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Nodal hypersurfaces of eigenfunc-
tions

Let (M, g) be a real analytic Riemannian man-

ifold, possibly with boundary.

Consider: real eigenfunctions of the Laplacian

∆ϕj = λ2
j ϕj, 〈ϕj, ϕk〉 = δjk

on a real analytic Riemannian manifolds (M, g).

The nodal hypersurface is the zero set

Zϕj = {x : ϕj(x) = 0}.
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Why study nodal hypersurfaces?

• To ‘visualize sound’, i.e. modes of vibra-

tion of a drum (Chladni, 1800; Rayleigh,

1880). Nodal lines are rest points where

the drum is not vibrating.

• To visualize stationary states of atoms. E.

Schrödinger: Quantization as an eigenvalue

problem - Annalen der Physik, 1926.
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What we would like to understand

High energy λj → ∞ asymptotics of nodal lines:

how they snake around (i.e. how they are dis-

tributed on M):

• Hypersurface volumes Hm−1(Zϕλ) ∼?? of

nodal sets.

• Distribution of nodal hypersurfaces:∫
Zϕλ

fdHm−1 ∼??

• Similar problems for critical points of eigen-

functions: ∇ϕλ(x) = 0:

#{xj : ∇ϕλ(xj) = 0} ∼??
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Distribution of nodal hypersurfaces

If U ⊂ M is a nice open set, we want to deter-

mine the total hypersurface volume

V ol(Zϕj ∩ U)

as λj → ∞ E.g. length in dimension one.

We put arc-length measure on the nodal line,

or in higher dimensions the natural Rieman-

nian hyper-surface measure dHn−1. Let f be

a function and integrate it over the nodal hy-

persurface to get

(1) 〈[Z̃ϕj], f〉 =
∫
Zϕj

f(x)dHn−1.

Problem: Asymptotics of 〈[Z̃ϕj], f〉 as λj → ∞
(if exists).
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Volumes of nodal hypersurfaces

Theorem 1 (Donnelly-Fefferman, Inv. Math.

1988) Suppose that (M, g) is real analytic. Then

c1λ ≤ Hn−1(Zϕλ) ≤ C2λ.

(Note that our λ is the square root of the ∆-

eigenvalue.)

Result is sharp: there is no asymptotic formula

in general.

Distribution of nodal hypersurfaces seems far

out of sight...
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Distribution of complex nodal hy-
persurfaces

Our theme is that it is possible to obtain much

stronger results on complex nodal hypersurfaces–

zeros of analytic continuations of eigenfunc-

tions to the complexification MC of M , and

study their complex zeros and critical points.

This can give information on growth of real

zeros and critical points.

The origin of complex analysis was the realiza-

tion that complex zeros of polynomials have a

richer and simpler theory than real zeros. We

follow that same path on analytic Riemannian

manifolds
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Distribution of complex nodal hy-
persurfaces when ∂M = ∅ and the
geodesic flow is ergodic.

Our first result determines the limit distribu-
tion of complex nodal hypersurfaces in the er-
godic case–definitions later.

Theorem 2 (Z: Invent. Math. 167 (2007))
Assume (M, g) is real analytic and that the
geodesic flow of (M, g) is ergodic. Then there
exists a subsequence of full density in the spec-
trum such that

1

λj
Z

ϕC
λj

→ ∂∂|ξ|g, weakly in B∗
gM.

Both sides are viewed as (1,1) currents: dual
to (m−1, m−1) forms. Here, ∂ is the Cauchy-
Riemann operator for the complex structure on
the unit ball bundle with respect to the com-
plex structure adapted to g.
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Example: ∂M = ∅: the unit circle S1

The complexification of S1 is the cylinder S1
C

=

S1 × R = C/Z. The complexified configuration

space is similar to the phase space T ∗S1. This

is always true.

The (real) eigenfunctions are cos kθ, sin kθ on

a circle. They have the quantum ergodic prop-

erty: 2| cos kθ|2 → 1 in weak sense (rapid os-

cillations smear out to constant).

The holomorphically extended eigenfunctions

are cos kz, sin kz. They have exponential growth

ek|�z| as k → ∞.

Complex zeros = real zeros. Become uniformly

distributed on �ζ = 0.
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Distribution of complex zeros for S1

The zeros of sin 2πkz in the cylinder C/Z all lie

on the real axis at the points z = n
2k. Thus,

there are 2k real zeros. The limit zero distri-

bution is:

limk→∞ i
2πk∂∂̄ log | sin 2πk|2 = limk→∞ 1

k

∑2k
n=1 δ n

2k

= 1
πδ0(ξ)dx ∧ dξ.

On the other hand,

i
π∂∂̄|ξ| = i

π
d2

4dξ2
|ξ| 2

i dx ∧ dξ

= i
π

1
2 δ0(ξ)

2
i dx ∧ dξ.
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Boundary problems: Cauchy data
of eigenfunctions on plane domains

Our methods also give results when ∂M �= ∅.

New phenomena occur in boundary problems:

Let Ω ⊂ R2 be a piecewise analytic plane do-

main and consider the Neumann problem{
−∆ϕλ = λ2ϕλ in Ω,
∂νϕλ = 0 on ∂Ω,

Here, ∂ν is the interior unit normal.

Cauchy data = ϕλ|∂Ω. In the Dirichlet case,

the Cauchy data is ∂νϕλ|∂Ω.
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Nodal loops versus open nodal lines

For generic piecewise analytic plane domains,

zero is a regular value of all the eigenfunctions

ϕj i.e. ∇ϕj �= 0 on Zϕj. The connected com-

ponents are either open segments touching the

boundary at two endpoints or loops contained

in Ωo.

Problem: As λ → ∞, count the number of

closed nodal loops and the number of open

nodal lines.
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Counting open nodal lines

Theorem 3 (with John Toth, in progress) Sup-

pose that Ω ⊂ R2 is a piecewise real ana-

lytic plane domain. Then the number n(λj) =

#Zϕj ∩ ∂Ω of boundary nodal points satisfies

n(λj) ≤ Cλj, where C is a constant depending

only on Ω.

Corollary 4 Let Ω be a piecewise analytic do-

main for which all Zϕj are regular. Let n∂Ωc(λj)

be the number of open nodal lines, i.e. con-

nected components of {ϕλj
= 0} ⊂ Ω which

intersect ∂Ωc. Then n∂Ωc(λj) = O(λj).

It is expected that the total number of nodal

components is on the order of λ2. So few nodal

lines touch the boundary.
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Bruhat-Whitney complexification

Theorem 5 (Bruhat-Whitney, 1959) Let M

be a real analytic manifold of real dimension n.

Then there exists a complex manifold MC of

complex dimension n and a real analytic em-

bedding M → MC such that M is a totally real

submanifold of MC. The germ of MC is unique.

Application: Let Ω ⊂ R2 be a domain with

real analytic boundary ∂Ω. Let Q : S1 → ∂Ω

be a real analytic parameterization. Then Q

has an analytic continuation QC to an annulus.

Its image is the complexification (∂Ω)C of the

boundary.
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Analytic continuation of eigenfunc-
tions

The holomorphic extension of ϕλ is obtained
by applying the complexified wave group:

(2) ei(iτ)
√

∆ϕλ(ζ) = e−τλϕC
λ .

This implies connections between the geodesic
flow and the growth rate and zeros of ϕC

λ .

• When ∂M = ∅, all eigenfunctions holo-
morphically extend to the same maximal
‘Graurt tube’ MC. I.e. ‘radius of conver-
gence’ is independent of eigenvalue.

• When ∂M �= ∅, Neumann eigenfunctions
are real analytic on boundary and extend to
a fixed ‘tube’ |�ζ| ≤ τ in (∂Ω)C. (Morrey,
Garabedian)
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Sketch of Proof of Counting open
nodal lines for plane domains

Recall: n∂Ωc(λj) = number of open nodal lines

of Neumann eigenfunctions, i.e. connected

components of {ϕλj
= 0} ⊂ Ω which intersect

∂Ωc. Result: n∂Ωc(λj) = O(λj).

Proof: First we note that endpoints of open

nodal lies are zeros of boundary values of eigen-

functions. So it suffices to prove that boundary

values have O(λj) zeros.

To prove this, it suffices to show that the ana-

lytic continuation of the boundary values ϕj|∂Ω

to (∂Ω)C has O(λj) complex zeros.
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Value distribution of complexified
eigenfunctions

It is a classical topic in complex analysis to re-

late growth of zeros in discs D(0, r) of radius

r → ∞ of an entire function f to growth of

maxD(0,r) log |f(z)|. (Jensen’s formula, Nevan-

linna theory...)

We want to do something analogous on a fixed

domain as the eigenvalue tends to infinity (prior

studies by Donnelly-Fefferman, Fang-Hua Lin).
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Growth of ϕC
λ |(∂Ω)C

In general, growth of complexified Cauchy data
(boundary values) does NOT reflect the eigen-
value λ.

Example: unit disc Ω = D. Then,

ϕm,n(r, θ) = Jm(ρmnr) cosmθ, Jm(ρmnr) cosmθ

Cauchy data: ϕm,n|∂D = cosmθ, sinmθ. Note
that growth reflects angular momentum m, not
the eigenvalue λmn.

All zeros are real in the complexification of the
boundary. The number of zeros is m, even
when the eigenvalue tends to infinity (can be
bounded as λmn → ∞.

But we may obtain an UPPER BOUND; if bil-
liards are ergodic, then the number of bound-
ary zeros is ∼ λ (in progress, with J. Toth).
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Analytically continuing ϕj|∂Ω

In the boundaryless case, we use the wave ker-

nel to holomorphically continue Neumann eigen-

functions. This is more difficult on domains

with boundary. Here we use Green’s formula

and layer potentials:

(3)

ϕj(x) =
∫
∂Ω

∂

∂νq′
G(λ, x, q′)uj(q

′)dσ(q′), x ∈ Ωo.

Here, uj = ϕj|∂Ω and G is the free ambient

space Green’s function on R2 (a Bessel func-

tion).
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Analytically continuing uj = ϕj|∂Ω II

Take limit as x → ∂Ω to get (“jumps for-

mula”):

(4)

uj(q) = 2
∫
∂Ω

∂

∂νq′
G(λ, q, q′)uj(q

′)dσ(q′) (Neumann).

where

(5)

G(λ, x, y) = R = J0(λr(x, y)) log
1

r
+ B(λ, x, y).

R = Riemann function; B is also a Bessel func-

tion.

Difficulty: due to the logarithm, analytic con-

tinuation of kernel is multiple valued; but uj

has a single-valued continuation.
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Analytically continuing ϕj|∂Ω, cont.

Let q be a real analytic parameterization of ∂Ω

and let R = J0(λr) be the Riemann function.

(6) Φ(t; z, z∗) =
∫ t

0
uλ(s)

∂

∂n
R(s, z, z∗)ds.

For �t > 0, < 0)

(7)
uC

λ(t) + ±iΦ(t, q(t), q∗(t))

=
∫ 

0 [Φ(s; q(t), q∗(t)) + iuλ(s)R(s, q(t), q∗(t))] q′(s)

q(s)−q(t

+
∫ 

0 [Φ(s; q(t), q̄(t)) − iuλ(s)R(s, q(t), q∗(t))] q̄′(s)

q̄(s)−q∗(t
−2

∫ 

0 uλ(s)

∂B
∂n(s; q(t), q∗(t))ds.

Key point: RHS only uses uj on real ∂Ω. LHS

is a Volterra operator applied to uC
j .
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Growth of uC
j versus growth of com-

plex zeros

Normalize uλ so that ||uλ||L2(C) = 1. Let A(ε) =

{1 − ε < |t| < 1 + ε}. Let n(λ, qC(A(ε/2))) be

the number of zeros of uj(qC(t)) for t ∈ A(ε).

Proposition 6 Then, for any ε > 0, there exists

a constant, C(ε) > 0, such that

n(λ, qC(A(ε/2))) ≤ C(ε) max
qC(A( ε))

log |uC
λ(qC(t))|.
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Growth of uC
j

Inverting the Volterra equation, and using knowl-

edge of analytic continuations of Bessel func-

tions, we get the upper bound

(8)

max
qC(t)∈Q(A(ε))

|ϕC
λ(qC(t))| ≤ C2eλε · ‖uλ‖L2(∂Ω),

and so,

(9)

log max
qC(t)∈Q(A(ε))

|ϕC
λ(qC(t))| ≤ ελ+log ‖uλ‖L2(∂Ω).

Known estimates of log ‖uλ‖L2(∂Ω) show that

it is of logarithmic order.

Hence, the number of complex zeros is O(λ).
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