈ C1,1 by proving that dψt is Lipschitz. Let us clarify

first what this adds to the statement that µt is Lipschitz: In terms of the basis { ∂
∂θj

} of

LTm, we have (cf. (19)) that

µt(z) = (d(ϕP o + ψt)(
∂

∂ρ1

), · · · , d(ϕP o + ψt)(
∂

∂ρm
)).

It follows that dψt is continuous in directions spanned by ∂
∂ρj
, ∂
∂θk

. However, at z0 ∈ D,

some of these vector fields vanish, namely those in the infinitesimal isotropy group of z0. To
show that dψt is a Lipschitz one-form we need to show that dψt(X) is Lipschitz when X is a
smooth non-vanishing vector field at z0 ∈ D. With no loss of generality, we may straighten
out the corner in which µ(z0) lies and hence that µ(z0) lies in a face of the corner at 0 of
the standard orthant. We use the affine coordinates zj on M adapted to 0 and put rj = |zj|.
Then, ∂

∂ρj
= 1

2
rj

∂
∂rj

for j = 1, . . . ,m. We assume that z0 lies in the facet of D defined by

r1 = · · · = rk = 0. Then,

dψt(
∂

∂rj
) =

1

rj
µtj − dϕP o(

∂

∂rj
), (79)

where µtj is the jth component of µt. Thus, it suffices to check that 1
r�
µt�(r) is Lipschitz at

r1 = · · · = rk = 0 for all � = 1, . . . , k , i.e. that 1
r�
dµt�(r) ∈ L∞. The Lipschitz property is

thus equivalent to
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(1) 1
r2�
µt�(r) ∈ L∞, and

(2) 1
r�
dµt�(r) ∈ L∞ for each j.

Proposition 7.19. The 1-form dψt is Lipschitz continuous on M .

Proof. We have explicit formulae for µt away from a codimension subvariety of M . These
formulae are sufficient by the following

Lemma 7.20. Let X be a compact Kähler manifold. Let Y be a subvariety of X and g a
fixed Kähler metric on X. If µ ∈ C0(X) and |dµ|g ≤ C on X\Y for a uniform constant
C > 0, then µ is Lipschitz on X.

Proof. Let z1, z2 be two arbitrary points on X. Let z1,ε ∈ Bε(z1) ∩ (X\Y ) and z2,ε ∈
Bε(z2) ∩ (X\Y ). Let γε be the shortest geodesic joining z1,ε and z2,ε on X. Without loss of
generality, we can assume that γε only intersects with Y by finite points, say, w1, ... , wk.
Let w0 = z1,ε and wk+1 = z2,ε. Then

|µ(z1,ε) − µ(z2,ε)| ≤
k∑
j=0

|µ(wj) − µ(wj+1)| ≤ C
∑
j

|wj − wj+1|g ≤ C|γε|g. (80)

�

Thus it suffices to have uniform bounds for (1) and (2) on the open sets where we have
explicit formulae. We first prove uniform bounds on the smooth domains.

Lemma 7.21. With the above notation, dµt� satisfies the bounds (1)-(2) on the sets etνjµ−1
0 (Pj)

for each j.

Proof. By Proposition 7.13, on the set etνjµ−1
0 (Pj) we have µt,j(z) = µ0(e

−tνjz). Properties
(1) and (2) above follow immediately because any smooth moment map µ0 satisfies these
estimates, as may be seen from the fact that ∇2u0 has first order poles on the boundary
facets.

�

We now prove the bounds in the the complementary set M\
(⋃R

j=1 e
tνjµ−1

0 (Pj)
)
. By

Proposition 7.14 it suffices to verify the bounds on each set etξLjk with ξ ∈ CH(νj, νk).

Lemma 7.22. for each j, k Dµt satisfies the bounds (1)-(2) in each set Ujk := {etξLjk, ξ ∈
CH(νj, νk)}.
Proof. By Proposition 7.14, we have µt(z) = µ0(πt(z)) where πt is the fiber map from
Ujk → Ljk with fibers the orbits of etξ. Hence, for each �,

1

r�(z)
dµt(z) =

1

r�(z)
(dµ0�)(πt(z)) ◦Dπt(z). (81)

We now observe that for any compact set K of ν ∈ R
m, there exists CK ∈ R+ so that

rj(e
νz)

rj(z)
≤ CK . (82)
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Indeed, if we write z = eρ/2 then rj(z) = e
ρj
2 and

rj(e
νz)

rj(z)
= eνj . It follows that

‖ 1
r�(z)

dµt(z)‖ ≤ Ck
1

r�(πt(z))
‖(dµ0�)(πt(z)) ◦Dπt(z)‖. (83)

To complete the proof of the Lemma, we need to show that

• 1
r�(w))

dµ0�(w) ∈ L∞(Ljk);

• Dπt(z) ∈ L∞(Ujk).

The first statement holds in a neighborhood of the facet r� = 0 of D and hence holds on
its intersection with Ljk; the statement reduces to Lemma 7.11 away from this open set.

Hence the key issue is to prove the boundedness of Dπt in Ujk. We first note that Ljk is
the level set Ijk = vk − vj of the function

Ijk(z) := 〈νj − νk, µ0(z)〉. (84)

Furthermore the gradient flow of this function with respect to ω0 is given by the subgroup
σ → eσ(νj−νk) of the R

m
+ action. Indeed, the latter is the joint action of the gradient flows

∇Ij of the action variables Ij which form the components of the moment map µ0 : M → P,
i.e. µ0 = (I1, . . . , Im). This holds because the Hamilton vector field HIj with respect to ω0

equals ∂
∂θj

and its image under the complex structure J equals both ∂
∂ρj

and ∇Ij where ∇
is the gradient for the metric gω(X,Y ) = ω(JX, Y ). Thus, it follows directly from (84) that
the gradient flow of Ijk is σ → eσ(νj−νk).

Now ξ ∈ CH(νj, νk) has the form ξ = νk + s(νj − νk) and so etξ = etνkets(νj−νk). Thus,
the family of hypersurfaces etξLjk for ξ ∈ CH(νj, νk) is the image under etνk of the family of
hypersurfaces ets(νj−νk)Ljk, and the latter is a family of level sets of Ijk. In particular, for each
t and s, the latter family is orthogonal to the flow lines of ets(νj−νk) at ets(νj−νk)z ∈ M with
respect to the Kähler metric (ets(νj−νk))∗gω(z) = gω(e

ts(νj−νk)/2z). This is because ets(νj−νk)Ljk
is the level set given by

Ijk(z; t, s) = 〈νj − νk, µ0(e
ts(νj−νk)/2z)〉.

Moreover, gω(e
ts(νj−νk)·) is equivalent to gω(·) and it can be seen in Rn. Suppose

Ijk(ρ; t, s) = 〈νj − νk, µ0(ρ+ ts(νj − νk))〉.
Hence

∇ρIjk(ρ; t, s) = ∇2
ρϕ0(ρ+ ts(νj − νk)) · (νj − νk)

and so under the Riemannian metric

Gts(ρ) = G0(ρ+ ts(νj − νk)) =
∑
p,q

∂2ϕ0

∂ρp∂ρq
ϕ0(ρ+ ts(νj − νk))dρp ⊗ dρq

on Rn, and νj − νk is orthogonal to the hypersurface. It is obvious that Gts and G0 are
uniformly equivalent.

It is convenient to slightly modify our problem by removing etνk . In the notation of (75),
we change Mt to M̃t : Ljk × [0, 1] → M, where M̃t(z, s) := est(νj−νk)/2z. Thus, Mt(z, νk +

s(νj − νk)) = eνktM̃t(z, s). We then define π̃t : e−tνlUjk → Ljk by π̃tM̃t(z, s) = z. Since
πt(w) = π̃t(e

−νkt/2w), Dπt is bounded on Ujk if and only if Dπ̃t is bounded on e−tνkUjk.
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To prove that Dπ̃t is bounded on e−tνkUjk, we observe that the gradient flow of Ijk at fixed
s, t takes Ljk to another level set of Ijk and hence one has orthogonal foliations of e−tνkUjk
given by level sets and gradient lines of Ijk. We note that the critical points of Ijk occur
only on D and by Lemma 7.20 it suffices to bound Dπ̃t on its complement. We may thus
split the tangent space at each point of e−tνkUjk into R∇Ijk ⊕ T{Ijk = C}. Since Dπ̃t = 0
on R∇Ijk it then suffices to bound D

(
π̃t|{Ijk=C}

)
uniformly in C as C runs over the levels in

e−tνkUjk. But π̃t|{Ijk=C} is simply the inverse of the map z ∈ Ljk → ets(C)(νj−νk) where ts(C)
is the parameter time of the gradient flow from Ijk = vk − vj to the level set Ijk = C. Hence
Dπ̃t is bounded above as long as the derivatives of the family of maps z → ets(C)(νj−νk)/2z on
Ljk have a uniform lower bound. But this is clear since this family forms a compact subset
of the group R

m
+ .

This concludes the proof of the Lemma.
�

Lemmas 7.21 and 7.22 imply that dψt is Liptschitz, concluding the proof of the Proposition.
�

Finally, we consider t derivatives:

Proposition 7.23. ψ̇t is Lipschitz on ([0, 1] ×X).

Proof. By Proposition 7.17, and the fact that both f and µt are continuous, it follows that
ψt ∈ C1([0, T ] × X). Obviously, ψ̇t is smooth outside a subvariety of [0, T ] × X and so it
suffices to check the uniform Lipschitz condition for f(µt(ρ)) in both z and t variables. In
the z variables it follows from Proposition 7.18 and the fact that f is Lipschitz.

In the t variable, we note that ∂
∂t
f(µt(ρ)) = νi · ∂∂tµt(ρ), and this is bounded by Proposition

7.18. �

Remark:
We note that the geodesic equation

∂2
t ϕt = |∂zϕ̇t|2ωt

is valid in a weak sense, although both sides are discontinuous, hence ψt is a weak solution of
the geodesic equation, or equivalently of the Monge-Ampère equation (∂∂̄Φ)m+1 = 0 where
Φ(t + iτ, z) = ψt(z) (cf. [S, D1] for the relation of the geodesic equation and the Monge-
Ampère equation). Since the Monge-Ampère measure is Tm-invariant, it is equivalent that
the real Monge-Ampère measure of ψt on R ×MR equals zero. In the real domain, a weak
solution of the Monge-Ampère equation is a function ψ whose Monge-Ampère measure M(ψ)
equals zero, where the Monge-Ampère measure is defined by M(ψ)(E) = |∂ψ(E)|, i.e. by
the Lebesgue measure of the image of a Borel set E under the subdifferential map of ψ (see
e.g. [CY]).

To see that our ψt solves the homogeneous real Monge-Ampère equation, we note that the
image of the gradient map of ψt is the same as the image of the subdifferential map (in both
the t and x variables) of u+ tf . Since the latter is linear in t, its Monge-Ampère measure in
R × P equals zero. We conclude that (∂2

t ϕt − |∂zϕ̇t|2ωt
)dtdx is the zero measure. It follows

that, as measures, ∂2
t ϕtdtdx = |∂zϕ̇t|2ωt

dtdx.
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It follows that ∂2
t ψt ∈ L∞ if and only if |∂zϕ̇t|2ωt

) ∈ L∞. The metric norm uses the inverse
of ωt, which as observed above vanishes on the open sets µ(Pi ∩Pj). On the other hand, the
formula in Theorem 1.4 shows that ∂zϕ̇t ≡ 0 there as well.

8. C1
convergence: Proof of Proposition 1.5

In this section we prove that ψk(t, z) → ψt in C1. The proof uses the properties of
the moment map µt established in previous sections, and is based on a strong version of
Varadhan’s Lemma and on uniform large deviations. It follows that ψt ∈ C1([0, L] ×M) as
will be discussed at the end.

8.1. Uniform tilted large deviations upper bound. Our aim is to show:

Proposition 8.1. For compact sets,

1

k
log µz,tk (K) ≤ − inf

x∈K
Iz,t(x) + o(1), (85)

where o(1) denotes a quantity such that o(1) → 0 as k → ∞ uniformly in z, t when t lies in
a compact set. Here, Iz,t(x) = [Iz(x) − Ft(x)] − supx∈X [Ft(x) − Iz(x)].

Proof. Since the logarithmic asymptotics of the denominator Zz,t
k in µz,tk follow by the Varad-

han’s Lemma just proved, it suffices to show that

1

k
log

∫
K

ekFt(x)dµzk(x) ≤ − inf
x∈K

[Ft(x) − Iz(x)] + o(1), k → ∞, (86)

where the remainder is uniform in z ∈ M and t ∈ [0, L] for any L > 0. We prove this with
a slight generalization of Lemma 6.2. The proof is essentially the same, but for the reader’s
convenience we include some details.

Lemma 8.2. Let Lk(z, t,
α
k
) = 1

k
log ekFt(

α
k
) |sα(z)|2

hk

Q
hk (α)

−(Ft−Iz)(αk ). Then Lk(z, t,
α
k
) = − 1

k
logQhk(α)+

u(α
k
) for z ∈M o and satisfies

Lk(z, t,
α

k
) = O(

1

k
), (k → ∞)

uniformly in z ∈ M o, t ∈ [0, L] and α ∈ kP . The same formula and remainder hold when
µt(z) ∈ F and α

k
∈ F .

Proof. First assume that z = eρ/2 ∈M o. Then,

1
k

log ekFt(
α
k
) |sα(z)|2

hk

Q
hk (α)

= Ft(
α
k
) + 〈α

k
, ρ〉 − ϕ(ρ) − 1

k
logQhk(α), (87)

while
(Ft − Iz)(

α

k
) = Ft(

α

k
) − 〈α

k
, ρ〉 + u(

α

k
) + ϕ(ρ). (88)

Hence,
1

k
log

|sα(z)|2hk

Qhk(α)
− (Ft − Iz(

α

k
)) = −1

k
logQhk(α) + u(

α

k
). (89)

The rest continues as in the case t = 0. �
The following Lemma, a generalization of Proposition 6.3, concludes the proof:
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Lemma 8.3. For any compact subset K ⊂ P̄ , we have the uniform upper bound

1

k
log µz,tk (K) ≤ − inf

x∈K
Iz,t(x) +O(

log k

k
),

where the remainder is uniform in z and t ∈ [0, L].

Proof. Taking into account the denominator in µz,tk and Lemma 8.2, the proof as in Lemma
6.3 leads to the conclusion,

1

k
log µz,tk (K) =

1

k
log

∑
α∈kP :α

k
∈K

e−kI
z,t(α

k
) +O(

1

k
) +O(

log k

k
)

and the rest of the proof goes as before. �

�

8.2. Proof of Proposition 1.5. We first prove:

Lemma 8.4. µt(z) = limk→∞ xdµz,tk and µz,tk → δµt(z).

Proof. We first use [E], Theorem II.6.3 (particularly the proof that E (Wn/an) → ∇c(0) on
page 49) to show that µz,tk → δµt(z) in the weak sense as k → ∞.

The proof uses the logarithmic moment generating function for dµz,tk , defined as before by

Λz,t(ρ) = limk→∞ 1
k

log
∫
P
ek〈x,ρ〉dµz,tk

= limk→∞ 1
k

log
∫
P
ek(〈x,ρ〉+Ft(x)dµzk − 1

k
logZz,t

k .

By Varadhan’s Lemma, the first term tends to

sup
x∈P

(〈x, ρ〉 + Ft(x) − Iz(x))

and the second tends to

sup
x∈P

(Ft(x) − Iz(x)) .

Thus, we have

Λz,t(ρ) = sup
x∈P

(〈x, ρ〉 + Ft(x) − Iz(x)) − sup
x∈P

(Ft(x) − Iz(x)) . (90)

Up to the constant Rt, the first term defines the Legendre transform of the strictly convex
function Iz + tf and since the second term is constant in ρ, Λz,t(ρ) is a strictly convex
function of ρ, which up to a constant equals⎧⎨

⎩
L(u0 + tf)(ρ+ log |z|) = ψt(ρ+ log |z|) + ϕP o(log |z|), z ∈M o;

LF (u0 + tf)(ρ′′ + log |z′′|) = ψt(ρ
′′ + log |z′′|) + ϕF (|z′′|), z ∈MF .

(91)

In the evaluation on F we note that the supremum is taken for x ∈ F and hence 〈x, ρ >=
〈x′′, ρ′′〉 where ρ′′ is the component of ρ along F .
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By Proposition 7.2, Λz,t(ρ) is a C1 function of ρ ∈ R
m for all z ∈ M o and it is a C1

function of ρ′′ ∈ R
m−k for z ∈MF . Then by [E], Theorem II.6.3 (particularly the proof that

E (Wn/an) → ∇c(0) on page 49) it follows that

lim
k→∞

∫
P

xdµz,tk →
⎧⎨
⎩

∇(ψt + ϕP o)(log |z|), z ∈M o;

∇′′(ψt + ϕP o)(log |z′′|), z ∈MF .

By Definition (63), the limit equals µt(z) in all cases, and Theorem II. 6. 3 of [E] shows that
µt,zk → δµt(z).

�

8.3. C1 Convergence and Varadhan’s Lemma. We now use the large deviations prin-
ciple of the previous section to prove that the limit in Lemma 8.4 is C0 and at the same to
oomplete the proof of Proposition 1.5.

Proof. Each first derivative has the form∫
P̄

ψ(x) dµt,zk (x),

where dµt,zk is the time-tilted measure (9) and ψ ∈ C(P̄ ). Indeed, on the open orbit,

1

k
∇ρ log

∑
α∈kP∩Zm

e2tk(R−f(α
k
)) |sα(z)|2hk

Qhk(α)
=

∑
α∈kP∩Zm

(
α
k
− µ(z)

)
e2tk(R−f(α

k
)) |sα|2

hk

Q
hk (α)∑

α∈kP∩Zm e2tk(R−f(α
k
)) |sα|2

hk

Q
hk (α)

=

∫
(x− µ(z)) dµz,tk (x)

Near D we cannot express derivatives in terms of ∇ρ but must rather use ∇z as in [SoZ2].
This only has the effect of changing the sum over α to a sum over αn �= 0 and then changing
α → α− (0, . . . , 1n, . . . , 0).

Also, the ∂t derivative has the form

1
k
∂
∂t

log
∑

α∈kP∩Zm e2tk(R−f(α
k
)) |Sα(z)|2

hk

Q
hk (α)

= 1
k

∑
α e

2tk(R−f( α
k

))(2k(R−f(α
k
)) ek〈α,ρ〉

Qk(α)(∑
α e

2tk(R−f( α
k

)) ek〈α,ρ〉
Q

hk
t

(α)

)

=
∫
P

(2(R− f(x)) dµz,tk (x).

(92)

Hence to prove the result we need only to show:

Lemma 8.5. For any continuous ψ ∈ C(P̄ ),
∫
P̄
ψ(x) dµt,zk (x) = ψ(µt(z))+o(1), with uniform

remainder.

To prove the Lemma we first note that Iz,t(x) attains its infimum at a unique point
x̄(z, t) = µt(z) where µt is the moment map of ψt.

We have,∫
P̄

ψ(x) dµt,zk (x) =

∫
|x−µt(z)|≤ε

ψ(x) dµt,zk (x) +

∫
|x−µt(z)|>ε

ψ(x) dµt,zk (x).



TEST CONFIGURATIONS, LARGE DEVIATIONS AND GEODESIC RAYS ON TORIC VARIETIES 41

By Proposition 8.1, the second term is bounded by

maxP |ψ| · µz,tk (|x− µt(z)| > ε) ≤ maxP |ψ| · e−k(inf|x−µt(z)|>ε I
z,t(x)+o(1))

= o(1),

where the remainder o(1) is uniform for any ε > 0. Since infz∈M,t∈[0,L] inf |x−µt(z)|>ε I
z,t(x) > 0,

the final estimate is uniform in t, z.
We then consider the first term. Since ψ is uniformly continuous on P̄ , there exists ε for

any given δ > 0 so that |ψ(x) − ψ(µt(z))| ≤ δ if |µt(z) − x| ≤ ε. The first term is then
ψ(µt(z)) plus O(δ). Choosing δ sufficiently small and then k sufficiently large completes the
proof of the Lemma. �

Note that this gives another proof that ψt ∈ C1([0, L] ×M).
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