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Abstract

The space H of Kähler metrics in a fixed Kähler class on a projective Kähler manifold X
is an infinite dimensional symmetric space whose geodesics ωt are solutions of a homogeneous
complex Monge-Ampère equation in X ×A, where A ⊂ C is an annulus. Phong-Sturm have
proven that the Monge-Ampère geodesic of Kähler potentials ϕ(t, z) of ωt may be uniformly
approximated by geodesics ϕN (t, z) of the finite dimensional symmetric space of Bergman
metrics of height N . In this article we prove that ϕN (t, z) → ϕ(t, z) in C2([0, 1] ×X) in the
case of toric Kähler metrics on X = CP1.

1 Introduction

This article is concerned with geodesics in spaces of Hermitian metrics of positive curvature
on an ample line bundle L → X over a Kähler manifold. Stimulated by a recent article of
Phong-Sturm [PS], we study the convergence as N → ∞ of geodesics on the finite dimensional
symmetric spaces HN of Bergman metrics of ‘height N ’ to Monge-Ampére geodesics on the full
infinite dimensional symmetric space H of C∞ metrics of positive curvature. Our main result is
C2 convergence of Bergman geodesics to Monge-Ampére geodesics in the case of toric (i.e. S1-
invariant) metrics on CP1. Although such metrics constitute the simplest case of toric Kähler
metrics, the CP1 case already exhibits much of the complexity of general toric varieties for the
approximation problem studied here. The general case will be studied in [SoZ].

The convergence problem raised by Phong-Sturm [PS] (see also Arezzo-Tian [AT] and Don-
aldson [D2a], Corollary 5) belongs to the intensively studied program initiated by Yau [Y2] of
relating the algebro-geometric issue of stability to the analytic issue existence of canonical met-
rics on holomorphic line bundles. In this program, metrics in HN have a simple description
in terms of algebraic geometry, while metrics in H are ‘transcendental’. The approximation of
transcendental objects in H by ‘rational’ objects in HN lies at the heart of this program.

The reasons for studying Monge-Ampére geodesics were laid out by Donaldson in [D1] (see
also Mabuchi [M] and Semmes [S2]). Formally, H = GC\G where G is the group of Hamiltonian
symplectic diffeomorphisms of (X,ω); here ω ∈ H is a fixed Kähler form. The geodesics of H
should therefore correspond to orbits of one-parameter subgroups of GC. Such one parameter sub-
groups should be important by analogy to finite dimensional settings, where the Hilbert-Mumford
criterion relates stability of (X,L) to weights of one-parameter subgroups. Unfortunately, the in-
finite dimensional group G does not admit a true complexification. But Monge-Ampère geodesics
are well-defined, and they provide a useful replacement for ‘one parameter subgroups of GC’.
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The existence, uniqueness and regularity of such geodesics is connected to existence and
uniqueness of metrics of constant scalar curvature. Donaldson asked [D2] if there exist smooth
Monge-Ampére geodesics between any pair of metrics h0, h1 ∈ H. The work of Chen [Ch]
shows the existence of a unique C1,1 geodesic ht joining h0 to h1. The improved regularity
of the Monge-Ampère geodesics, due to and Chen-Tian [CT], is sufficient to prove uniqueness
of extremal metrics. In the case of toric varieties, the much stronger result is known that the
geodesic between any two metrics is C∞ [G]. In fact, the Monge-Ampére equation can be
linearized by the Legendre transform and the symmetric space is flat.

But in general, solutions of the Monge-Ampére equation are difficult to analyze. The re-
markable suggestion of Phong-Sturm [PS] and Arrezo-Tian [AT] is to study solutions of the
homogeneous Monge-Ampère equation by means of ‘algebro-geometric approximations’. It has
been proved by Phong-Sturm [PS] (see also [B]) that Bergman geodesics, which are orbits of
one-parameter subgroups of GL(dN + 1,C) between two Bergman metrics, converge uniformly
to a given Monge-Ampére geodesic for a general ample line bundle over a Kähler manifold.

The question we take up in this article and in [SoZ] is whether Bergman geodesics converge
to Monge-Ampère geodesics in a stronger sense. Convergence in C2 is especially interesting since
it implies that the curvatures and moments maps for the metrics along the Bergman geodesic
converge to those along the Monge-Ampère geodesics. In this article and in the subsequent
article [SoZ], we study this problem for toric hermitian line bundles over toric Kähler manifolds.
In this setting, the Kähler potentials ϕN (t, z) of the Bergman metrics along the geodesic have
relatively explicit formulae (see 1.8) resembling the free energy of a discrete quantum statistical
mechanical model. Convergence in C0 of the Kähler potential as k → ∞ is analogous to uniform
convergence of the free energy in the thermodynamic limit, while convergence of derivatives is
related to absence of phase transitions (cf. [E], II.6).

To state our results, we will need some notation. Let L → X be an ample holomorphic line
bundle and denote by H0(X,LN ) the holomorphic sections of the N th power LN → X of L.
Given a basis SN = {S0, . . . , SdN

} we define the associated holomorphic embedding

ΦSN
: X → CPdN , ΦS(z) = [S0(z), . . . , SdN

(z)]. (1.1)

We define the space of Bergman metrics by

HN = { 1
N

Φ∗
SN
ωFS | SN is a basis of H0(X,LN )},

where ωFS is the Fubini-Study metric on CPdN . Since U(dN + 1) is the isometry group of ωFS ,
HN is the symmetric space GL(dN + 1,C)/U(dN + 1,C).

Metrics in HN are defined by an essentially algebro-geometric construction and are somewhat
analogous to rational numbers. A basic fact is that the union

∞⋃
N=1

HN ⊂ H

of Bergman metrics is dense in the C∞ topology in the space H of all C∞ Kähler metrics in a
fixed Kähler class [ω] (see [T, Z]) of positive curvature. Indeed, for each N we have a map

SN : H → HN , h→ hN = (Φ∗
SN
hFS)1/N , SN (h) = an orthonormal basis for h. (1.2)

The metric hN is independent of the choice of orthonormal basis, and hN → h in C∞.
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Now let us compare Monge-Ampére geodesics and Bergman geodesics. We let h0, h1 be any
two hermitian metrics on L in the class H and write hϕ = e−ϕh relative to a fixed metric h with
curvature form ω = Ric(h). Thus, we have an isomorphism

H = {ϕ ∈ C∞(X) | ωϕ = ω +
√−1∂∂ϕ > 0 } . (1.3)

We may then identify the tangent space TϕH at ϕ ∈ H with C∞(X). We define a Riemannian
metric on H as follows: let ϕ ∈ H and let ψ ∈ TϕH � C∞(M) and define

||ψ||2ϕ =
∫

M
|ψ|2 ωn

ϕ . (1.4)

With this Riemannian metric, H is an infinite dimensional negatively curved symmetric space.
By [M, S1, S2, D1], the geodesics of H in this metric are the paths ϕt which satisfy the equation

ϕ̈− |∂ϕ̇|2ωϕ
= 0. (1.5)

This may be interpreted as a Monge-Ampére equation [S1, D1].
Geodesics in HN with respect to the symmetric space metric are given by one-parameter

subgroups etA of GL(dN + 1,C). That is, let h0, h1 ∈ H and σ ∈ GL(dN + 1,C) be the change

of basis matrix defined by σ · Ŝ(0)
= Ŝ

(1)
, where Ŝ

(0)
= SN (h0) and Ŝ

(1)
= SN (h1). Without loss

of generality, we may assume that σ is diagonal with entries eλ0 , ..., eλdN for some λj ∈ R. Let

Ŝ
(t)

= σt · Ŝ(0)
where σt is diagonal with entries eλjt. We fix a smooth hermitian metric h ∈ H

and define

h
Ŝ

(t)(z) =
1(∣∣∣Ŝ(t)
∣∣∣2)

1
N

,

hN (t, z) = h
Ŝ

(t)(z) = h(z)e−ϕN (t,z).

Then hN (t, ·) is the smooth geodesic in GL(dN + 1,C)/U(dN + 1,C) joining hN (0, ·) to hN (1, ·).
Explicitly, we have

ϕN (t, z) =
1
N

log

⎛
⎝ dN∑

j=0

e2λjt|Ŝ(0)
j |2hN (z)

⎞
⎠ . (1.6)

Thus, the problem is the convergence of hN (t, ·) → h(t, ·) or equivalently of ϕN (t, ·) → ϕ(t, ·).
The following general result is proved in [PS].

Theorem 1.1 The Bergman geodesics uniformly converge to the Monge-Ampère geodesic in the
sense that

ϕt(z) = lim
k→∞

[ sup
N≥k

ϕN (t, ·)]∗(z), (1.7)

where, for any bounded function f : [0, 1] × X → R, the upper envelope of f is defined by
f∗(x0) = limε→0 sup|x−x0|<ε f(x).

As mentioned above, our goal here and in [SoZ] is to study the degree of convergence of these
geodesics in the case of toric hermitian metrics on a toric line bundle L→ X. We define the space
HT to be the subspace of H of hermitian metrics for which ϕ is invariant under the underlying
real torus T = (S1)n action.
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In the case of CP1, we may assume L = O(1) and an orthogonal basis {SN
α } of holomorphic

sections of LN = O(N) is given in an affine chart by the monomials zNα, Nα = 0, . . . , N . A
toric hermitian metric is entirely encoded in the set of L2 squared norms QN

h (α) = ||zNα||2
hN of

the monomials with respect to powers hN of the Hermitian metric h (cf. Definition 2.1). Then
(1.6) takes the form

ϕN (t, z) =
1
N

log

⎛
⎜⎝ ∑

α∈ 1
N

Z∩[0,1]

|zNα|2h0

(QN
h0

(α))1−t(QN
h1

(α))t

⎞
⎟⎠ . (1.8)

If we write |z|2 = eρ, we see the resemblance to the free energy of a quantum statistical model
with states parameterized by lattice points in [0, N ] [E] (§7). The main result of this article is:

Theorem 1.2 On CP1, the Bergman geodesics converge to the toric Monge-Ampère geodesic
uniformly

lim
N→∞

ϕN (t, z) = ϕt(z), (1.9)

uniformly in the C2 topology on [0, 1] × CP1.

A natural question is whether the convergence is uniform in higher Ck spaces. We have
no reason to doubt this, but our proofs are based on explicit calculation of two derivatives
and analysis of the asymptotics of the resulting expressions. The expressions become rather
complicated when one takes three or higher derivatives, and it becomes quite messy to check if
they converge uniformly. As will be seen in the proof, most of the complications concern the
joint asymptotics in the (N,α) parameters of the norming constants QN

h (α) near the boundary
of the ‘moment polytope’ [0, 1]. The essential simplification in CP1 over higher dimensional
toric varieties is that the approach to the boundary is much simpler for an interval than for the
possible convex Delzant polytopes in higher dimensions. Otherwise, the case of CP1 already
exhibits much of the complexity of the general case. In [SoZ], we study the C2 convergence
problem in all dimensions.

Our analysis of the norming constants builds on the work of [STZ1], and may have an
independent interest, since the norming constants determine a toric metric. For instance, in [D4]
and elsewhere, numerical methods for approximating extremal Kähler metrics on toric varieties
are also based on the study of norming constants. It would be interesting to generalize the results
on norming constants to higher dimensions. The subsequent article [SoZ] involves quantities
which are in a sense dual to norming constants and does not directly provide information on
norming constants.

Finally, we thank the referee for some corrections and improvements. As the referee points
out, there are interesting connections between the calculations of this article and those of [B].
Our methods can be adapted to the slightly different situation of that article in the toric case,
and we hope to present the details elsewhere.

2 Preliminaries

Although we primarily study CP1 in this article, we set the scene for toric varieties in arbitrary
dimensions. Let (X,ω, τ) be a compact toric manifold of complex dimension n and

τ : Tn → Diff(X,ω)
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an effective Hamilton action of the standard real n-torus T = (S1)n. Let π be the moment map
associated to the toric Kähler metric ω

π : X → Rn. (2.1)

The image P of π is a Delzant polytope, defined by a set of linear inequalities given by

〈x, vr〉 ≥ λr, r = 1, ..., d,

where vr is an inward-pointing normal to the r-th (n − 1)-dimensional face of P . Define the
affine functions lr : Rn → R by

lr(x) = 〈x, vr〉 − λr.

Fix a toric polarization L on X with [L] = [ω]. Let

H = {h | h is a smooth T -invariant hermitian metric on L such that Ric(h) > 0}.
Fix h ∈ H and let ω = Ric(h), then

H ∼= {ϕ ∈ C∞(X) | ϕ is T -invariant and ωϕ = ω +
√−1∂∂ϕ > 0}.

Hence the hermitian metric hϕ ∈ H and the ω-plurisubharmonic potential ϕ ∈ H are related by

hϕ = h0e
−ϕ.

The L2-metric on H is given by

||ψ||2ωϕ
=
∫

X
|ψ|2ωn

ϕ

for any ψ ∈ C∞(X).
For any ϕ0 and ϕ1 ∈ H, the geodesic ϕt joining ϕ0 and ϕ1 in H is defined by

∂2ϕt

∂t2
= |∂ϕ̇t|2ωϕt

. (2.2)

From a complex geometric viewpoint, the complex torus (C∗)n acts on X with an open orbit,
and X may be viewed as a compactification of (C∗)n. On the open orbit, we denote the standard
holomorphic coordinates by (z1, ..., zn). We also define the real coordinates ρj = log |zj |2, j =
1, ..., n. Then a toric Kähler form has a T -invariant Kähler potential u on the orbit defined by
ω =

∑
i,j=1,...,n

√−1 ∂2u
∂zi∂zj

dzi∧dzj > 0. Since u is T -invariant, it can be considered as a function
in ρ = (ρ1, ..., ρn) on Rn and it is convex on Rn. We then define U(ρ) = u(z) on Rn.

The Legendre transform of U defines the symplectic potential G of ω, a convex function on
P ◦. That is,

G(x) = 〈x, ρ〉 − U(ρ)

with x = ∇U(ρ) ∈ P ⊂ Rn given by the moment map. It has the same singularities at the
boundary ∂P as the symplectic reference potential

GP (x) =
d∑

r=1

lr(x) log lr(x). (2.3)

GP induces a smooth hermitian metric hP on L → X (smooth over all of X) with Ric(hP ) =√−1∂∂uP on (C∗)n and uP being the Legendre transform of GP . For background, we refer to
[A, D4, Gu].

The following theorem is proved by Guan [G].

5



Theorem 2.1 Let ht be the smooth geodesic joining h0 and h1 ∈ H for t ∈ [0, 1]. The corre-
sponding symplectic potential Gt is given by

Gt(x) = GP (x) + ft(x) (2.4)

where ft is a smooth function on Rn with ∇2Gt > 0 on P ◦. Furthermore,

ft(x) = (1 − t)f0(x) + tf1(x). (2.5)

Hence the geodesic of the symplectic potentials is linear. A very simple proof (cf. [SoZ]) is simply
to push forward the energy functional defining the Monge-Ampère geodesics to the polytope and
observe that it becomes the Euclidean energy functional there.

Definition 2.1 For any lattice point Nα ∈ NP ∩Zn, we let SN
α ∈ H0(X,LN ) denote the section

which equals the monomial zNα on (C∗)n in the standard affine frame. We define the L2 norm
of SN

α ∈ H0(X,LN ) with respect to ht by

QN
t (α) =

∫
X
|SN

α |2
hN

t
ωn

t (2.6)

where ωt = Ric(ht) and hN
t the N th-power of ht. We also define QN

P (α) with respect to hP by

QN
P (α) =

∫
X
|SN

α |2
hN

P
ωn

P (2.7)

where ωP is the toric Kähler form given by the symplectic potential GP . The formula for QN
t (α)

and QN
P (α) can be extended by real analyticity to all α ∈ P .

Phong and Sturm [PS] introduce the GL(dN +1,C) geodesics in the space of Bergman metrics
to approximate the Monge-Ampere geodesic ϕt.

Definition 2.2 We define EN (t, z) by

EN (t, z) =
∑

Nα∈NP∩Zn

|SN
α |2

hN
t

(QN
0 (α))1−t(QN

1 (α))t
, (2.8)

and the Szegö kernel ΠN with respect to ht by

ΠN (t, z) =
∑

Nα∈NP∩Zn

|SN
α |2

hN
t

QN
t (α)

. (2.9)

Definition 2.3 We also define for α ∈ P

1. the norming constants

QN
t (α) = QN

t (α)e−NGt(α), QN
P (α) = QN

P (α)e−NGP (α), (2.10)

2. the norming constants

qN
t (α) =

QN
t (α)

QN
P (α)

, RN
t (α) =

qN
t (α)

(qN
0 (α))1−t(qN

1 (α))t
=

QN
t (α)

(QN
0 (α))1−t(QN

1 (α))t
, (2.11)
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3. the norm squares of the normalized monomial sections

PN
α (t, z) =

|SN
α |2

hN
t

(z)

QN
t (α)

. (2.12)

Lemma 2.1
EN (t, z) =

∑
Nα∈NP∩Zn

RN
t (α)PN

α (t, z). (2.13)

Proof Straightforward calculation shows that

qN
t (α)

(qN
0 (α))1−t(qN

1 (α))t

=
QN

t (α)
(QN

0 (α))1−t(QN
1 (α))t

= eN((1−t)G0(α)+tG1(α)−Gt(α)) QN
t (α)

(QN
0 (α))1−t(QN

1 (α))t

=
QN

t (α)
(QN

0 (α))1−t(QN
1 (α))t

.

The last equality follows from the geodesic equation Gt(x) = (1 − t)G0(x) + tG1(x).
�

3 Joint (N, α) asymptotics of the norming constants for metrics
on CP1

We first give a useful formula for the norming constants QN
t (α) (2.10) which is valid on any toric

variety, and then we use it in the case of CP1 to determine joint (N,α) asymptotics.

Lemma 3.1 The norming constants QN
t (α) and QN

P (α) in Definition 2.3 for α ∈ P are given
on any toric variety by

QN
t (α) = (2π)n

∫
P
e−NFt,α(x)dx

QN
P (α) = (2π)n

∫
P
e−NFP,α(x)dx, (3.1)

where the phase functions Ft,α(x) and FP,α(x) are defined by⎧⎨
⎩

FP,α(x) = 〈x− α,∇GP (x)〉 − (GP (x) −GP (α))

Ft,α(x) = 〈x− α,∇Gt(x)〉 − (Gt(x) −Gt(α)).
(3.2)

Proof Let z = (z1, ..., zn) ∈ (C∗)n and ρ = (ρ1, ..., ρn) ∈ Rn with ρj = log |zj |2 for j = 1, ..., n.
We suppose that the Kähler form for gt is given by

∑
i,j=1,...,n

√−1 ∂2ut
∂zi∂zj

dzi ∧dzj , where ut(z) is
the Kähler potential for the toric Kähler metric gt on (C∗)n. Let Ut(ρ) = ut(z) and πt = ∇Ut :
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Rn → P be the moment map associated to gt. Then the symplectic potential Gt on P for gt is
given by the following Legendre transform

Gt(x) = 〈x, ρ〉 − Ut(ρ)

with x = ∇Ut(ρ) ∈ P ⊂ Rn. Also Ut(ρ) can be recovered from Gt(x) by the following inverse
Legendre transform

Ut(ρ) = 〈x, ρ〉 −Gt(x)

with ρ = ∇Gt(x). Also π∗t (dx1...dxn) = det
(

∂2Ut
∂ρi∂ρj

)
dρ1...dρn.

QN
t (α) = (

√−1)n

∫
Cn

|z|Nαe−Nut(z)−NGt(α) det
(

∂2ut

∂zi∂zj

)
dz1 ∧ dz1 ∧ ... ∧ dzn ∧ dzn

= (2π)n

∫
Rn

eN(〈α,ρ〉−Ut(ρ))−NGt(α) det
(
∂2Ut

∂ρi∂ρj

)
dρ1...dρn

= (2π)n

∫
P
eN(〈α,∇Gt(x)〉−(〈x,∇Gt(x)〉−Gt(x))−Gt(α))dx1...dxn

= (2π)n

∫
P
e−NFt,α(x)dx.

The same argument gives the integral formula for QN
P (α).

�

We now specialize to the case of CP1, where:

• P = [0, 1] and the canonical symplectic potential equals GP (x) = x log x+(1−x) log(1−x)
(it is the symplectic potential dual to the Fubini-Study Kähler potential);

• For α ∈ 1
N Z ∩ P , QN

P (α) =
(

N
Nα

)−1
, and QN

P (α) = 2π
(

N
Nα

)−1
e−N(α log α+(1−α) log(1−α)).

• The geodesic of the symplectic potentials Gt(x) is

Gt(x) = GP (x) + ft(x)

where ft(x) = (1 − t)f0(x) + tf1(x) is a smooth function on R such that

d2

dx2
Gt(x) > 0. (3.3)

In fact, because G′′
t (x) has poles of order 1 at 0 and 1, we have:

Lemma 3.2 There exists a constant Λ > 0 such that for any t ∈ [0, 1] and x ∈ (0, 1)

x(1 − x)G′′
t (x) > Λ, x(1 − x)G′′

P (x) > Λ. (3.4)

We also evaluate:⎧⎨
⎩

FP,α(x) = −α log x− (1 − α) log(1 − x) + α logα+ (1 − α) log(1 − α),

Ft,α(x) = GP (α) − α log x− (1 − α) log(1 − x) + (x− α)2ft,α(x),
(3.5)
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where ft,α(x) = −ft(x)−ft(α)−f ′
t(x)(x−α)

(x−α)2
with ft,α(α) = 1

2f
′′
t (α). It is easy to check by Taylor

expansion that ft,α(x) is smooth in x and t.
We now consider the joint asymptotics in (N,α) of the norming constants. Our main result,

Theorem 3.1, is a comparison of the joint asymptotics of a metric norming constant (2.10) to
the canonical norming constants QN

P (α). The joint asymptotics of the latter can be derived
from known (elementary) results on binomial coefficients, and we begin by recalling the relevant
background.

The joint asymptotics of binomial coefficients
(
N
m

)
in (N,m) and the closely related canonical

norming constants QN
P (α) have several regimes accordingly as α belongs to an ‘interior region’ or

a ‘boundary region’. First let us consider the ‘interior,’ where α ∈ [ 1
N3/4 , 1− 1

N3/4 ]. The standard
Sterling asymptotics for factorial and binomials applies in the region and gives(

N

Nα

)
∼ 1√

2πNα(1 − α)
e−N(α log α+(1−α) log(1−α), (3.6)

and more precisely the asymptotics

QN
P (α) = 2π

(
N

Nα

)−1

e−NGP (α) = 2π
√

(2π)Nα(1 − α) exp
(
O

(
1
Nα

+
1

N −Nα

))
. (3.7)

We observe that the asymptotics are highly non-uniform as α→ 0 or α→ 1.
In the left ‘boundary region’ α ∈ [0, 1

N3/4 ], we cannot use Stirling’s formula up the boundary
and rather use that (

N

m

)
= A(N,m)

Nm

m!
, with A = Πm−1

j=1 (1 − j

N
).

Using that lnA =
∑m−1

j=1 ln(1 − j
N ), and ln(1 − x) ∼ −x one has

Nα−1∑
j=1

ln(1 − j

k
) ∼

Nα−1∑
j=1

− j

N
∼ (Nα)2

2N
= o(1)

if Nα = o(
√
N). It follows that if (Nα) = o(

√
N), then

(
N

Nα

) ∼ NNα

(Nα)! , and further that

2π
(
QN

P (α)
)−1 =

(
N

Nα

)
(Nα

N )Nα(1 − Nα
N )N−Nα

= (Nα)Nα

(Nα)! (1 − 1
N )(1 − 2

N ) · · · (1 − Nα
N )(1 − Nα

N )N−Nα

= (1 − (Nα)
N )N (Nα)(Nα)

(Nα)! (1 − 1
N )(1 − 2

N ) · · · (1 − Nα
N )(1 − Nα

N )−Nα.

(3.8)

We record the following:

Lemma 3.3 There exists a constant C > 0 such that for all α ∈ [0, 1] ∩ 1
N Z

QN
P (α) ≥ C. (3.9)

Proof In the interior region, (3.7) implies the lower bound QN
P (α) ≥ CN1/8. In the boundary

region, we can continue to use Stirling’s formula as long as Nα→ ∞ to obtain(
N

Nα

)
∼
(
Ne

Nα

)Nα

(2πNα)−1/2 =⇒
(
N

Nα

)(
Nα

N

)Nα

(1 − Nα

N
)N−Nα ∼ (2πNα)−1/2,

9



so QN
P (α) → ∞ there as well. If Nα ≤ K then the exact formula (3.8) gives positive upper

bound independent of N . We note that it equals 1 when α = 0.

We now turn to general metrics. The following comparison inequality is the principal technical
tool in the proof of C2 convergence of the geodesics (see Definition 2.3).

Theorem 3.1 There exists a constant C > 0 such that for all integer N > 0, α ∈ P and
t ∈ [0, 1]

1
C

≤ qN
t (α) ≤ C. (3.10)

Furthermore, if we let πt and πP be the moment maps associated to the toric Kähler metrics gt

and gP and define

Ωt(α) =
(

det∇2GP (α)
det∇2Gt(α)

) 1
2

,

then Ωt(α) extends to a continuous function on P and

lim
N→∞

qN
t (α) = Ωt(α) (3.11)

uniformly for α ∈ P .

Indeed, Ωt(α) =
(

det∇2Ut(π
−1
t (α))

det∇2UP (π−1
P (α))

) 1
2

is the ratio of the volume forms of Kähler metrics gt and

gP on (C∗)n, although π−1
t (α) and π−1

P (α) do not necessarily coincide.
The following corollaries play an important role in the proof of the main result.

Corollary 3.1 There exists a constant C > 0 such that for all integer N > 0, α ∈ [0, 1] and
t ∈ [0, 1], the ratios R of Defintion 2.3 satisfy

1
C

≤ RN
t (α) ≤ C. (3.12)

Furthermore,

lim
N→∞

RN
t (α) =

Ωt(α)
(Ω0(α))1−t(Ω1(α)t

, (3.13)

uniformly for α ∈ [0, 1].

The next Corollary follows immediately from Theorem 3.1 and Lemma 3.3.

Corollary 3.2 There exist C > 0 such that for all α ∈ [0, 1] ∩ 1
N Z

QN
t (α) ≥ C. (3.14)

We divide the proof of Theorem 3.1 into an analysis of norming constants in an interior region
of [0, 1] and in a boundary region.

10



3.1 Interior estimates

We begin by studying QN
t (α) where α lies in the (left) ‘interior interval’ α ∈ [ 1

N3/4 ,
2
3 ]. It is

then possible to obtain joint (N,α) asymptotics by a complex stationary phase method. The
discussion is essentially the same for the right interior interval [13 , 1 − 1

N3/4 ] and is omitted.

Proposition 3.1 Let α ∈ [ 1
N3/4 ,

2
3 ] and M = Nα. Then there exist uniformly bounded functions

At,k(α) on the interior region, such that

QN
t (α) ∼ 2π

3
2α

( 1
(1−α) + αf ′′t (α))

1
2 (M)

1
2

∞∑
k=0

At,k(α)
Mk

=
2π

3
2

(G′′
t (α))

1
2 (N)

1
2

∞∑
k=0

At,k(α)
Mk

, (3.15)

in the sense that for any R ∈ Z+ there exists CR > 0 such that∣∣∣∣∣∣QN
t (α) − 2π

3
2α

( 1
(1−α) + αf ′′t (α))

1
2 (M)

1
2

R∑
k=0

At,k(α)
Mk

∣∣∣∣∣∣ ≤
CRα

( 1
(1−α) + αf ′′t (α))

1
2 (M)

1
2

M−(R+1). (3.16)

In particular, At,0 = 1.

Corollary 3.3 Let α ∈ [ 1
N3/4 ,

2
3 ] and M = Nα. There is a complete asymptotic expansion for

large M

qN
t (α) ∼ 1

(M(1 + α(1 − α)f ′′t (α)))
1
2

∞∑
k=0

Bt,k(α)
Mk

=
(
G′′

P (α)
G′′

t (α)

) 1
2

∞∑
k=0

Bt,k(α)
Mk

(3.17)

in the sense that for any R ∈ Z+ there exists CR > 0 such that∣∣∣∣∣qN
t (α) − 1

(M(1 + α(1 − α)f ′′t (α)))
1
2

R∑
k=0

Bt,k(α)
Mk

∣∣∣∣∣ ≤ CRM
−(R+1). (3.18)

In particular, Bt,0 = 1 and there exists C > 0 such that

0 <
1
C

≤ qN
t (α) ≤ C. (3.19)

The proof of Proposition 3.1 proceeds by a sequence of Lemmas. The first concerns the phase
Ft,α (3.5).

Lemma 3.4 α is the only critical point of Ft,α(x) and we have

F ′′
t,α(α) = G′′

t (α) > 0, (x− α)F ′
t,α(x) ≥ 0. (3.20)

Proof Differentiating (3.2) shows that F ′
t,α(x) = (x−α)G′′

t (x). The second derivative is readily
obtained and it is positive by Lemma 3.2.

�
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Now we make a substitution of variables. Let y = x−α
α , M = Nα. We then have

QN
t (α) = 2πα

∫ 1
α
−1

−1
e−MFt,α(y)dy (3.21)

with new phase function

Ft,α(y) = 1
αFt,α(α(1 + y)), FP,α(y) = 1

αFP,α(α(1 + y))

Ft,α(y) = −
(
log(1 + y) + 1−α

α log 1−α−αy
1−α + αy2ft,α(α(1 + y))

)
.

(3.22)

Lemma 3.5 The phase has the following properties:

1. Ft,α(y) is strictly decreasing on (−1, 0) and strictly increasing on (0, 1
α − 1) with a unique

critical (minimum) point at y = 0 with Ft,α(0) = 0.

2. If y0 > 0, then infy≥y0 F ′
t,α(y) ≥ C(y0) > 0 where C(y0) is independent of α, t.

3. If y0 < 0, then infy∈[−1,y0] |F ′
t,α(y)| ≥ C(y0) > 0 where C(y0) is independent of α, t.

4. The Hessian of Ft,α of y = 0 is non-degenerate and

F ′′
t,α(0) = αG′′

t (α) =
1

1 − α
+ αf ′′t (α) > 0.

5. Ft,α(y) and all of its derivatives are uniformly bounded for α ∈ [0, 2
3 ] and for y in any

compact set of (−1, 1
α − 1).

Proof Comparing with (3.5) and Lemma 3.4 shows that

F ′
t,α(y) =

1
α

dFt,α(x)
dx

dx

dy
= F ′

t,α(x)

= (x− α)G′′
t (x) = αyG′′

t (α(1 + y)) =
x− α

x
(xG′′

t (x)) =
y

1 + y
(xG′′

t (x))

= − 1
1 + y

+
1 − α

1 − α− αy
+ 2αyft,α(α(1 + y)) + α2y2f ′t,α(α(1 + y))

F ′′
t,α(y) = αF ′′

t,α(x) = αG′′
t (x) + α(x− α)G′′′

t (x) = αG′′
t (α(1 + y)) + α2yG′′′

t (α(1 + y))

=
1

(1 + y)2
+

α(1 − α)
(1 − α− αy)2

+2αft,α(α(1 + y)) + (2αy + 2α2y)f ′t,α(α(1 + y)) + α2y2ft,α(α(1 + y)).

By Lemma 3.2, xG′′
t (x) has a uniform positive lower bound, hence by the formula F ′

t,α(y) =
y

1+y (xG′′
t (x)), F ′

t,α(y) = 0 if and only if y = 0. Also F ′
t,α(y) < 0 on (−1, 0) and F ′

t,α(y) > 0
on (0, 1

α − 1). The same formula implies (2)-(3) since the factor | y
1+y | then has a uniform lower

bound.
Again by Lemma 3.2, G′′

t (α) has poles at 0 and 1, hence αG′′
t (α) is uniformly bounded below

from 0 for α ∈ [0, 2
3 ]. In particular, at the critical point, we have (cf. Lemma 3.4),

F ′′
t,α(0) = αF ′′

t,α(α) =
1

1 − α
+ αf ′′t (α) = αG′′

t (α) > 0.

�
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Lemma 3.6 There exist δ and C > 0 such that∣∣∣∣∣∣1 −
2πα

∫ 1
− 1

2
e−MFt,α(y)dy

QN
t (α)

∣∣∣∣∣∣ ≤
Ce−δM

M
. (3.23)

Proof By Lemma 3.5 (2), there exists Λ > 0 independent of (t, α) such that

Ft,α(y) ≥ Ft,α(1) +
Λ
2

(y − 1), for y ≥ 1. (3.24)

Using also that Ft,α increases on (0, 1
2), we have

∫ 1
α
−1

1
e−MFt,α(y)dy ≤

∫ 1
α
−1

1
e−

Λ
2

M(y−1)−MFt,α(1)dy

≤ 2e−MFt,α(1)

ΛM

≤ 4e−M(Ft,α(1)−Ft,α( 1
2
))

ΛM

∫ 1
2

0
e−MFt,α(y)dy

≤ Ce−δM

2Mα
QN

t (α), where δ := 2 inf
y∈[ 1

2
,1]
F ′

t,α(y).

In the last line we again used Lemma 3.5 (2).
By the same argument, there exists δ > 0 (independent of (t, α) so that

∫ − 1
2

−1
e−MFt,α(y)dy ≤ Ce−δM

2Mα
QN

t (α).

Indeed, by Lemma 3.2 (3), Ft,α is decreasing on (−1, 0) and there exists −Λ < 0 independent of
(t, α) so that

Ft,α(y) ≥ Ft,α(−1
2
) − Λ

2
(y +

1
2
). (3.25)

As above,

∫ − 1
2

−1
e−MFt,α(y)dy ≤ 2e−MFt,α(− 1

2
)

ΛM

≤ 8e−M(Ft,α(− 1
2
)−Ft,α(− 1

4
))

ΛM

∫ − 1
4

− 1
2

e−MFt,α(y)dy

≤ Ce−δM

2Mα
QN

t (α), where δ := 2 inf
y∈[− 1

2
,− 1

4
]
|F ′

t,α(y)|.

The lemma is proved by combining the above inequalities and

∣∣∣∣∣∣1 −
2πα

∫ 1
− 1

2
e−MFt,α(y)dy

QN
t (α)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
2πα

∫ − 1
2−1 e−MFt,α(y)dy + 2πα

∫ 1
α
−1

1 e−MFt,α(y)dy

QN
t (α)

∣∣∣∣∣∣ ≤
Ce−δM

M
.

�
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Proof of Proposition 3.1

We introduce a smooth cut-off function η such that η = 1 on [−1
2 + ε, 1 − ε] for some fixed

ε > 0 (independent of (t,N, α)) and with η = 0 outside (−1
2 , 1) and write

QN
t (α) = IN

t (α) + IIN
t (α), with IN

t (α) = 2πα
∫ 1

− 1
2

e−MFt,α(y)η(y)dy.

By Lemma 3.6, IIN
t ≤ Ce−δM

2Mα QN
t (α), hence QN

t (α)
(
1 +O( e−δM

2Mα )
)

= IN
t (α), and therefore

QN
t (α) = IN

t (α)
(

1 +O(
e−δM

2Mα
)
)
. (3.26)

We now evaluate IN
t (α) asymptotically with respect to the parameter M by the method of

complex stationary phase with non-degenerate complex phase functions (Theorem 7.7.5 in [H]),
with α, t as parameters. Using the evaluation of the Hessian in Lemma 3.5, we obtain∣∣∣∣∣∣IN

t (α) − 2π
3
2α

( 1
(1−α) + αf ′′t (α))

1
2 (M)

1
2

R∑
k=0

At,k(α)
Mk

∣∣∣∣∣∣ ≤
CRα

( 1
(1−α) + αf ′′t (α))

1
2 (M)

1
2

M−(R+1), (3.27)

where the At,k(α) are obtained by applying powers of the inverse Hessian operator

1(
1

(1−α) + αf ′′t (α)
) d2

dy2

to e−MR3(y;t,α) and R3 is the cubic remainder in the Taylor expansion of Ft,α(y) at y = 0. The
inverse Hessian is uniformly bounded above in the interior region, so R3 is uniformly bounded
with uniformly bounded derivatives when α ∈ [0, 2

3 ] and y ∈ [−1
2 + ε, 1 − ε] (cf. Lemma 3.5 (5).

Therefore the stationary phase coefficients and remainder are uniformly bounded in the interior
region.

The Proposition follows by combining the complex stationary phase asymptotics with (3.26).
�

3.2 Boundary estimates

We now give joint asymptotic estimates of norming constants in the boundary zone where 0 <
α ≤ 1

N3/4 . The exclusion of α = 0 is not important since the norming constants also equal 1
there. The main result of this section is:

Proposition 3.2 Assume 0 < α ≤ 1
N3/4 . Then we have

qN
t (α) = 1 +O(N− 1

3 ). (3.28)

The proof of Proposition 3.2 consists of a number of Lemmas.
First we will localize the integral QN

t and QN
P .
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Lemma 3.7 Suppose 0 < α ≤ 1
N3/4 . Then there exists constants δ, C > 0 such that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α
∫ 1

α−1

1

αN2/3

e−αNFt,α(y)dy

QN
t (α)

≤ Ce−δN1/3
,

α
∫ 1

α−1

1

αN2/3

e
−αNFP,α(y)

dy

QN
P (α)

≤ Ce−δN1/3
.

(3.29)

Proof We now localize the integral (3.21) into the subinterval [−1, 1
αN2/3 ] by showing that the

integral over [ 1
αN2/3 ,

1
α − 1] is relatively negligeable. In the boundary region, 1

αN2/3 ≥ N1/12.
As in Lemma 3.6, there exists a uniform positive constant Λ > 0 such that Ft,α(y) ≥

Ft,α( 1
αN2/3 ) + Λ(y − 1

αN2/3 ) on [ 1
αN2/3 ,

1
α − 1] and we obtain

∫ 1
α
−1

1

αN2/3

e−αNFt,α(y)dy ≤ C

αN
e
−αNFt,α( 1

αN2/3
)

≤ C

αN
e−εN1/3

,

using the fact (cf. Lemma 3.5) that Ft,α(y) ≥ ε(y − 1) + Ft,α(1) as y → ∞; here, ε > 0 is a
positive and uniform constant.

To prove that the integral over [ 1
αN2/3 ,

1
α − 1] is relatively negligeable, we give a lower bound

for the integral on the whole interval [−1, 1
α −1]. In fact a very crude lower bound suffices, so we

choose a convenient subinterval. By Lemma 3.5, F ′
t,α(y) is uniformly bounded on any compact

subset of [0, 1
α − 1] when α is the boundary region. Using that Ft,α(y) ≤ Ft,α(1) + C0(y − 1) on

[1, 2] for some C0 > 0, we have

∫ 1
α
−1

−1
e−αNFt,α(y)dy ≥

∫ 2

1
e−αNFt,α(y)dy

≥ e−αNFt,α(1)

∫ 2

1
e−C0αN(y−1)dy

≥ C

αN
e−αNFt,α(1)−C0αN

≥ C

αN
e−C0N1/4

.

Therefore

α
∫ 1

α
−1
1

αN2/3

e−αNFt,α(y)dy

QN
t (α)

≤ Ce−εN1/3+C0N1/4 ≤ Ce−δN1/3

for some δ > 0.
�

3.3 Proof of Proposition 3.2

Proof By definition and the previous lemma, we have
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qN
t (α) =

QN
t (α)

QN
P (α)

=

∫ 1

αN2/3

−1 e−αNFt,α(y)dy∫ 1

αN2/3

−1 e−αNFP,α(y)dy

(1 +O(eN
− 1

3 ))

=

∫ 1

αN2/3

−1 e−αNFP,α(y)+α2Ny2ft,α(α(1+y))dy∫ 1

αN2/3

−1 e−αNFP,α(y)dy

(1 +O(e−N− 1
3 ))

= (1 +O(N− 1
3 )),

where in the last line, we Taylor expand the exponential e−α2Ny2ft,α(α(1+y)) and recall that in
the boundary layer, α2Ny2ft,α(α(1 + y)) = O(N− 1

3 ).
This completes the proof of Proposition 3.2.

When α = 0,

qN
t (0) =

∫ 1
0 e

N log(1−x)−Nx2ft,α(x)dx∫ 1
0 e

N log(1−x)dx
.

Notice that the phase is strictly decreasing on [0, 1], one can apply the similar argument as before
with the substitution y = N2/3x. We leave it as an excercise to show qN

t (0) ∼ 1 as N → ∞.
�

3.4 Completion of proof of Theorem 3.1

It is easy to see in the boundary layer 0 < α ≤ 1
N3/4 ,

det∇2Gt(α)
det∇2GP (α)

=
1

α(1−α) + f ′′t (α)
1

α(1−α)

= 1 +O(α).

Therefore QN
t (α)

QN
P (α)

continuously extends to P .

Consider the interior of P with 1
N3/4 ≤ α ≤ 2

3 . By Corollary 3.3, we have

qN
t (α) =

QN
t (α)

QN
P (α)

=
(

1
1 + f ′′t (α)

) 1
2

+O(
1
αN

) =
det∇2Gt(α)
det∇2GP (α)

+O(
1
αN

) =
det∇2Gt(α)
det∇2GP (α)

+O(
1

N1/4
).

Consider the boundary layer of P with 0 ≤ α ≤ 1
N3/4 . By Lemma 3.2, we have

qN
t (α) =

QN
t (α)

QN
P (α)

= 1 +O(
1

N1/3
) =

det∇2Gt(α)
det∇2GP (α)

+O(
1

N1/3
).

Therefore for any α ∈ P , we have

qN
t (α) =

det∇2Gt(α)
det∇2GP (α)

+O(
1

N1/4
). (3.30)

This proves Theorem 3.1.
�
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4 Proof of the main theorem 1.2

4.1 The C0-convergence

Proposition 4.1 There exists a constant C > 0 such that for any z ∈ CP1

∣∣∣∣ 1
N

log EN (t, z)
∣∣∣∣ ≤ C logN

N
. (4.1)

Proof By Corollary 3.1, there exists a constant C > 0 such that 1
C ≤ RN

t (α) ≤ C for any α ∈ P .
Then

1
C

≤ EN (t, z)
ΠN (t, z)

≤ C.

The proposition is proved by applying the Tian-Yau-Zelditch expansion [Z], which asserts that
there exists a C∞ asymptotic expansion,

ΠN (t, z) = N

(
1 +

a1(t, z)
N

+ · · ·
)
, (4.2)

which may be differentiated any number of times. It obviously implies that∣∣∣∣ 1
N

log EN (t, z)
∣∣∣∣ ≤ C logN

N
.

�

We note that the convergence rate is best possible. The C0 convergence with this rate was
proved for general Kähler manifolds in [B]; a simple proof along the above lines for general toric
Kähler manifolds will appear in [SoZ].

4.2 A localization lemma

To obtain C2 convergence, we have to estimate weighted sums of PN
α (t, z) for α ∈ P ∩ 1

N Z. The
following localization lemma enables to replace the sum of PN

α (t, z) by its partial sum for α in
small neighborhoods of πt(ρ), where ρ = log |z|2. Fix z = eρ/2+iθ ∈ X with x = πt(ρ).

Lemma 4.1 For any δ > 0, there exist 0 < δ1 < δ, 0 < δ2 < δ, ε > 0 and C > 0 such that for
any α and β ∈ [0, 1] ∩ 1

N Z with |α− x| < δ1 and |β − x| ≥ 2δ2, we have

PN
α (t, z)
PN

β (t, z)
≤ Ce−εN . (4.3)

Proof First let’s assume x ∈ (0, 1).

PN
β (t, z)
PN

α (t, z)
=

e−N((x−β)G′
t(x)−(Gt(x)−Gt(β)))

e−N((x−α)G′
t(x)−(Gt(x)−Gt(α)))

QN
t (α)

QN
t (β)

= e−N(Gt(β)−Gt(α)−G′
t(x)(β−α))Q

N
t (α)

QN
t (β)

= e−N(Gt(β)−Gt(α)−G′
t(α)(β−α))+N(G′

t(x)−G′
t(α))(β−α)Q

N
t (α)

QN
t (β)

= e−NG′′
t (γ)(β−α)2+N(G′

t(x)−G′
t(α))(β−α)Q

N
t (α)

QN
t (β)
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for some γ between α and β.
Notice that G′′

t is uniformly bounded below from 0 and G′
t is equicontinuous on [0,1]. There-

fore we can choose δ1 << δ2 so that there exits ε > 0 and

e−NG′′
t (γ)(β−α)2+N(G′

t(x)−G′
t(α))(β−α) ≤ e−2εN .

Also
PN

α (t, z)
PN

β (t, z)
≤ Ce−εN .

When x = 0 or 1, the same estimate can be proved by similar argument as above making use
of the monotonicity of Gt.

�

4.3 The C2-convergence

We now prove the main results giving bounds on two space-time derivatives of ϕN (t, z). The
main ingredients are the bounds of RN

t in Corollary 3.1 and a comparison to derivatives of the
Szegö kernel ΠN (t, z) for the metric φt deriving from Lemma 2.1. By (4.2) it is straightforward
to determine the derivatives of ΠN (t, z).

The following lemma is the consequence of the family version of the Tian-Yau-Zelditch ex-
pansion.

Lemma 4.2 We have the following uniform convergence in the C∞ topology on [0, 1] × CP1

lim
N→∞

1
N

log ΠN (t, z) = 0. (4.4)

Corollary 4.1 All derivatives of 1
N log ΠN (t, z) + ut(z), of order great than zero, are uniformly

bounded on X.

Proof Although ut(z) is not a well-defined function on X, e−ut(z) extends to a hermitian metric
on the line bundle so that, by applying global vector fields, any derivatives of ut(z) are well
defined functions on X and are uniformly bounded.

�

Proposition 4.2

lim
N→∞

∣∣∣∣
∣∣∣∣ 1
N

log EN (t, z)
∣∣∣∣
∣∣∣∣
C2([0,1]×X)

= 0. (4.5)

Proof Fix z ∈ CP1, and put x = πt(z). To prove the C2 convergence of 1
N log EN (t, z) it suffices

by (4.2) to prove C2 convergence for 1
N (log EN (t, z)−log ΠN (t, z)). We use Lemma 2.1 to simplify

the formula for EN (t, z).

Second order convergence in pure space derivatives
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We first consider pure space derivatives. By
∑

α and
∑

α,β , we mean
∑

α∈P∩ 1
N

Z and
∑

α,β∈P∩ 1
N

Z.

If x is in the ‘interior region’ of [0, 1], we may use the coordinates z = eρ/2+iθ, and

1
N

∣∣∣∣ ∂2

∂ρ2
log EN (t, z) − ∂2

∂ρ2
log ΠN (t, z)

∣∣∣∣
= N

∣∣∣∣∣
∑

α,β(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)

2
(∑

α RN
t (α)PN

α (t, z)
)2 −

∑
α,β(α− β)2PN

α (t, z)PN
β (t, z)

2 (
∑

α PN
α (t, z)))2

∣∣∣∣∣
= N

(∑
α,β(α− β)2PN

α (t, z)PN
β (t, z)

2 (
∑

α PN
α (t, z))2

)
∣∣∣∣∣
∑

α,β(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)(∑
α RN

t (α)PN
α (t, z)

)2
(∑

α PN
α (t, z)

)2∑
α,β(α− β)2PN

α (t, z)PN
β (t, z)

− 1

∣∣∣∣∣
≤

∣∣∣∣ 1
N

∂2

∂ρ2
log ΠN (t, z) +

∂2

∂ρ2
ut(z)

∣∣∣∣∣∣∣∣∣
∑

α,β(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)(∑
α RN

t (α)PN
α (t, z)

)2
(∑

α PN
α (t, z)

)2∑
α,β(α− β)2PN

α (t, z)PN
β (t, z)

− 1

∣∣∣∣∣
≤ C

∣∣∣∣∣
∑

α,β(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)∑
α,β(α− β)2PN

α (t, z)PN
β (t, z)

(∑
α PN

t (α, z)
)2(∑

α RN
t (α)PN

α (t, z)
)2 − 1

∣∣∣∣∣
≤ C

∣∣∣∣∣∣∣
∑

α,β∈Bx(δ)(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

β (t, z)∑
α,β∈Bx(δ)(α− β)2PN

α (t, z)PN
β (t, z)

(∑
α∈Bx(δ) PN

t (α, z)
)2

(∑
α∈Bx(δ) RN

t (α)PN
α (t, z)

)2 − 1 +O
(
e−εN

)
∣∣∣∣∣∣∣

≤ C

(
sup

α∈Bx(δ)
RN

t (α) − inf
α∈Bx(δ)

RN
t (α)

)
+O

(
e−εN

)

for some fixed ε > 0, where Bx(δ) = {α ∈ [0, 1] ∩ 1
N Z | |α− x| < δ}.

R∞
t (α) = limN→∞RN

t (α) is continuous on [0, 1] and the convergence is uniform. Therefore
for any ε′ > 0, there exists δ > 0 and sufficiently large N ′ such that for all N ≥ N ′

sup
α∈Bx(δ)

RN
t (α) − inf

α∈Bx(δ)
RN

t (α) ≤ ε′.

In other words, for any ε′ > 0, there exists a sufficiently large N ′ such that for all N ≥ N ′,

1
N

∣∣∣∣ ∂2

∂ρ2
log EN (t, z) − ∂2

∂ρ2
log ΠN (t, z)

∣∣∣∣ < ε′.

If x is close to the boundary of [0, 1], without loss of generality we fix a holomorphic coordinate
system {z} for CP1 near the north pole zN such that z = 0 at zN . Let r = |z|. Then
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1
N

∣∣∣∣ ∂2

∂r2
log EN (t, z) − ∂2

∂r2
log ΠN (t, z)

∣∣∣∣
= N

∣∣∣∣∣∣
∑

α,β>0(α− β)2RN
t (α)RN

t (β)PN
α− 1

N

(t, z)PN
β− 1

N

(t, z)(∑
α RN

t (α)PN
α (t, z)

)2 −
∑

α,β>0(α− β)2PN
α− 1

N

(t, z)PN
β− 1

N

(t, z)

(
∑

α PN
α (t, z))2

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣∣∣

(∑
α,β>0(α− β)2RN

t (α)RN
t (β)PN

α− 1
N

(t, z)PN
β− 1

N

(t, z)
) (∑

α PN
α (t, z)

)2
(∑

α,β>0(α− β)2PN
α− 1

N

(t, z)PN
β− 1

N

(t, z)
)(∑

α RN
t (α)PN

α (t, z)
)2 − 1

∣∣∣∣∣∣∣∣
.

By localizing the summand and similar argument for the interior, we can show that for any
ε′ > 0, there exists a sufficiently large N ′ such that for all N ≥ N ′,

1
N

∣∣∣∣ ∂2

∂r2
log EN (t, z) − ∂2

∂r2
log ΠN (t, z)

∣∣∣∣ < ε′.

Second order convergence in pure time derivatives

We now consider time derivatives. Let Gi(x) = GP (x) + fi(x), for i = 0, 1. Let ft(x) =
(1 − t)f0(x) + tf1(x) and ∂

∂tft(x) = v(x) = f1(x) − f0(x). Also Ut(ρ) = ut(z). By Legendre
transform, Ut(ρ) = xρ−Gt(x) with ρ = G′

t(x) and x = U ′
t(ρ). Calculate

∂

∂t
Ut(ρ) = ẋρ− ∂

∂t
Gt(x) −G′

t(x)ẋ = − ∂

∂t
Gt(x) = −v(x)

and
∂2

∂t2
Ut(ρ) = −v′(x)ẋ = (v′(x))2U ′′

t (ρ) = (v′(x))2
∂2

∂ρ2
ut(z).

Straightforward calculation shows that

1
N

∂

∂t
log EN (t, z) +

∂

∂t
ut(z) =

1
N

∑
α log QN

0 (α)

QN
1 (α)

RN
t (α)PN

α (t, z)∑
α RN

t (α)PN
α (t, z)

=
1
N

∑
α

(
−Nv(α) + log qN

0 (α)

qN
1 (α)

)
RN

t (α)PN
α (t, z)∑

α RN
t (α)PN

α (t, z)

and

1
N

∂2

∂t2
log EN (t, z) +

∂2

∂t2
ut(z)

= N

∑
α,β

(
(v(α) − v(β)) + 1

N log qN
0 (β)qN

1 (α)

qN
0 (α)qN

1 (β)

)2
RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)

2
(∑

α RN
t (α)PN

α (t, z)
)2

= IN
1 (t, z) + IN

2 (t, z) + IN
3 (t, z).
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IN
1 (t, z)

= N

∑
α,β(v(α) − v(β))2RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)

2
(∑

α RN
t (α)PN

α (t, z)
)2

∼ N

∑
α,β∈Bx(δ)(α− β)2

(
v(α)−v(β)

α−β

)2 RN
t (α)RN

t (β)PN
α (t, z)PN

t (β, z)

2
(∑

α RN
t (α)PN

α (t, z)
)2

∼ N(v′(x))2
∑

α,β∈Bx(δ)(α− β)2RN
t (α)RN

t (β)PN
α (t, z)PN

t (β, z)

2
(∑

α RN
t (α)PN

α (t, z)
)2

+N

∑
α,β∈Bx(δ)(α− β)2

((
v(α)−v(β)

α−β

)2 − (v′(x))2
)
RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)

2
(∑

α RN
t (α)PN

α (t, z)
)2

∼
(

(v′(x))2 + sup
α �=β∈Bx(δ)

((
v(α) − v(β)
α− β

)2

− (v′(x))2
))(

1
N

∂2

∂ρ2
log EN (t, z) +

∂2

∂ρ2
ut(z)

)

∼ (v′(x))2
∂2

∂ρ2
ut(z) =

∂2

∂t2
ut(z)

as δ → 0.
Therefore limN→∞ IN

1 (t, z) = ∂2

∂t2
ut(z).

IN
2 (t, z) =

∑
α,β(v(α) − v(β)) log qN

0 (β)qN
1 (α)

qN
0 (α)qN

1 (β)
RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)(∑

α RN
t (α)PN

α (t, z)
)2

∼
∑

α,β∈Bx(δ)(v(α) − v(β)) log qN
0 (β)qN

1 (α)

qN
0 (α)qN

1 (β)
RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)(∑

α RN
t (α)PN

α (t, z)
)2

∼ 0

as δ → 0.
Therefore limN→∞ IN

2 (t, z) = 0.

IN
3 (t, z) =

1
N

∑
α,β

(
log qN

0 (β)qN
1 (α)

qN
0 (α)qN

1 (β)

)2
RN

t (α)RN
t (β)PN

α (t, z)PN
t (β, z)(∑

α RN
t (α)PN

α (t, z)
)2

∼ 0.

Therefore limN→∞ IN
3 (t, z) = 0.

We conclude from the above calculation that

lim
N→∞

∂2

∂t2
log EN (t, z) = 0.

By a similar argument, which we leave to the reader, the mixed space-time derivatives of
log EN (t, z) also uniformly converges to 0. Therefore 1

N log EN (t, z) has bounded second deriva-
tives and 1

N log EN (t, z) converges in C2 to 0. �
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We now conclude the proof of the main result:

Proof of Theorem 1.2

Notice that ϕN (t, ·) − ϕt(·) = 1
N log EN (t, ·). Therefore Theorem 1.2 is proved. �

4.4 Final remarks and questions

We conclude with some questions:

• Limits on the degree of convergence of ϕN (t, z) → ϕ(t, z) are related to the distribution
of complex zeros of the holomorphic extension of EN

t . In the toric case, in the coordinates
x = eρ, EN

t is a positive real polynomial of a real variable. As observed by Lee-Yang in the
context of partition functions of statistical mechanical models, the degree of convergence of
1
N log EN

t to its limit is related to the limit distribution of the complex zeros of EN
t along the

real domain. For a modern study of complex zeros of partition functions with references
to the literature, see [BBCKK]. It would be interesting to study the complex zeros in the
case of toric varieties.

• The formula for EN
t (z) in Lemma 2.1 exhibits this function as the value on the diagonal

of a Toeplitz type operator with multiplier RN
t (α). More precisely, it is the Berezin lower

symbol of the Toeplitz type operator. For background we refer to [STZ2]. The question
whether it is a Toeplitz operator in any standard sense is essentially the same question
as to the existence of asymptotics of EN

t (z) and joint asymptotics of RN
t (α). When this

multiplier is a symbol, the sum has the general form of a Bernstein polynomial in the sense
of [Z2] and admits a complete asymptotic expansion. It would be very helpful if there exists
a more ‘abstract’ approach to this Toeplitz operator by constructing its Toeplitz symbol
instead of its Berezin symbol. The leading order Toeplitz symbol is calculated in Corollary
3.1.
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