Feynman diagrams in inverse spectral theory

Steve Zelditch

Department of Mathematics

Johns Hopkins University

Atlanta AMS: Saturday, Jan. 8, 10: 00

Inverse spectral problem for bounded analytic plane domains

Let $\Omega \subset \mathbb{R}^2$ be a bounded, simply connected analytic plane domain. Let Δ_D , resp. Δ_N be its Laplacian with Dirichlet, resp. Neumann boundary conditions.

The well-known question is:

• If the Dirichlet (resp. Neumann) spectra of two analytic domains Ω_1, Ω_2 are the same, are the domains isometric?

The known isospectral, non-isometric plane domains (Gordon-Webb-Wolpert) have corners.

Simply connected analytic domains with one symmetry

The class $\mathcal{D}_{1,L}$ consists of simply connected real-analytic plane domains Ω satisfying:

- (i) There exists an isometric involution σ of Ω which 'reverses' a non-degenerate bouncing ball orbit $\gamma \to \gamma^{-1}$;
- (ii) Some standard generic assumptions on non-degeneracy and multiplicity of lengths and Poincaré eigenvalues of γ .

Figure 1

A domain in $\mathcal{D}_{1,L}$

Statement of results

Let $\operatorname{Spec}(\Omega)$ denote the spectrum of the Laplacian Δ_{Ω} of the domain Ω with Dirichlet boundary conditions.

Theorem 1 Spec: $\mathcal{D}_{1,L}\mapsto \mathbb{R}_+^{\mathbf{N}}$ is 1-1.

Figure 2

 $\partial\Omega$ as a pair of local graphs

Wave trace

Proof based on new approach to wave trace:

Let

$$E_B^{\Omega}(t, x, y) = \sum_j \cos t \lambda_j \varphi_j(x) \varphi_j(y)$$

conditions B.

We assume B is either Dirichlet $Bu=u|_{\partial\Omega}$ or Neumann $Bu=\partial_{\nu}u|_{\partial\Omega}$ boundary conditions.

Its distribution trace is defined by

$$Tr1_{\Omega}E_B^{\Omega}(t) := \int_{\Omega} E_B^{\Omega}(t, x, x) dx = \sum_{j=1}^{\infty} \cos t\lambda_j.$$

Wave trace expansion

Let γ be a non-degenerate billiard trajectory whose length L_{γ} is isolated and of multiplicity one in $Lsp(\Omega)$. Then for t near L_{γ} , the trace of the even part of the wave group has the singularity expansion

$$Tr1_{\Omega}E_{B}^{\Omega}(t)$$

$$\sim \Re\{a_{\gamma}(t-L_{\gamma}+i0)^{-1}+a_{\gamma 0}\log(t-L_{\gamma}+i0)\}$$

$$+\sum_{k=1}^{\infty} a_{\gamma k} (t - L_{\gamma} + i0)^k \log(t - L_{\gamma} + i0)$$
.

The coefficients $a_{\gamma k}=$ the wave trace invariants.

We calculate wave trace invariants and determine domain from them.

Lagrangian parametrix \hat{E} .

Outline of proof of inverse result

- 1. Find useful oscillatory integral expression for wave trace. Apply stationary phase to obtain wave coefficients.
- 2. Use Feynman diagrams to sift out terms with maximum number of derivatives of boundary defining function in each wave invariant $a_{\gamma^r,k}$.
- 3. Determine domain from these terms. Dedekind sums play basic role.

Wave trace → Resolvent trace

The wave trace expansion = the asymptotic expansion of the (regularized resolvent):

$$Tr1_{\Omega}R_{B\rho}^{\Omega}(k+i\tau) \sim e^{(ik-\tau)L_{\gamma}} \sum_{j=1}^{\infty} B_{\gamma,j}k^{-j}, \quad k \to \infty.$$

Here: $\hat{\rho} \in C_0^\infty(L_\gamma - \epsilon, L_\gamma + \epsilon)$ be a cutoff, equal to one on an interval $(L_\gamma - \epsilon/2, L_\gamma + \epsilon/2)$ which contains no other lengths in Lsp(Ω) occur in its support, and define the smoothed (and localized) resolvent with a choice of boundary conditions by

$$R_{B\rho}^{\Omega}(k+i\tau) := \int_{\mathbb{R}} \rho(k-\mu)(\mu+i\tau) R_B^{\Omega}(\mu+i\tau) d\mu.$$

Reduction to the boundary

Define the boundary integral operator:

(1)

$$N(k+i\tau)f(q) = 2\int_{\partial\Omega} \frac{\partial}{\partial\nu_y} G_0(k+i\tau, q, q')f(q')ds(q'),$$

where $G_0(\lambda, x, y)$ is the free Green's function (resolvent kernel).

Proposition **2** Suppose that L_{γ} is the only length in the support of $\hat{\rho}$. Then,

$$\int_{\mathbb{R}} \rho(k-\lambda) \frac{d}{d\lambda} \log \det(I+N(\lambda+i\tau)) d\lambda$$

$$\sim \frac{e^{(ik-\tau)L\gamma}e^{i\frac{\pi}{4}m\gamma}}{\sqrt{\det(I-P_{\gamma})}} \sum_{j=0}^{\infty} [B_{\gamma,j} + B_{\gamma^{-1},j}]k^{-j},$$

where $B_{\gamma;j}$ are the Balian-Bloch invariants of the union of the periodic orbits γ of length L_{γ} of the interior and exterior problems.

The principal oscillatory integral

By expressing $(I + N(\lambda + i\tau))^{-1}$ as a geometric series and simplifying, we find:

Theorem **3** Modulo an error term $R_{2r}(j^{2j-2}\kappa(a_j))$ depending only on the (2j-2)-jet of curvature κ of $\partial\Omega$ at the reflection points a_j of γ , we have

$$Tr1_{\Omega}R_{B\rho}^{\Omega}(k+i\tau) \sim \sum_{\pm} \int_{[-\epsilon,\epsilon]^{2r}} e^{ik\mathcal{L}_{\pm}(x_1,\dots,x_{2r})} \widehat{\rho}(\mathcal{L}_{\pm}(x_1,\dots,x_{2r}))$$
$$a_{\pm}^{0}(k,x_1,x_2,\dots,x_{2r}) dx_1 \cdots dx_{2r},$$

where the sum is over the two orientations of γ , and where the phase is the length functional \mathcal{L}_{\pm} of the polygon with endpoints (x_1, \ldots, x_{2r}) in the indicated orientation.

Properties of phase/amplitude

1. The phase has the form

$$\mathcal{L}(x_1, \dots, x_{2r}) = \sum_{p=1}^{2r-1}$$

$$\sqrt{(x_p - x_{p+1})^2 + (f_{\epsilon_p}(x_p) - f_{\epsilon_{p+1}}(x_{p+1}))^2},$$

where $\epsilon_{2p} = 1, \epsilon_{2p+1} = -1.$

2. In its dependence on the boundary defining function f, the amplitude a_{\pm}^{0} has the form $\mathcal{A}(k,x,y,f,f')$. It admits an expansion,

$$\sum_{n=0}^{\infty} k^{-n} \mathcal{A}_n(x),$$

where \mathcal{A}_n depends only on the first n+2 derivatives of f_σ and

$$\nabla a_{\pm}^{0}(k, x_{1}, \dots, x_{2r})|_{x=0} = 0.$$

Stationary phase and Feynman diagrams

$$Z_k = \int_{\mathbb{R}^n} a(x)e^{ikS(x)}dx.$$

Then:

$$Z_k \sim \sum_{I=0}^{\infty} \sum_{V=0}^{\infty} \sum_{(\Gamma,\ell) \in \mathcal{G}_{V,I}} \frac{I_{\ell}(\Gamma)}{S(\Gamma)}$$

where:

- $\mathcal{G}_{V,I}=$ labelled graphs (Γ,ℓ) with V closed vertices of valency \geq 3, one open vertex (corresponding to the amplitude), and with I edges and label ℓ
- $S(\Gamma)$ = order of symmetry of Γ ;
- and $I_{\ell}(\Gamma)$ denotes the 'Feynman amplitude' associated to (Γ, ℓ) .

Euler characteristic expansion

We note that the power of k in a given term with V vertices and I edges equals $k^{-\chi_{\Gamma'}}$, where $\chi_{\Gamma'} = V - I$ equals the Euler characteristic of the graph Γ' defined to be Γ minus the open vertex. We thus have;

$$Z_k^{h\ell} = \sum_{j=0}^{\infty} k^{-j} \{ \sum_{\Gamma: \chi_{\Gamma'} = j} \frac{I(\Gamma)}{S(\Gamma)} \}.$$

We note that there are only finitely many graphs for each χ because the valency condition forces $I \geq 3/2V$. Thus, $V \leq 2j, I \leq 3j$.

Application to wave trace

Our objective in diagrammatic language:

• We wish to enumerate the diagrams of each Euler characteristic whose amplitudes contain the maximum number of derivatives of $\partial\Omega$ among diagrams of the same Euler characteristic. τ)).

Wave invariants at a bouncing ball orbit of a \mathbb{Z}_2 -symmetric domain

Theorem **4** Suppose that γ (as above) is invariant under an isometric involution σ . Then, modulo the error term $R_{2r}(j^{2j-2}f(0))$, we have:

$$B_{\gamma^r,j-1} \equiv$$

$$\equiv r\{2(h_{2r}^{11})^j f^{(2j)}(0) + \{2(h_{2r}^{11})^j \frac{1}{2-2\cos\alpha/2} + (h_{2r}^{11})^{j-2} \sum_{q=1}^{2r} (h_{2r}^{1q})^3\} f^{(3)}(0) f^{(2j-1)}(0)\}\}.$$

Here, h^{pq} are the matrix elements of the inverse Hessian H_{2r}^{-1} of the length function (phase) at the critical point γ .

Feynman diagram I

 $\mathcal{G}_{1,j}^{2j,0}(-\chi=j-1,V=1,I=j),\ j$ loops at one closed vertex. All labels the same. Form of Feynman amplitude: $(h_+^{pp})^jD_{xp}^{(2j)}\mathcal{L}_+\equiv (h_+^{pp})^jf^{(2j)}(0)$

Figures

$$(iv): \mathcal{G}_{2,j+1}^{2j-1,3,0} \subset \mathcal{G}_{2,j+1}(-\chi = j-1; V = 2, I = j+1):$$

$$(v): \mathcal{G}_{2,j+1}^{2j-1,3,0} \subset \mathcal{G}_{2,j+1}(-\chi = j-1; V = 2, I = j+1):$$

Inverse spectral problem

We now return to the wave invariant formulae

$$B_{\gamma^r,j-1} \equiv$$

$$\equiv r\{2(h_{2r}^{11})^j f^{(2j)}(0) + \{2(h_{2r}^{11})^j \frac{1}{2-2\cos\alpha/2} + (h_{2r}^{11})^{j-2} \sum_{q=1}^{2r} (h_{2r}^{1q})^3\} f^{(3)}(0) f^{(2j-1)}(0)\}\}.$$

and try to determine the domain from them.

Can we decouple the terms? We recall that the key issue is to decouple the two terms of { 2

$$(h_{2r}^{11})^j f^{(2j)}(0) + 2(h_{2r}^{11})^j \frac{1}{2 - 2\cos\alpha/2}$$

and

$$+(h_{2r}^{11})^{j-2}\sum_{q=1}^{2r}(h_{2r}^{1q})^3f^{(3)}(0)f^{(2j-1)}(0)$$

We must show they have different behavior in the iterate number $r = 1, 2, 3, \ldots$

We need to study Hessian sums.

Sums of powers of h^{pq}

It is easy to calculate the sum of the matrix elements in the first row $[H_{2r}^{-1}]_1 = (h^{11}, \dots, h^{1(2r)})$ (or column) of the inverse.

Proposition **5** Suppose that γ is a \mathbb{Z}_2 -symmetric bouncing ball orbit. Then, for any p, $\sum_{q=1}^{2r} h^{pq} = \frac{1}{2+\cos\alpha/2}$.

This result is 'disappointing' in that the sum is constant in r, and hence does not help to decouple even and odd derivatives of f as one lets $r \to \infty$.

Sums of powers of $(h^{pq})^3$

We now consider sums $\sum_{q=1}^{2r} (h^{pq})^3$ of cubic powers. The sum is constant in p, so we put

$$F_3(r,\cos\alpha/2) = \sum_{q=1}^{2r} (h_{2r}^{1q})^3$$

and show that $F(r, \cos \alpha/2)$ is non-constant in r for all but a finite number of angles α . Our first calculation is based on the circulant approach.

Proposition 6 In the elliptic case, we have:

$$F_3(r,\cos\alpha/2) = \frac{1}{(2r)^2} \sum_{k_1,k_2=0}^{2r-1}$$

$$\frac{1}{(\cos\alpha/2+\cos\frac{k_1\pi}{r})(\cos\alpha/2+\cos\frac{k_2\pi}{r})(\cos\alpha/2+\cos\frac{(k_1+k_2)\pi}{r})}.$$

In the hyperbolic case, we obtain a similar result with cos replaced by cosh.

Dedekind sums

For each r, the sum $F_3(r,z)$ is a generalized Dedekind sum, i.e. the sum

$$F_3(r,z) = \sum_{\zeta \in D_r} I_3(\zeta,z)$$

of a function over the set D_{2r} of rth roots of unity $\frac{\pi k}{r} \text{mod } 2\pi \mathbb{Z}^2$ with $k = (k_1, k_2) \in [0, 2r - 1] \times [0, 2r - 1]$ of the torus. The summand is

$$I_3(x;z) = [(z + \cos 2\pi x_1)(z + \cos 2\pi x_2)]$$

$$(z + \cos 2\pi(x_1 + x_2))]^{-1}$$

which is a continuous periodic function of $(x_1, x_2) \in [0, 1] \times [0, 1]$ for $z \notin [-1, 1]$.

Proof of inverse result

It suffices to decouple the terms

$$2(h_{2r}^{11})^{2} \{ f^{(2j)}(0) + \frac{1}{2-2\cos\alpha/2} f^{(3)}(0) f^{(2j-1)}(0) \},$$
$$\{ \sum_{q=1}^{2r} (h_{2r}^{1q})^{3} \} f^{(3)}(0) f^{(2j-1)}(0).$$

We use the simple observation:

Lemma **7** If $F_3(r, \cos \alpha/2) = \sum_{q=1}^{2r} (h_{2r}^{1q})^3$ is non-constant in r = 1, 2, 3, ... then both terms can be determined from their sum as r ranges over N.