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Inverse spectral problem for bounded
analytic plane domains

Let © C R?2 be a bounded, simply connected
analytic plane domain. Let Ap, resp. Apn be
its Laplacian with Dirichlet, resp. Neumann
boundary conditions.

T he well-known question is:

e If the Dirichlet (resp. Neumann) spectra of
two analytic domains €21, 2> are the same,
are the domains isometric?

T he known isospectral, non-isometric plane do-
mains (Gordon-Webb-Wolpert) have corners.



Simply connected analytic domains
with one symmetry

The class Dy j, consists of simply connected
real-analytic plane domains 2 satisfying:

e (i) There exists an isometric involution o of
€2 which ‘reverses’ a non-degenerate bounc-

ing ball orbit v — ~~1;

e (ii) Some standard generic assumptions on
non-degeneracy and multiplicity of lengths
and Poincaré eigenvalues of ~.
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A domain in Dy p,



Statement of results

Let Spec(£2) denote the spectrum of the Lapla-
cian Ao of the domain €2 with Dirichlet bound-
ary conditions.

Theorem 1 Spec: Dy 1, — RY is 1-1.
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0€2 as a pair of local graphs



Wave trace

Proof based on new approach to wave trace:

Let

ER(t,z,y) =Y costhipi(x)pi(y)
j

conditions B.

We assume B is either Dirichlet Bu = ulgg or
Neumann Bu = Jdyulgn boundary conditions.

Its distribution trace is defined by

@)
TrlQEg(t) = /Q E%(t,a:,x)dm = Z COStA;.
j=1



Wave trace expansion

Let v be a non-degenerate billiard trajectory
whose length L~ is isolated and of multiplicity
one in Lsp(S2). Then for t near L~, the trace
of the even part of the wave group has the
singularity expansion

TrlqER(t)
~ R{a(t — Ly +i0)~ ! 4+ a,glog(t — Ly + i0)

+ 592 1 g (t — Ly +i0)¥ log(t — Ly + i0)}.
T he coefficients a~.;, = the wave trace invari-

ants.

vk

We calculate wave trace invariants and deter-
mine domain from them.

Lagrangian parametrix E.



Outline of proof of inverse result

1. Find useful oscillatory integral expression
for wave trace. Apply stationary phase to
obtain wave coefficients.

2. Use Feynman diagrams to sift out terms
with maximum number of derivatives of
boundary defining function in each wave
invariant a.r .

3. Determine domain from these terms. Dedekind
sums play basic role.



Wave trace — Resolvent trace

The wave trace expansion = the asymptotic
expansion of the (regularized resolvent):

k™I k— oo,

) O
TrlqRE,(k+ir) ~ kDI S p_

j=1

Here: p € C3°(Ly —¢, L +¢€) be a cutoff, equal
to one on an interval (Ly—¢€/2, Ly+4¢/2) which
contains no other lengths in Lsp(€2) occur in
its support, and define the smoothed (and lo-
calized) resolvent with a choice of boundary
conditions by

R, (k+ir) = [ p(k—p)(u-+ir) RG(u+ir)dp
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Reduction to the boundary

Define the boundary integral operator:

(1)
N(k+in)f(9) =2 | —Go<k+w 0,0)(a)ds(d),

where Go(\, x,y) is the free Green’'s function
(resolvent kernel).

Proposition 2 Suppose that L~ is the only length
in the support of p. Then,

Jr p(k — XN log det(I + N(\ 4 i7))dA

Y

(ik—7) Ly igmy) .
¢ 2 o[Byj + B 1 1k

Vdet(I-P,)
where B,.; are the Balian-Bloch invariants of
the union of the periodic orbits v of length L~
of the interior and exterior problems.
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T he principal oscillatory integral

By expressing (I + N(A +i7))~! as a a geo-
metric series and simplifying, we find:

Theorem 3 Modulo an error term Ry, (5%~ %k(a;)
depending only on the (25 —2)-jet of curvature

k of 0L2 at the reflection points a; of ~, we
have

TriqRy, (k+ir) ~ To [ gor

ethLt (@1, @2r) 5Ly (1, .., Top))

a?l:(ka L1, LDy ... 7m2’r)daj1 e dmzra
where the sum is over the two orientations of
~, and where the phase is the length functional

L+ of the polygon with endpoints (x1,...,xp)
in the indicated orientation.
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Properties of phase/amplitude

1. The phase has the form

2r—1
L(:Cl? s 75627“) — Zprzl

V@ — 2y 1% + ey (@p) — feprn (2p1))?.
where e, = 1,€ep,411 = —1.
2. In its dependence on the boundary defining
function f, the amplitude a9 has the form
A(k,z,y, f, f)). It admits an expansion,

> kT Ap(),

n=0
where A,, depends only on the first n + 2
derivatives of f, and

Val(k,z1,...,79.)|s—0 = O.
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Stationary phase and Feynman di-
agrams

Zp, = /na(az)eiks(x)da:.
Then:

0 50 Iy(I
Zk ~ 2720 2-V=0 Z(F,K)EQV,I bg((r))

where:

e Gy = labelled graphs (I, £) with V' closed
vertices of valency > 3, one open vertex
(corresponding to the amplitude), and with
I edges and label ¢

e S(I"') = order of symmetry of I;

e and I,(I") denotes the ‘Feynman amplitude’
associated to (I, 7).
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Euler characteristic expansion

We note that the power of £ in a given term
with V vertices and I edges equals k™ Xr’, where
xrr = V — I equals the Euler characteristic of
the graph I’ defined to be I minus the open
vertex. We thus have;

2 DI DY %

7=0 Fxrr=3
We note that there are only finitely many graphs

for each x because the valency condition forces
I >3/2V. Thus, V < 25,1 < 3j.
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Application to wave trace

Our objective in diagrammatic language:

e \We wish to enumerate the diagrams of each
Euler characteristic whose amplitudes con-
tain themaximum number of derivatives
of 02 among diagrams of the same Euler
characteristic.

T)).
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Wave invariants at a bouncing ball
orbit of a Z>-symmetric domain

Theorem 4 Suppose that ~ (as above) is in-
variant under an isometric involution o. Then,
modulo the error term Ro,.(527=2f(0)), we have:

B’yr,j—l —

= r{2(h31)7 D (0) + {231 55 bsars

+(h3HI72 520 (hp1)3113)(0) £ 21D (0)}}.

Here, hP1 are the matrix elements of the inverse
Hessian H2_T1 of the length function (phase) at
the critical point ~.
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Feynman diagram I

2‘70( x=4j—1,V=1,1=73), j loops at one

closed vertex. All labels the same. Form of
Feynman amplitude: (hpp)JD(QJ) = (h]f)jf(zj)(O)
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Figures

() 1G5 77 CGajri(—x=j—-LV=21=
j+1):

2j—1,3,0 . _
(’U) : g2;7]+],- ’ C 92,j+1(—x — ] — ]_,V ) 27] o
j+1):
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Inverse spectral problem

We now return to the wave invariant formulae

B,yr’j_]_ —

= r{2(h3})7 F(21)(0) + {2(h5;) 5 cés a/2

+(h31I2 520 (h31)31 13 (0) 2=V (0)}}.

and try to determine the domain from them.
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Can we decouple the terms? e

recall that the key issue is to decouple the two
terms of { 2

1

h34)7 £33 (0) 4 2(h3} Y 5 5 cos a/2

and

2r
+(h3H772 3 (W33 3 (0) 21 (0)
1

q:

We must show they have different behavior in
the iterate number r=1,2,3,....

We need to study Hessian sums.

21



Sums of powers of hP4?

It is easy to calculate the sum of the matrix ele-
ments in the first row [H5]; = (11, ... p1(27)
(or column) of the inverse.

Proposition 5 Suppose that v is a Z»>-symmetric

bouncing ball orbit. Then, for anyp, Y51 hP1 =

1
24-cosa/2°

This result is ‘disappointing’ in that the sum
IS constant in r, and hence does not help to
decouple even and odd derivatives of f as one

lets r — oo.
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Sums of powers of (hP?)3

We now consider sums Zgrzl(hpqﬁ of cubic
powers. The sum is constant in p, so we put

2r
Fa(r,cosa/2) = Y (ho))3
q=1

and show that F'(r,cosa/2) is non-constant in
r for all but a finite number of angles «. Our
first calculation is based on the circulant ap-
proach.

Proposition 6 In the elliptic case, we have:
_ 1 2r—1
F3(r,cosa/2) = Wzkl,/@:O

1
(cosa/24-cos leﬁ)(cos a/2—|—cos )(cos a/24-cos M).

In the hyperbolic case, we obtain a similar re-
sult with cos replaced by cosh.
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Dedekind sums

For each r, the sum F3(r,z) is a generalized
Dedekind sum, i.e. the sum

F3(r,z) = Y 13(¢,2)
CEDy
of a function over the set D», of rth roots of
unity ™mod 27Z2 with k = (kq,k2) € [0,2r —
1] x [0,2r — 1] of the torus. The summand is

I3(x; z) = [(z + cos2nxq)(z + cos2nmxy)

(2 + cos2m(zy +22))] 1,

which is a continuous periodic function of (x1,x5) €
[0,1] x [0,1] for =z ¢ [—1,1].
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Proof of inverse result

It suffices to decouple the terms

2(h3)2{(fPD(0) + 55 esaral P (O F27D(0)},

1 -
{2201 (ha1)33£3(0) £2-1)(0).
We use the simple observation:
Lemma 7 If F3(r,cosa/2) = Zg”“zl(hégﬁ is non-

constant inr =1,2,3,... then both terms can

be determined from their sum as r ranges over
N.
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