
Complex zeros of real analytic

ergodic Laplace eigenfunctions

Kuranishi Conference, Columbia University

Friday 11: 30, May 6, 2005

Steve Zelditch

Department of Mathematics

Johns Hopkins University

1



Purpose of talk

Consider the eigenvalue problem

∆ϕj = λ2
j ϕj, 〈ϕj, ϕk〉 = δjk

for Laplacians on Riemannian manifolds (M, g)

satisfying:

• (M, g) is real analytic;

• Its geodesic flow Gt : S∗
gM → S∗

gM is er-

godic.

Problem How are nodal hypersurfaces distributed

in the limit λj → ∞.?
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Real versus complex nodal hyper-
surfaces

One would like to know about the real nodal

hypersurfaces (zero sets of eigenfunctions):

Zϕj = {x ∈M : ϕj(x) = 0}.
These are hard. Our results will be about:

complex nodal hypersurfaces

Z
ϕC
j

= {ζ ∈ B∗M : ϕC
j (ζ) = 0},

where ϕC
j is the analytic continuation of ϕj to

the ball bundle B∗M for the natural complex

structure adapted to g. (Definitions to come).
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Distribution of nodal hypersurfaces

Distribution of zeros is determined by the cur-

rent of integration over the nodal hypersurface

(1) 〈[Z̃ϕj], f〉 =
∫
Zϕj

f(x)dHn−1,

where dHn−1 is the (n−1)-dimensional (Hauss-

dorf) surface measure on the nodal hypersur-

face induced by the Riemannian metric of (M, g).

Problem: How does 〈[Z̃ϕj], f〉 behave as λj →
∞.
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Volumes of nodal hypersurfaces

Even for f ≡ 1 this is too hard. The best result

to date on volumes of nodal hypersurfaces on

analytic Riemannian manifolds is:

Theorem 1 (Donnelly-Fefferman, Inv. Math.

1988) Suppose that (M, g) is real analytic. Then

c1λ ≤ Hn−1(Zϕλ) ≤ C2λ.

(Note that our λ is the square root of the ∆-

eigenvalue.)
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Complex zeros

BUT: the distribution of zeros becomes more

tractable if we analytically continue ϕj to the

complexification MC of M and study complex

zeros.

Definitions later. To state our main result, we

identify MC with the metric (co-)ball bundle

B∗
εM with its adapted complex structure:

Definition: (Lempert-Szoke; Guillemin-Stenzel)

The adapted complex structure on B∗M is uniquely

characterized by the fact that the maps (t, τ) ∈
C+ → B∗M,

(t, τ) → τ γ̇(t), t ∈ R, τ ∈ R
+

are holomorphic curves for any geodesic γ.
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Main result

Theorem 2 Assume (M, g) is real analytic and

that the geodesic flow of (M, g) is ergodic.

Then

1

λj
Z
ϕC
λj

→ ∂∂|ξ|g, weakly in B∗
gM.

Both sides are viewed as (1,1) currents: dual

to (m−1,m−1) forms. Here, ∂ is the Cauchy-

Riemann operator for the complex structure

on the unit ball bundle with respect to the

complex structure adapted to g. Also, |ξ|2g =∑
i,j g

ijξiξj is the length-squared of a (co-)vector.
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Ergodicity

The geodesic flow is the Hamiltonian flow

Gt : T ∗M − 0 → T ∗M − 0

of the metric norm function |ξg|.

Gt preserves the unit cosphere bundle S∗
gM =

{|ξ|g = 1} and all level sets of H.

Ergodic geodesic flow ⇐⇒ Gt is ergodic on

S∗M with respect to Liouville measure α∧ωm−1

where α = ξ · dx and ω = dα.

Ergodic means that invariant sets have mea-

sure 0 or 1. Only invariant L2 functions are

constants. Time average of a function = space

average.
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Limit distribution of zeros is singu-
lar along zero section

• The Kaehler structure on the cotangent

bundle is ∂∂|ξ|2g . But the limit current is

∂∂|ξ|g. The latter is singular along M =

{ξ = 0} and the associated volume form is

not the symplectic one.

• The reason for the singularity is that the

zero set is invariant under the involution

σ : T ∗M → T ∗M , (x, ξ) → (x,−ξ), since the

eigenfunction is real valued on M . The

fixed point set of σ is M and is also where

zeros concentrate. By pushing this further

one might be able to prove the conjecture

on real zeros.
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Simplest case: S1

The zeros of sin 2πkz in the cylinder C/Z all lie

on the real axis at the points z = n
2k. Thus,

there are 2k real zeros. The limit zero distri-

bution is:

limk→∞ i
2πk∂∂̄ log | sin 2πk|2 = limk→∞ 1

k

∑2k
n=1 δ n2k

= 1
πδ0(ξ)dx ∧ dξ.

On the other hand,

i
π∂∂̄|ξ| = i

π
d2

4dξ2
|ξ| 2

i dx ∧ dξ

= i
π

1
2 δ0(ξ)

2
i dx ∧ dξ.
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Related work

The following prove related results for zeros of

holomorphic eigensections of positive line bun-

dles over compact Kähler manifold. Eigensec-

tions = eigensection of an ergodic quantum

map.

1. B. Shiffman and S. Zelditch, Distribution of

zeros of random and quantum chaotic sections

of positive line bundles. Comm. Math. Phys.

200 (1999)

2. S. Nonnenmacher and A. Voros, Chaotic

eigenfunctions in phase space. J. Statist. Phys.

92 (1998), no. 3-4, 431–518.
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Outline of proof

• Use holomorphic continuation of wave ker-

nel (or Poisson kernel) at imaginary times

to B∗M to analytically continue eigenfunc-

tions ϕλ → ϕC
λ .

• Study Uλ(z) ∈ C∞(B∗
εM) defined by:

Uλ(z) :=
ϕC
λ(z)

||ϕC
λ ||L2(∂B∗

τM)

, z ∈ ∂B∗
τM

The normalizing factor means: if z ∈ the

cosphere bundle ∂B∗
τM , then divide by the

L2-norm of ϕC
λ restricted to ∂B∗

τM.
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Step I: Ergodicity of complexified
eigenfunctions

The first step is to prove quantum ergodicity

of the complexified eigenfunctions:

Theorem 3 Assume the geodesic flow of (M, g)

is ergodic. Then

|Uλ|2 =
|ϕελ(z)|2

||ϕελ||2L2(∂B∗
εM)

→ 1, weakly in L1(B∗
εM),

along a density one subsquence of j.

This is the analogue of what can be proved for

the real eigenfunctions (Shnirelman, SZ, Colin

de Verdiere).
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Weak to strong

Lemma 4 We have: 1
λj

log |Uj|2 → 0 in L1(B∗
εM).

This is the key input from complex analysis.

It uses that log |Uj|2 is QPSH = quasi pluri

subharmonic.

(A QPSH function ψ is one which may be lo-

cally written as the sum of a plurisubharmonic

function and a smooth function, or equiva-

lently i∂∂̄ψ is locally bounded below by a neg-

ative smooth (1,1) form.)

Corollary 5 1
λj
∂∂̄ log |Uj|2 → 0, weakly in D′(B∗

εM).
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Zeros

Combine

1

λj
∂∂̄ log |Uj|2 → 0, weakly in D′(M1)

with Poincare- Lelong:

[Z̃j] = ∂∂̄ log |ϕ̃C
j |2.

We get

1

λj
∂∂̄ log |ϕ̃C

j |2 ∼ 1

λj
∂∂̄ log ||ϕ̃C

j ||2∂Mε
.

Thus: to find asymptotics of [Z̃j] we need

asymptotics of log |ϕ̃C
j |2.
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Complex FIOs and norm asymptotics

The final step is to prove:

Lemma 6

1

λ
log ||ϕC

λ ||L2(∂B∗
τM) ∼ τ.

To prove this we need to study the complexi-

fied wave group as a complex Fourier integral

operator. We now give details of proofs.
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Bruhat-Whitney complexification

Theorem 7 (Bruhat-Whitney, 1959) Let M

be a real analytic manifold of real dimension n.

Then there exists a complex manifold MC of

complex dimension n and a real analytic em-

bedding M →MC such that M is a totally real

submanifold of MC. The germ of MC is unique.

Totally real means: Let Jp : TCMC → TCMC de-

note the complex structure on the (complex-

ified) tangent bundle of MC. Then JpTpM ∩
TpM = {0}. I.e. TpM contains to complex sub-

spaces.
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Examples: Spheres and tori

BH complexifications of spheres and tori can

be identified with their full cotangent spaces:

1. Sn It is defined by x21 + · · · + x2n+1 = 1 in

Rn+1. Its BH complexification is the complex

quadric

S2
C

= {(z1, . . . , zn) ∈ C
n+1 : z21+· · ·+z2n+1 = 1}.

If we write zj = xj+ iξj, the equations become

|x|2 − |ξ|1 = 1, 〈x, ξ〉 = 0.

2. Tn = Rn/Zn The BH complexification is

Cn/Zn = Tn × Rn ≡ T ∗M.
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Metric notions and notations

Now equip M with a real analytic Riemannian

metric g. Let

• π : T ∗M →M =natural projection;

• exp : T ∗
xM → M, expx ξ = π ◦ Gt(x, ξ) =

exponential map;

• r(x, y) = Riemannian distance between points

(well-defined near the diagonal).
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Complexified exponential map
and complex structure on the cotan-
gent bundle

Consider the complexified exponential map

expC : B∗
εM →MC, (x, ξ) → expx(

√−1ξ).

Then:

• ∃ε0 : ∀ε < ε0, expx
√−1ξ is a real analytic

diffeo to its image.

• Equip B∗
ε0

with the complex structure,

Jg = exp∗
C
J0

where J0 is the complex structure on MC.
Jg is the unique complex structure on B∗

ε0
for which expC is a bi-holomorophic map
to MC.
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Adapted complex structure and ra-
dius of Grauert tube

The complex structure Jg on B∗
ε0
M is called

the adapted complex structure to g and the

maximal ε0 is called the radius of the Grauert

tube. They can be characterized by:

• The metric function ρ(x, ξ) = |ξ|2g is pluri-

subharmonic, i.e. ∂∂ρ is a positive (1,1)

form.

• The maps ιx,ξ : C
+
ε0 → B∗

ε0
M ,

ιx,ξ(t, τ) = τGt(x, ξ)

are holomorphic curves. Here, C
+
ε = {t+

itau ∈ C : 0 < τ < ε0}.
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Wave kernel

By the wave kernel of (M, g) we mean the ker-

nel

E(t, x, y) =
∞∑
j=0

eitλjϕj(x)ϕj(y)

of eit
√

∆.

As observed by Boutet de Monvel, the wave

kernel at imaginary times admits a holomorphic

extension to B∗
εM ×M as

E(iε, ζ, y) =
∞∑
j=0

e−ελjϕCj(ζ)ϕj(y), (ζ, y) ∈ B∗
εM×M.
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Analytic continuation of the wave
kernel

Boutet de Monvel observed:

Theorem 8 E(iε, z, y) : L2(M) → H2(∂Mε) is

a complex Fourier integral operator of order

−m−1
4 associated to the canonical relation

Γ = {(y, η, expy(iε)η/|η|)} ⊂ T ∗M × Σε.

Moreover,

E(iε) : H−m−1
4 (M) → H2(∂B∗

εM)

is an isomorphism.
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Euclidean case

On Rn:

E(t, x, y) =
∫
Rn
eit|ξ|ei〈ξ,x−y〉dξ.

Its analytic continuation to t+ iτ, ζ = x+ ip is

given by

E(t+ iτ, x+ ip, y) =
∫
Rn
ei(t+iτ)|ξ|ei〈ξ,x+ip−y〉dξ,

which converges absolutely for |p| < τ.

General analytic Riemannian manifold:

(2)

E(t, x, y) =
∫
T ∗
yM

eit|ξ|gyei〈ξ,exp
−1
y (x)〉A(t, x, y, ξ)dξ

where |ξ|gx is the metric norm function at x,

and where A(t, x, y, ξ) is a polyhomogeneous

amplitude of order 1.
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Analytic continuation of eigenfunc-
tions

The holomorphic extension of ϕλ is obtained by

applying a complex Fourier integral operator:

(3) E(iτ)ϕλ = e−τλϕC
λ .

This implies connections between the geodesic

flow and the growth rate and zeros of ϕC
λ .

Corollary 9 Each eigenfunction ϕλ has a unique

holomorphic extensions to Mε satisfying

sup
m∈Mε

|ϕC
λ(m)| ≤ Cελ

m+1eελ.

In particular, eigenfunctions extend holomor-

phically to the maximal Grauert tube in the

adapted complex structure.
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Normalized complexified eigenfunc-
tions

Recall:

(4)⎧⎪⎨
⎪⎩
ϕελ = ϕC

λ |∂B∗
ε (M) ∈ H2(∂Mε),

Uλ(z) ∈ C∞(B∗
εM) :=

ϕC
λ(z)

||ϕελ||L2(∂Mε)
, z ∈ ∂Mε.

Uλ is CR holomorphic along each sphere bun-

dle in the ball bundle. However, the normaliz-

ing factor ||ϕελ||−1
L2(∂Mε)

depends on ε, so Uλ /∈
O(Mε). But log |Uλ(z)|2 is quasi-plurisubharmonic

(QPSH) = sum of PSH function and a smooth

function.
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Step I: Ergodicity of complexified
eigenfunctions

Theorem 10 Assume the geodesic flow of (M, g)

is ergodic. Then

|Uλ|2 =
|ϕελ(z)|2

||ϕελ||2L2(∂B∗
εM)

→ 1, weakly in L1(B∗
εM)

along a density one subsquence of j.

This can be reduced to ergodicity of eigenfunc-

tions on M :

1

N(λ)

∑
j:λj≤λ

|〈Aϕj, ϕj〉 − ω(A)|2 → 0

where ω(A) =
∫
S∗M σAdµL.
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A picture proof of QE

Let ρj(A) = 〈Aϕj, ϕj〉. These are invariant

states = linear functionals on A which are in-

variant under conjugation by eit
√

∆. The set E
of nvariant states is a compact convex set.

Local Weyl law: 1
N(λ)

∑
j:λj≤λ ρj → ω(A).

Ergodicity: ω(A) is an extreme point of E.

Cannot be a convex function of ρj, or even

limit of such, unless ρj → ω (almost all j).
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From QE to zeros

Basic fact on PSH and QPSH functions:

Let {vj} be a sequence of subharmonic (or

QPSH) functions in an open set X ⊂ Rn which

have a uniform upper bound on any compact

set. Then either vj → −∞ uniformly on every

compact set, or else there exists a subsequence

vjk which is convergent in L1
loc(X). The hy-

potheses are satisfied in our example:

i) the functions 1
λj

log |Uj|2 are uniformly bounded

above on B∗
εM ;

ii) lim supj→∞ 1
λj

log |Uj|2 ≤ 0.
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From QE to zeros

{ 1
λj

log |Uj|2} do not tend uniformly to −∞ on

compact sets. Inconsistent with QE. So

1

λj
∂∂̄ log |Uj|2 → 0, weakly in D′(M1).

Recall that by Poincare- Lelong:

[Z̃j] = ∂∂̄ log |ϕ̃C
j |2.

Since

∂∂̄ log |Uj|2 = ∂∂̄ log |ϕ̃C
j |2 − ∂∂̄ log ||ϕ̃C

j ||2∂Mε
,

we find asymptotics of [Z̃j] from asymptotics

of log |ϕ̃C
j |2.
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Step III: norm asymptotics

The final step is to prove:

Lemma 11

1

λ
log ||ϕC

√
ρ

λ ||L2(∂M√
ρ)

∼ |ξ|g.

This is a new feature. The analogue for pos-

itive line bundles is the hermitian metric, but

now the norm depends on the eigenfunction.
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Idea of norm estimate

||ϕC
λ ||2L2(∂B∗

εM)
equals e2ελj times

〈E(iε)ϕλ,E(iε)ϕλ〉 = 〈E(iε)∗ΠεE(iε)ϕλ, ϕλ〉.
Here, Πε : L2(∂B∗

εM) → H2(∂B∗
εM) is the Szego

kernel.

But E(iε)∗ΠεE(iε) is a pseudodifferential oper-

ator of order n−1
2 . Its symbol |ξ|−n−1

2 doesn’t

contribute to the logarithm.
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Summing up

Thus, 1
λj

log |Uj|2 → 0 in L1(B∗
εM). Hence,

1

λj
∂∂̄ log |Uj|2 → 0, weakly in D′(B∗

εM).

Since

∂∂̄ log |Uj|2 = ∂∂̄ log |ϕ̃C
j |2 − ∂∂̄ log ||ϕ̃C

j ||2∂Mε
,

we have:

1
λj
∂∂̄ log |ϕ̃C

j |2 ∼ 1
λj
∂∂̄ log ||ϕ̃C

j ||2∂Mε

→ ∂∂̄|ξ|g.
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Final Remarks

• We can study ergodicity further by using
the holomorphic curves (t + iτ) ∈ C+ →
τGt(x, ξ) for some (x, ξ). ϕC

λ pulls back to
a holomorphic function on C+. Its real
zeros are discrete, = intersections of the
geodesic with the nodal hypersurface and
should be uniformly distributed. This is so
in the Grauert tube. Since they concen-
trate on the real axis, it should be so on
M .

• Same results should hold on bounded do-
mains with piecewise analytic boundaries
and for boundary traces. The zeros of
boundary traces should be uniformly dis-
tributed on the boundary.
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Conjecture on real nodal hypersur-
face: ergodic case

Conjecture 12 Let (M, g) be a real analytic

Riemannian manifold with ergodic geodesic flow,

and let {ϕj} be the density one sequence of er-

godic eigenfunctions. Then,

〈[Z̃ϕj], f〉 ∼ { 1

V ol(M, g)

∫
M
fdV olg}λ.

At this time of writing, even the asymptotics

of the area (even in dimension two) has not

been proved.
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Kaehler metrics and positive (1,1)
forms

∂∂ρ is a positive (1,1) form means:

[
∂2ρ

∂zj∂z̄k

]
j,k

>> 0.

Thus, ρ is a Kaehler potential, i.e.

∑
j,k

∂2ρ

∂zj∂z̄k
dzj ⊗ dz̄k

is a Kaehler metric ω on B∗
ε0
M . On the zero

section, it restricts to g.
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Examples: Sphere

The distance function of Sn of constant cur-
vature 1 is given by:

r(x, y) = 2 sin−1 |x− y|
2

= 2sin−1(
1

2

√
(x− y)2.

The analytic continuation to Sn
C
× Sn

C
is the

doubly-branched holomorphic function:

rC(z, w) = 2 sin−1 1

2

√
(z − w)2.

The geodesic flow is:

Gt(x, ξ) = (cos tx+ sin tξ,− sin tx+ cos tξ)

so the exponential map is

expxξ = (cos |ξ|)x+ (sin |ξ|)ξ,
which complexifies to

expC,x

√−1ξ = (cosh |ξ|)x+
√−1(sinh |ξ|) ξ|ξ|.
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Examples: Sphere

The pluri-subharmonic function ρ = rC(z, z̄)

equals

rC(z, z̄) = 2 sin−1±√−1|�z|) = ±√−1cosh−1 |z|2.
It is define on Sn

C
. It pulls back under the com-

plexified exponential map to

exp∗
C
ρ(x, ξ) = cosh−1 |(cosh |ξ|)x+

√−1(sinh |ξ|) ξ|ξ
= cosh−1{(cosh |ξ|)2 − (sinh |ξ|)2}
= cosh−1 cosh2|ξ| = 2|ξ|.
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Examples: Torus

Here, r(x, y) = |x−y| and rC(z, w) =
√

(z − w)2.

Then ρ(z, z̄) =
√

(z − z̄)2 = |�z| = |ξ|.

The complexified exponential map is:

expCx(iξ) = x+ iξ.
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Examples: Hyperbolic space

In this case, the BH complexification only fills

out a ball bundle of T ∗M :

3. Hn The hyperboloid model of hyperbolic

space is the hypersurface in Rn+1 defined by

Hn = {x21 + · · ·x2n − x2n+1 = −1, xn > 0}.
Then,

Hn
C

= {(z1, . . . , zn+1) ∈ C
n+1 : z21+· · · z2n−z2n+1 = −1}

In real coordinates zj = xj + iξj, this is:

〈x, x〉L − 〈ξ, ξ〉L = −1, 〈x, ξ〉L = 0

where 〈, 〉L is the Lorentz inner product of sig-

nature (n,1).
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