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Abstract. Let Mn be a compact n-dimensional manifold and ω
be a symplectic or volume form on Mn. Let φ be a C1 diffeomor-
phism on Mn that preserves ω and let p be a hyperbolic periodic
point of φ. We show that generically p has a homoclinic point, and
moreover, the homoclinic points of p is dense on both stable man-
ifold and unstable manifold of p. Takens [11] obtained the same
result for n = 2.

1. Introduction and statement of main results

Let Mn be an n-dimensional compact manifold with a symplectic or
volume structure. Recall that a volume structure is a non-degenerate
differential n-form ω on Mn and a symplectic structure is a differential
two-form ω such that ω∧. . .∧ω (n/2 times) is a non-degenerate volume
form. A symplectic manifold is always even dimensional. We consider
diffeomorphisms of Mn that preserve the differential form ω. A diffeo-
morphism that preserves symplectic (resp. volume) form ω is called a
symplectic (resp. volume-preserving) diffeomorphism. Symplectic dif-
feomorphism arises naturally as time-one map and the Poincaré map
of Hamiltonian systems.

Let Diffrω(Mn) denote the set of Cr diffeomorphisms that preserve
ω, with uniform Cr topology. Let φ ∈ Diffrω(Mn) , then φ∗(ω) = ω.
Let p be a point in Mn, p is said to be a periodic point of φ with pe-
riod k if φk(p) = p. Periodic points with period one are called fixed
points. A periodic point p with period k is said to be hyperbolic if
d(φk)|Tp(Mn) : Tp(Mn) → Tp(Mn) has no eigenvalue in the unit cir-
cle. For any hyperbolic periodic point p, there exist a stable manifold ,
denoted by W s

φ(p) and an unstable manifold , denoted by W u
φ (p). A

homoclinic point of p with respect to φ is an intersection of W u
φ (p)

and W s
φ(p), which differs from p. i.e., q is a homoclinic point of p if

q ∈ W s
φ(p)

⋂
W s
φ(p)\{p}. q is a transversal homoclinic point of p with

respect to φ if Tq(M) = Tq(W s
φ(p))⊕ Tq(W u

φ (p)).
We state our main results.
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Theorem 1. Let Mn be a compact n-dimensional manifold with a
symplectic or volume form ω. Let φ : Mn → Mn be a diffeomor-
phism of class C1 that preserves ω. In other words, φ ∈ Diff1

ω(Mn) .
Let p ∈ Mn be a hyperbolic periodic point of φ. Then for any given
q ∈W u

φ (p) (or W u
φ (p)) and neighborhoods U of q in Mn and V of φ in

Diff1
ω(Mn) , there is a φ′ ∈ V such that:

1. p is a hyperbolic periodic point of φ′,
2. p has a homoclinic point with respect to φ′ in U .

Recall that a subset B ⊂ Diffrω(Mn) is residual if it contains a
countable intersection of open dense sets. Residual sets are dense and
countable intersection of residual sets is again residual. Properties
which are true for a residual set are called generic.

According to Robinson’s theorems [9], the homoclinic point we ob-
tained above can be assumed to be transversal. Since transversal ho-
moclinic points persist under small perturbations, a standard argument
yields the following results:

Theorem 2. Let Mn be a compact n-dimensional manifold with a
symplectic or volume form ω. Then there is a residual subset B ⊂
Diff1

ω(Mn) such that if φ ∈ B and p ∈Mn are such that p is a hyper-
bolic periodic point of φ, then W s

φ(p)
⋂
W u
φ (p) is dense in both W s

φ(p)
and W u

φ (p).

Homoclinic point has played an important role in dynamical system
and Hamiltonian dynamics and it goes back to last century. Poincaré
discovered the homoclinic phenomenon and its associated chaotic dy-
namics in his study of the restricted three body problem in celestial
mechanics [5]. Poincaré suspected that transverse homoclinic points
occured generically in the Hamiltonian systems and conjectured that
they would be everywhere dense in both stable and unstable manifolds.
Our result positively answers Poincaré’s question in C1 topology on any
compact manifold.

Our results above are generalizations of Takens’s results for compact
surfaces [11]. Takens showed that if Mn is a compact surface (n = 2),
then generically transverse homoclinic points are dense in both stable
and unstable manifolds, in C1 topology. For manifolds with dimension
larger than two, Takens’s method gives generic existence of transverse
homoclinic point for any hyperbolic periodic point. However, his proof
fails to produce the density result.

Unlike Takens’s proof for the compact surfaces, the proof of our main
theorems uses very little the volume-preserving property and thus can
be applied to more general cases. In fact, our proof is very much
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similar in flavor to a connecting lemma recently announced by Hayashi
[1]. In fact, we borrowed Hayashi’s idea of cutting pieces of an orbit
so that the resulting connecting orbit can bypass the bad portions of
the orbit. Since the details of Hayashi’s work is not available to us,
here we present a different and easier construction and we apply it to
symplectic and volume preserving diffeomorphisms.

The basic idea is to improve the closing lemma (Pugh [6], Pugh &
Robinson [8]) so that one can connect the stable manifold and the un-
stable manifold to obtain homoclinic or heteroclinic points. The basic
difficulty in connecting or closing orbits for a C1 diffeomorphism is
the intervention of intermediate points in the orbits. Here we adopt
a selection process that successively eliminates all the interventions.
Combining our selection process with Pugh’s closing lemma (especially
the part on sequence of linear isomorphisms of Rn), one can obtain var-
ious type of C1 connecting lemma. In particular, it positively answers
almost all questions raised by Pugh [7] on compact manifolds. As a
simple example, we state the following simple connecting lemma.

Theorem 3. Let Mn be an n-dimensional manifold (not neccessarily
compact). Let φ : Mn → Mn be a C1 diffeomorphism of Mn. Let
p ∈Mn be a hyperbolic periodic point of φ. If

q ∈ closure
(
W s
φ(p)

)⋂
W u
φ (p)\{p}

or
q ∈ closure

(
W u
φ (p)

)⋂
W s
φ(p)\{p},

then for any C1 neighborhood U of φ in Diff1(Mn) and a neighborhood
V of q in Mn, there exists ψ ∈ U such that the orbit of p under φ is
not in the support of (ψ − φ) (thus p is a hyperbolic periodic point for
ψ), and p has a homoclinic point in V .

This is one of the basic results annouced by Hayashi [1].
To end this section, we would like to mention two related results on

generic existence of homoclinic points in Cr topology. Using an idea
from Robinson [10], Pixton [4] showed that Cr generically for any r ≥ 1,
any hyperbolic periodic point on S2 has a homoclinic point. Oliveira
[3] extended Pixton’s result to two-torus T 2, again for Cr topology. So
far, there are no density results in Cr topology.

2. A perturbation lemma and recurrent points

In this section, we prove a known perturbation lemma (cf. [2], [9],
[11]).
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Let d be a metric on Mn induced from some Riemann structure and
let Bδ(x) denote the set of y ∈Mn with d(x, y) < δ. We also let B̄δ(x)
denote the closure of Bδ(x).

Lemma 1. (perturbation lemma) Let Mn be an n-dimensional com-
pact manifold. Fix φ ∈ Diffrω(Mn) , r ≥ 1. There exist constants
ε0 > 0 and c > 0, depending on φ, such that for any x ∈Mn, and any
ψ ∈ Diffrω(Mn) such that ‖φ − ψ‖Cr < ε0, and any positive numbers
0 < δ ≤ ε0, 0 < ε ≤ ε0, the following facts hold.

if d(y, x) < cδrε, then there is a ψ1 ∈ Diffrω(Mn) , ‖ψ1 −
ψ‖Cr < ε such that ψ1ψ

−1(x) = y, ψ1(z) = ψ(z) for all
z /∈ ψ−1(Bδ(x)), and ψ−1(z) = ψ−1

1 (z) for all z /∈ Bδ(x).

Proof : We first introduce the generating functions. Generating func-
tion provides a very convenient tool in the study of symplectic diffeo-
morphisms.

Let (u, v) = (u1, . . . , uk, v1, . . . , vk) be coordinates on R
2k , ω =∑n

i=1 dui ∧ dvi. Let f(u, v) = (ξ(u, v), η(u, v)) be a Cr diffeomor-
phism, preserving ω, defined on a simply connected neighborhood V
of the origin. Thus

∑k
i=1 dui ∧ dvi =

∑k
i=1 dξi ∧ dηi. Let (ξ0, η0) =

f(0, 0), we may assume that ∂η
∂v

(u, v) is non-singular at each point
of V . This implies that we can solve from η = η(u, v) to obtain
v = v(u, η) and thus (u1, . . . , uk, η1, . . . , ηk) defines new Cr coordi-
nates on a small neighborhood of (0, η0). Since f is symplectic, the
1-form α =

∑k
i=1(ξidηi + vidui) is closed, so there is a Cr+1 real valued

function S = S(u, η), unique up to a constant, defined for (u, η) near
(0, η0) such that dS = α =

∑k
i=1(ξidηi+vidui). S is called a generating

function and it satisfies ∂S
∂ηi

= ξi, ∂S
∂ui

= vi and ∂2S
∂u∂η

is non-singular for
each (u, η) near (0, η0) in the domain of S.

Conversely, let S(u, η) be a Cr+1 function, defined for (u, η) in a
small neighborhood of (0, η0), such that ∂2S

∂u∂η
is non-singular for each

(u, η), then setting ξi(u, η) = ∂S
∂ηi

(u, η) and vi(u, η) = ∂S
∂ui

(u, η), we may
solve for η in terms of (u, v) and obtain a symplectic diffeomorphism
(u, v)→ (ξ(u, v), η(u, v)).

We proceed to prove the perturbation lemma. Since all the pertur-
bations we do are local, we will use local coordinates.

Let λ : R → [0, 1] be a C∞ real function so that λ(z) = 1 for z ≤ 1/2
and λ(z) = 0 for z ≥ 1, and let β = supz∈R{1, |λ′(z)|, . . . , |λ(r+1)(z)|}.
The function S1(u, η) = (u1 +µ)η1 +

∑k
i=2 uiηi is a generating function

for the translation (u1, . . . , uk, v1, . . . , vk)→ (u1+µ, u2, . . . , uk, v1, . . . , vk),
while the function S0(u, η) =

∑k
i=1 uiηi is a generating function for the

identity map id.
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For δ > 0 small, let

S(u, η) = λ

(
|(u, η)|
δ

)
S1(u, η) +

[
1− λ

(
|(u, η)|
δ

)]
S0(u, η).

Then S(u, η) is a C∞ function and S(u, η) = S1(u, η) for |(u, η)| ≤ δ/2,
and S(u, η) = S0(u, η) for |(u, η)| ≥ δ. A direct computation shows
that ‖S−S0‖r+1 ≤ βc̄µδ−r, where c̄ is a constant depending only on k
and r.

Let h∗(u, η) be a diffeomorphism of R2k defined by h∗(u, η) = (∂S
∂u

(u, η), ∂S
∂η

(u, η)),
then we have ‖h∗ − id‖Cr ≤ βc̄µδ−r. For µ small, one can solve for
η from vi = ∂S

∂ui
(u, η) to obtain η = η(u, v). Let h(u, v) be the sym-

plectic diffeomorphism of R2k defined by h(u, v) = h∗(u, η(u, v)). Then
there exists a constant c̃ such that ‖h− id‖Cr ≤ βc̄c̃µδ−r. Note that if
µ < ε(βc̄c̃)−1δr for any ε > 0, then ‖h− id‖Cr < ε.

To summarize, we have proved the following fact: For any compact
manifold, there are δ0 > 0 and c0 > 0 such that for any point x ∈Mn,
any 0 < δ ≤ δ0 and any y ∈ Mn with d(x, y) ≤ c0δ

rε, then there is
a symplectic diffeomorphism h ∈ Diffrω(Mn) with support(h) ⊂ Bδ(x)
and ‖h− id‖Cr < ε such that h(x) = y.

To finish the proof of the lemma, we just need to compose a given
map ψ with h to obtain ψ1 = hψ. To obtain ‖ψ − ψ1‖Cr < ε for all ψ,
we need ‖ψ − φ‖Cr ≤ ε0 for some ε0 > 0. Since h is also volume pre-
serving, the proof works for volume-preserving diffeomorphisms when
the dimension Mn is even. When n is odd, we take the identity map
in one direction perpendicular to y − x (in local coordinates) and use
h in the remaining directions.

This proves the lemma. 2

Now we use the perturbation lemma to prove the following result:

Lemma 2. Let φ ∈ Diffrω(Mn) and let p ∈Mn be a hyperbolic periodic
points of period k, with respect to φ. For any ε > 0, any q ∈W u

φ (p) and
any neighborhood U of q, there exist a φ′ ∈ Diffrω(Mn) , ‖φ−φ′‖Cr < ε
such that

1. Support(φ−φ′) ⊂ U and hence, p is a hyperbolic periodic point of
period k for φ′,

2. q ∈W u
φ′(p),

3. q is a recurrent point under φ′.

Recall that a point q ∈ Mn is a recurrent point under φ′ if there
exists a sequence of positive integers {ni}∞i=1, ni → ∞ as i → ∞ such
that (φ′)ni(q)→ q as i→∞.
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Proof : Let ε > 0 be given. For any q ∈ W u
φ (p) and U ⊂ Mn, a small

neighborhood of q, choose δ1 small so that Bδ1(q) ⊂ U . Consider the
small ball B1 = Bcδr1ε1

(q), where c is given by the perturbation lemma
and 0 < ε1 ≤ ε/2. Since φ preserves the volume and Mn is compact,
there exists a positive integer j1 such that φj1(B1)

⋂
Bδ1(q) 6= ∅ and

φi(B1)
⋂
Bδ1(q) = ∅ for all i = 1, 2, . . . , j1− 1. This implies that there

exists a point q1 ∈ Bδ1(q) such that φj1(q1) ∈ Bδ1(q) and φi(q1) /∈
Bδ1(q), for all i = 1, 2, . . . , j1 − 1. Now we apply the perturbation
lemma to obtain φ1 ∈ Diffrω(Mn) with ‖φ1 − φ‖Cr < ε1 ≤ ε/2 and
Support(φ − φ1) ⊂ Bδ1(q) such that φ1(q) = φ(q1). Thus (φ1)j1(q) ∈
Bδ1(q).

Now, since (φ1)j1(q) 6= q, we may choose 0 < δ2 < δ1/2 so that
(φ1)j(q) /∈ Bδ2(q). Let B2 = Bcδr2ε2

(q), where 0 < ε2 ≤ ε/4. We choose
δ2 and ε2 so small such that for all φ′ ∈ Diffrω(Mn) , with ‖φ′−φ‖Cr ≤
ε2, and any point x ∈ B2, we have (φ′)j1(x) ∈ Bδ1(q)\Bδ2(q) and
(φ′)i(x) /∈ Bδ1(q) for all i = 1, 2 . . . , j1 − 1.

With the same argument, we see that there is a point q2 ∈ B2 and
an integer j2 > j1 such that (φ1)j2(q2) ∈ Bδ2(q) and (φ1)i(q2) /∈ Bδ2(q),
for all i = 1, 2, . . . , j2 − 1. Again we apply the perturbation lemma to
obtain φ2 ∈ Diffrω(Mn) with ‖φ1−φ2‖Cr < ε2 ≤ ε/4 and Support(φ2−
φ1) ∈ Bδ2(q) such that φ2(q) = φ1(q2). Observe that (φ2)j1(q) ∈ Bδ1(q)
and (φ2)j2(q) ∈ Bδ2(q).

Continue the above process, we obtain a sequence of real positive
numbers δ1, δ2, . . . , a sequence of integers 0 < j1 < j2 < . . . , and
a sequence of functions φ1, φ2, . . . ,∈ Diffrω(Mn) such that (φi)jk ∈
Bδk(q) for all k = 1, 2, . . . , i.

Let φ′ = limi→∞ φi ∈ Diffrω(Mn) , then ‖φ′ − φ‖Cr < ε and q is a
recurrent point of φ′.

This proves the lemma. 2

3. Boxes and sequence of perturbations

In this section, we are concerned with linear maps and its perturba-
tions on R

n . Let ω be the standard symplectic form or volume form
on R

n and let f ∈ Diff1
ω(Rn) be a linear map of the form

f(x1, x2, . . . , xn) = (λ1x1, λ2x2, . . . , λnxn)

with all λi’s real, |λi| 6= 1, i = 1, 2, . . . , n.
For any set of positive numbers a1 > 0, a2 > 0, . . . , an > 0, let

x = (x1, x2, . . . , xn) ∈ R
n , we define the following rectangular box

with size (a1, a2, . . . , an):

Dx(a1, a2, . . . , an) = {(y1, y2, . . . , yn) ∈ Rn | |xi − yi| ≤ ai}
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and for any α > 0, we define

αDx(a1, a2, . . . , an) = {(y1, y2, . . . , yn) ∈ Rn | |xi − yi| ≤ αai}
We have the following lemma.

Lemma 3. Let ε > 0, R > 0, τ ≥ 1 and 0 < α < 1 be given (ε
and (1 − α) will be in general very small). Then there exist an inte-
ger N and an n-tuple (a1, a2, . . . , an) of positive numbers, depending
only on λ1, λ2, . . . , λn, ε, τ and α, such that for any rectangular box
Dx∗(ξ1, ξ2, . . . , ξn) with

(ξi/ai)/(ξj/aj) ≤ τ

for all i, j = 1, 2, . . . , n;
N−1⋃
i=0

f i(Dx∗(ξ1, ξ2, . . . , ξn)) ⊂ BR(O)

and
Dx∗(ξ1, ξ2, . . . , ξn)

⋂
f(Dx∗(ξ1, ξ2, . . . , ξn)) = ∅,

and any two points x1, x2 ∈ αDx∗(ξ1, ξ2, . . . , ξn), there is a g ∈ Diff1
ω(Rn)

such that
1. ‖f − g‖C1 < ε,
2. support(f − g) ⊂

⋃N−1
i=0 f i(Dx∗(ξ1, ξ2, . . . , ξn)),

3. gN(x2) = fN(x1).

Proof : Without loss of generality, we assume that

|λ1| > |λ2| > . . . > |λn|.
We need some estimates on the distance from f i(αDx∗(ξ1, ξ2, . . . , ξn))

to the boundary of f i(Dx∗ (ξ1, ξ2, . . . , ξn)). It is easy to see that

f i(Dx∗(ξ1, ξ2, . . . , ξn)) = Df i(x∗)(|λ1|iξ1, |λ2|iξ2, . . . , |λn|iξn).

If |λj|iξj ≤ |λl|iξl for all l = 1, 2, . . . , n, then

d(x, f i(Dx∗(ξ1, ξ2, . . . , ξn)) ≥ (1− α)|λj|iξj
for all x ∈ f i(αDx∗(ξ1, ξ2, . . . , ξn)).

Let x1 = (x1
1, x

1
2, . . . , x

1
n) and x2 = (x2

1, x
2
2, . . . , x

2
n). We divide our

perturbation process into n steps. The first step, which takes N1 it-
erates of f , we do the perturbations that push x2 towards x1 in x1
direction (i.e., in the direction of e1 = (1, 0, . . . , 0)). In the second
step, we perturb f to push x2 towards x1 in x2 direction. The second
step takes N2 − N1 iterates of f . Then the third step takes N3 − N2

and we push x2 in x3 direction and so on. The total number of steps
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we need is N = Nn, which, as we shall see later, depends only on ε, α,
τ and λ1, λ2, . . . , λn.

However, due to the distorsion of the rectangular Dx∗ (ξ1, ξ2, . . . , ξn)
from the standard Dx∗ (a1, a2, . . . , an), in between any two steps, we
also need some transitional iterates Nt without doing any pushes. The
transition is needed to correct the distorsion.

We now begin to choose the n-tuple (a1, a2, . . . , an). In order to reach
optimal effect for each perturbation, the choice of (a1, a2, . . . , an) is so
that when we do perturbations in xi direction, under the jth iterate
of f , we require that the shortest distance between the set f j(αD)
and the boundary of f j(D) is reached in xi direction, where D =
Dx∗(ξ1, ξ2, . . . , ξn). In other words, we need the following *-condition,

∗ |λi|jξi ≤ |λl|jξl for all Ni−1 +Nt ≤ j < Ni and l = 1, 2, . . . , n.

First, we calculate the number of pushes we need in each direction.
For a moment, let’s assume that the *-condition is satisfied. Then
the number of perturbations needed to push a point from one side
of the inner box to the opposite side along xi direction, by ε small
C1 perturbations, is α

(1−α)cε . Where c is given by the perturbation
lemma. We point out that the perturbation lemma can be applied to
the compact subset the closure of BR(O) ⊂ R

n .
We fix a positive integer

N1 >
α

(1− α)cε
.

Now choose a1 > 0 small so that
⋃N
i=0 f

i(D) ⊂ BM(O). As the first
step, we need to find f1 ∈ diff1

ω(Rn) such that fN1
1 (x2

1, x
2
2, . . . , x

2
n) =

fN1(x1
1, x

2
2, . . . , x

2
n). For this, it suffices to have ai ≥ |λ1/λi|N1a1 for all

2 ≤ i ≤ n. This implies the *-condition for the first N1 iterates of f .
Let Nt be a positive integer such that

|λi/λi+1|Nt > τ for all i = 1, . . . , n− 1.

We now choose a2 such that

|λ1/λ2|N1+Nt−1a1 ≤ a2 ≤ |λ1/λ2|N1+Nta1.

Now, starting from N1 + Nt’th iterate of f1, we do another N1 pushes
and this time in x2 direction. We find an f2 ∈ diff1

ω(Rn) such that
fN2

2 (x2
1, x

2
2, . . . , x

2
n) = fN2(x1

1, x
1
2, x

2
3 . . . , x

2
n). Where N2 = N1+Nt+N1.

In this step, we need ai ≥ |λ2/λi|N2a2 for all 3 ≤ i ≤ n.
We repeat the above process. Suppose that a1, a2, . . . , ai, i < n, are

chosen. Let Ni = Ni−1 +Nt +N1, we then choose ai+1 to be a positive
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real number such that

|λi/λi+1|Ni+Nt−1ai ≤ ai+1 ≤ |λi/λi+1|Ni+Ntai.
For n-tuple positive real numbers (a1, a2, . . . , an) thus chosen, we see
that

|λi|jai|
λi
λi+1
|Nt ≤ |λl|jal

for all Ni−1 + Nt ≤ j < Ni and for all l 6= i. This implies that the
*-condition is satisfied for the n-tuple (a1, a2, . . . , an) and we can carry
out the perturbation procedure. The lemma is proved for the boxes
Dx∗(a1, a2, . . . , an).

To complete the proof of our lemma, we only need to note that
for any (ξ1, ξ2, . . . , ξn), with (ai/ξi)/(aj/ξj) ≤ τ , by the selection of
(a1, a2, . . . , an) and the choice of Nt, the *-condition is satisfied.

This proves the lemma. 2

We remark that in the proof of the above lemma, one can relax the
*-condition a little and replace it by

|λi|jξi ≤ τ |λl|jξl for all Ni−1 +Nt ≤ j < Ni and l = 1, 2, . . . , n.

In this way, one need to increase Ni by making smaller pushes in each
step. The advantage is that one does not need the intermediate steps
Nt. This is useful when one has multiple or complex eigenvalues for a
linear map f .

The above lemma can be generalized to non-linear maps in a small
neighborhood of a hyperbolic fixed points. According to Robinson [9],
for a generic diffeomorphism, all fixed points have simple eigenvalues.

Lemma 4. Let f : Rn → R
n be a symplectic or volume-preserving

diffeomorphism of class C1. Suppose that the origin O is a hyperbolic
fixed point of f with all eigenvalues simple. Further assume that f is
of the form f(x) = Ax + o(‖x‖), where the matrix A is in Jordan
canonical form. Then for any ε > 0, τ > 0 and 0 < α < 1, there exists
δ > 0 such that if restricted to the domain U = {x ∈ Rn | ‖x‖ < δ},
i.e., if

⋃N
i=0 f

i(Dx∗(ξ1, ξ2, . . . , ξn)) ⊂ U , then the conclusions of Lemma
3 remain true.

Proof : The proof of this lemma basicly follows from the proof of Lemma
3. Since N is a pre-determined number, the effect of higher order term
o(‖x‖), within N iterates of f , can be safely neglected. The only
modification we need is to consider the case with complex eigenvalues.
It turns out that one just needs to consider each of the complex pairs
simultaneously in the perturbation sequence. The proof is similar to
the case with all eigenvalues real. We omit the details. 2
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Another way to obtain a lemma similar to Lemma 4 is to do a small
perturbation so that f is a linear function in a small neighborhood
Bδ(O) of the origin and f remains the same outside of B2δ(O). In
order for the perturbation to be symplectic, one may use the generating
functions in the perturbation. The volume preserving case can be dealt
in a similar way.

4. A selection procedure

In this section, we introduce a selection process that chooses appro-
priate points for the final perturbation. The idea is to successively
eliminate all the intermediate interventions so that one can join two
end points of a finite segment of an orbit, by a small C1 perturbation.

Let x0, x1, . . . , xm be a finite sequence of points on Mn, for some
positive integer m. Since our discussions of this section will be re-
stricted to a small neighborhood of x0, without loss of generality, we
may assume that our manifold is Rn . Let d be the standard Euclidean
metric on R

n , we assume that d(xi, x0) > d(x1, x0), for all i > 1. In
other words, x1 is the closest point to x0 in the sequence.

Let α1, 1/2 < α1 < 1, be a positive number depending only on the
dimension of Mn such that√

4n− 1
4n

< α1 < 1

α1 will be fixed throughout the paper.
Let x0 = (x0

1, x
0
2, . . . , x

0
n) and x1 = (x1

1, x
1
2, . . . , x

1
n). Let i∗, 1 ≤ i∗ ≤

n be an integer such that |x0
i∗ − x1

i∗ | ≥ |x0
i − x1

i | for all i = 1, 2, . . . , n.
Obviously |x0

i∗ − x1
i∗ | ≥ d(x0, x1)/

√
n.

Let x̄0 = (x0 + x1)/2 and let

x̄0
± = x̄0 ± (x1

i∗ − x0
i∗)

4
ei∗ ,

where ei∗ is the i∗th unit coordinate vector. A simple calculation shows
that d(x0, x̄0

−) < α1d(x0, x1) and d(x1, x̄0
+) < α1d(x0, x1). Moreover,

the two balls centered at x̄0
± with radius α1d(x0, x1)/2 cover a rectan-

gular region (with all sides parellel to cordinate planes) containing x0

and x1. This fact will be used later.
We have the following lemma.

Lemma 5. (selection lemma) Let {xi}mi=0 be a finite sequence such that
d(xi, x0) > d(x1, x0) for all i > 1. Then there exists a finite subsequence
{xni}2j∗+1

i=0 , for some positive integer j∗ such that
1. n0 = 0 and n1 = 1. i.e., x0 and x1 are the first two points in

subsequence.
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2. d(x0, xni) ≤ d(x0,x1)
1−α1

, where α1 is the constant defined above.
3. For each pair xn2j , xn2j+1 , define x̄i, x̄i+ and x̄i− in the same way

as x̄0, x̄0
+ and x̄0

− are defined above. If n2j+1 < i < n2j+2 for some
j = 0, 1, . . . , j∗, then

xi /∈
j∗⋃
j=0

(
B̄α1d(x

n2j ,xn2j+1 )/2(x̄j+) ∪ B̄α1d(x
n2j ,xn2j+1 )/2(x̄j−)

)
.

Proof: For a given finite sequence {xi}mi=0, choose the first pair of points
of the subsequence to be x0 and x1.

We proceed to choose the next pair of points. Consider the closed
ball B̄α1d(x0,x1)/2(x̄0

+), we choose n2 > 0 to be the smallest integer such
that xn2 ∈ B̄α1d(x0,x1)/2(x̄0

+) and we choose n3 > 0 to be the largest
integer such that xn3 ∈ B̄α1d(x0,x1)/2(x̄0

+). n2 and n3 are the same if
B̄α1d(x0,x1)/2(x̄0

+) contains only one point of the original sequence besides
x1. If this happens, we stop the selection process. If B̄α1d(x0,x1)/2(x̄0

+)
contains no points other than x1, we also end the selection process.

This finishes the first step in the selection process. At this point, we
drop all the points in between xn2 and xn3 from the original sequence.
The reason for doing this is that in the final perturbation we will push
the point xn3 towards xn2 , any points in between will not present any
interference.

For the points xn2 and xn3 thus chosen, we can similarly define x̄1 =
(xn2 +xn3)/2 and we can define x̄1

− and x̄1
+ similar to x̄0

− and x̄0
+ defined

before. Our selection process bifurcates into two parts: one with xn2

and the one with xn3 . We take xn2 first, xn3 will be dealt in a similar
way.

Now we consider the closed ball B̄α1d(xn2 ,xn3)/2(x̄1
−). Let i1 and i2

be the smallest and respectively largest integer such that xi1 , xi2 ∈
B̄α1d(xn2 ,xn3 )/2(x̄1

−). As xn2+1, xn2+2, . . . , xn3−1 are dropped from con-
sideration, we have three different situations: (1). i1 ≤ i2 < n2; (2).
i1 < n2 < n3 < i2; and (3). n3 < i1 ≤ i2. In all three cases, we choose
n4 = i1 and n5 = i2 and drop all points in between n4 and n5 from
future considerations. We point out that, for the second case, n2 and
n3 are dropped from the previously chosen pairs.

We consider the second part of the selection process. If it is the
case (2) above, since xn3 has already be eliminated, we will not do
anything further with respect to xn3 . In all other cases, we consider
the closed ball B̄α1d(xn2 ,xn3)/2(x̄1

+). Again, let i1 and i2 be the smallest
and respectively largest integer such that xi1 , xi2 ∈ B̄α1d(xn2 ,xn3 )/2(x̄1

+).
This time, we have more cases for the position of i1 and i2. In general,
if no previously chosen points fall in between i1 and i2, we let n6 = i1
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and n7 = i2. However, if any previously chosen pairs fall in between i1
and i2, we still let n6 = i1 and n7 = i2. By eliminating all points in
between xn6 and xn7 , we have eliminated those previously chosen pairs.

To end the second step of the selection process, we rename these
selected pairs so that they appear in ascending order.

We proceed by induction. In each of the following steps, we choose
these pairs newly created in the previous step. Let xn2j and xn2j+1 be
one of such pairs. We define x̄j , x̄j− and x̄j+. Then we first find a new
pair in the closed ball B̄α1d(x

n2j ,xn2j+1 )/2(x̄1
−). We then eliminate all the

points in the sequence between this new pair. If xn2j+1 is not eliminated,
we then go to choose a new pair in the closed ball B̄α1d(x

n2j ,xn2j+1 )/2(x̄1
+)

and again drop all points between this pair in the sequence. Then we
go on to the other pairs newly created in the previous step, if they are
not eliminated yet. In the process, some of the closed balls may contain
no or just one point of the sequence, we then end the selection process
for these pairs. After each step, we rename all the remaining pairs in
the ascending order.

Since there are only finite number of points in the sequence, the
selection process ends in finite number of steps.

This proves the lemma. 2

We have the following simple lemma.

Lemma 6. Let α1,
√

4n−1
4n < α1 < 1, be the number chosen previously.

There exist positive numbers 0 < α2 < 1 and τ ≥ 1 depending only
on α1 and the dimension of Rn such that for any two distinct points
x0, x1 ∈ R

n , there is a closed rectangle Dx∗(ξ1, ξ2, . . . , ξn), for some
x∗ ∈ Rn and n-tuple of positive real numbers (ξ1, ξ2, . . . , ξn) such that

1. Dx∗(ξ1, ξ2, . . . , ξn) ⊂ B̄α1d(x0,x1)/2(x0
−)
⋃
B̄α1d(x0,x1)/2(x0

+), where
x0

+ and x0
− are the points defined as before;

2. x1, x2 ∈ α2Dx∗(ξ1, ξ2, . . . , ξn);
3. ξi/ξj ≤ τ , for all i, j = 1, 2, . . . , n.

Proof : The proof is easy. First observe that the choice of the rect-
angles and α2 is independent of d(x0, x2), hence we may assume that
d(x0, x1) = 1. For any two points x0, x1 ∈ Rn , let D1 be the smallest
rectangle (with sides parellel to coordinate planes) that covers both x0

and x1. By the definition of x̄0
−, x̄0

+ and α1, the union of the balls

Bα1d(x0,x1)/2(x̄0
−)
⋃
Bα1d(x0,x1)/2(x̄0

+)

contains D1 in its interior. The rectangle D1 may be degenerate with
the lengths of one or more sides equal to zero, if some of the components
of x0−x1 are zero. If this happens, we enlarge the rectangle D1 a little
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bit to make it non-degenerate and still contained in the interior of the
union of the two balls. Finally, we choose Dx∗(ξ1, ξ2, . . . , ξn) to be the
largest rectangle contained in the union of the two closed balls that
has D1 in its interior. This way, for each pair x0, x1, we find α2, τ
and a rectangle Dx∗(ξ1, ξ2, . . . , ξn) that satisfy the lemma. To get a
uniform α2 and τ , we just take the supprema of all the τ and α2. By
the compactness of the choices of x0, x1 and local continuity of τ and
α2, such supprema exist and τ <∞, α2 < 1.

This proves the lemma. 2

Lemma 7. There exist real numbers 0 < α3 < 1, τ ≥ 1 and a pos-
itive integer N∗ such that for any n-tuple (a1, a2, . . . , an) of positive
numbers, any sequence {xi}mi=0 in R

n with d(xi, x0) ≥ d(x1, x0) for all
i > 1, there exists a finite subsequence {xni}2j∗+1

i=0 , n2i ≤ n2i+1 for
i = 0, 1, . . . , j∗ and ni < nj for j > i+1, with x0 and x1 being first two
points, such that there exist j∗ number of rectangles D1, D2, . . . , Dj∗

satisfying the following properties. Where for simplicity, we denote
Di = Dx̄i(ξi1, ξi2, . . . , ξin) for some x̄i ∈ Rn and some n-tuple of positive
numbers (ξi1, ξ

i
2, . . . , ξ

i
n).

1. (ξij/aj)/(ξ
i
l/al) ≤ τ , for all i = 1, 2, . . . , j∗ and j, l = 1, 2, . . . , n,

2. xn2i , xn2i+1 ∈ α3Di, for i = 0, 1, 2, . . . , j∗,
3. If n2j+1 < i < n2j+2 for some j = 0, 1, . . . , j∗, then xi /∈

⋃j∗

j=0Dj.
4. Let S be a subset of {0, 1, . . . , j∗} with size N∗. Then for any

such S, ⋂
i∈S

Di = ∅.

Or roughly, any point in R
n is at most covered by N∗ number of

Di’s.

Proof : We first prove the lemma for the case where n-tuple of positive
real numbers (a1, a2, . . . , an) are all equal to one. Let {xi}mi=0 in R

n be
a sequence of points with d(xi, x0) ≥ d(x1, x0) for all i > 1, by Lemma
5, there exists a subsequence {xni}2j∗+1

i=0 satisfying the list of properties
in Lemma 5.

We apply Lemma 6 to each pair in the selected subsequence. Let
xn2i , xn2i+1 for i = 0, 1, . . . , j∗ be a pair of points in the subsequence.
By Lemma 6, there exist a positive integer 0 < α2 < 1 independent of
these points, and a closed rectangle Di = Dx̄i(ξi1, ξ

i
2, . . . , ξ

i
n) such that

Di ⊂ Bα1d(xn2i ,xn2i+1 )/2(x̄i+)
⋃
Bα1d(xn2i ,xn2i+1)/2(x̄i−)

and xn2i , xn2i+1 ∈ α2Di. Where ξij/ξ
i
l ≤ τ , for all i = 0, 1, 2, . . . , j∗ and

j, l = 1, 2, . . . , n. τ is given in Lemma 6.
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Let D0, D1, . . . , Dj∗ be the closed rectangles thus chosen. We point
out that some of these rectangles maybe degenerate and contain just
one point (for some pairs with just one distinct point). For these single
point rectangles, we may choose any value we like for the ratio ξi

ξj
. In

this way we have a sequence of rectangles D1, D2, . . . , Dj∗ satisfying
the first three properties in the conclusion of the lemma, with α3 = α1
and τ given in Lemma 6.

To get property 4 of Lemma 7, we first observe that in each step of
our construction, the radii of all the closed balls are shrunk by at least
a factor of α1 < 1. This implies that in the following steps, the radii of
the closed balls decrease faster than a geometric series. We consider a
rectangle Di. If we shrink Di’s by a small factor of (1+α1)/2 to obtain
D′i = (1+α1)/2Di, then we have xn2i , xn2i+1 ∈ α′D′i, with α′ = 2α1/(1+
α1) < 1. Moreover, there exists a positive constant c1 > 0, independent
of Di, such that if ξ1

j ≤ c1ξ
1
i , then Dj

⋂
D′i = ∅. This implies that D′i

can only have intersections with Dj = Dx̄j(ξ
j
1, ξ

j
2, . . . , ξ

j
n) with ξj1 >

c1ξ
i
1. However, with the condition of ξjl /ξ

j
k ≤ τ for all j = 0, 1, . . . , j∗

and l, k = 1, 2, . . . , n and the the way all boxes are defined, we have
that the number of points in each box is uniformly bounded, therefore
there exists a positive integer N∗, N∗ depending only on α1, τ and
n, such that D′i has intersections with at most N∗ number of other
boxes. Let α3 = α′ = (2α1)/(1+α1) and replace Di with D′i, we obtain
property 4 in the Lemma.

This proves Lemma 7 for the case where ai = 1 for all i = 1, . . . , n.
The general case reduces to the above case with a rescaling of each
coordinate axis by a1, a2, . . . , an respectively.

This completes the proof of Lemma 7. 2

5. Proof of Theorem 1

In this section, we prove Theorem 1.
Let Mn be a compact n-dimensional manifold with a symplectic or

volume structure ω. Let φ be a diffeomorphism that preserves ω. Let
p be hyperbolic periodic point of period k for φ and let q be a point in
the unstable manifold of p. By a small perturbation, we may assume
that all eigenvalues of

d(φk)|TpMn : TpMn → TpM
n

are simple and away from unit circle.
First, we prove Theorem 1 for the case where p is a fixed point of φ.
By lemma 2, we may assume that q is recurrent. Therefore there

exists a point x0 ∈ W s
φ(p) such that x0 is in the ω-limit set of q. i.e.,



HOMOCLINIC POINTS 15

there exists a sequence of positive integer {ni}∞i=1 such that φni(q) →
x0. Fix a small neighborhood of x0, W . For any η > 0 small, there
exists a j′ such that d(x0, φj

′(q)) < η. We may assume that for 0 ≤ i <

j′, d(x0, φi(q)) > d(x0, φj
′(q)). Let {φj′−i(q)}j′i=0 be a segment of the

orbit of q in reverse order. For the fixed neighborhood W of q, starting
with φj

′(q), we obtain a subsequence of intersections of the sequence
{φj′−i(q)}j′i=0 with W . We rename the subsequence {xi}mi=1 for some
integer m. Note that x1 = φj

′(q).
In what follows, we are only concerned with a small neighborhood

of p ∈ Mn. We use local coordinates. We choose a coordinate chart
ψ : Rn → Br(p) ⊂ Mn for some small r such that ψ(O) = p and
f = ψ−1φψ takes the following form: f(x) = ψ−1φψ(x) = Ax+o(‖x‖).
Where A is in Jordan canonical form and has only simple eigenvalues.

Fix a given ε > 0 small. Our goal is to do a C1 ε small perturbation
with support in D0, D1, . . . , Dj∗ and their images so that fN(xn2j+1)
is pushed to fN(xn2j) for some N and for all j = 0, 1, . . . , j∗. Since
D0, D1, . . . , Dj∗ contains no points xi with n2j < i < n2j+1, this per-
turbation process eliminates all the intermediate intersections between
xn2j and xn2j+1 , and connects the orbit of q with the orbit of x0, creat-
ing homoclinic points. Since we may still have interventions between
the selected pairs, the perturbation has to be done in a careful way. In
particular, we have to shrink D′is further to leave room for interven-
tions.

Let 0 < α3 < 1 and N∗ be given by Lemma 7. Let c be the pos-
itive number given by the perturbation lemma. Let α = (α3 + (1 −
α3)cεN∗)/α3. By Lemmas 3 and 4, there exist an integer N and an
n-tuple (a1, a2, . . . , an) of positive numbers and δ > 0, depending only
on eigenvalues of A, ε and α (δ also depends on f), such that the
conclusions of Lemmas 3 and 4 hold in the domain Bδ(O).

By replacing x0 above with one of its iterations, we may assume that
x0 ∈ Bδ(O). (Here for simplicity of notation, we identify points on Mn

with points on Rn). For an η > 0, let {xi}mi=0 ⊂ R
n be the sequence se-

lected above. For the n-tuple (a1, a2, . . . , an) chosen above by Lemmas
3 and 4, by Lemma 7, we find a subsequence {xni}j∗i=0 together with
a sequence of boxes D1, D2, . . . , Dj∗ satisfying the properties listed in
Lemma 7.

By making η small, we may assume that each box Di has size
(ξi1, ξ

i
2, . . . , ξ

i
n), and the sequence of rectangular boxes and their iterates

under f up to Nth are all in Bδ(O) and the origin O /∈ Di.
First assume that p is a fixed point, periodic points with period

larger than one will be dealt later. We are now ready to do a sequence
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of perturbations to prove Theorem 1 for this case. We consider all the
boxes (α3/α)D0, (α3/α)D1, . . . , (α3/α)Dj∗ and we do the perturbation
simultaneously in each box. In each step, we try to push xn2j+1 towards
xn2j .

As in the proof of Lemma 3, in the first N1 iterates of f , we do
the perturbations in the first coordinate direction. In each iterate, we
push the amount (1− α)cεξi1/α and the support needed for each push
is (1 − α)ξi1/α. We remark that, by our choice of α, (1 − α) is an
extremely small number (∼ εN

∗). The support required in each push
is very small and is far away from the boundary of Di. In this way,
if interventions between different pairs occur (i.e., when their supports
intersect), we have enough room left for larger perturbation. If there
are no interventions between pairs, we go onto the next coordinate and
continue the perturbation.

The problem arises when interventions between pairs arise. However,
by Lemma 7, on a given Di, at most N∗ number of other boxes may
present interventions at any given iterate.

Let’s suppose at some step the perturbation in Di interferes with
the perturbation in Dj, i < j. This implies that the supports of two
different pushes have commom points. In this case, we will push xn2j+1

towards xn2i . This requires a larger support and this support is pro-
vided in either Di or Dj , whichever is larger, because our choice of α.
After this step, we drop all the boxes Di+1, Di+2, . . . , Dj and continue
the perturbation process as before. In the end, we have eliminated all
the intermediate intersections between xn2i and xn2j+1 .

There are other forms of intervention between different pairs. One is
simultaneous interventions between many different boxes. In this case,
we push the point with largest index towards the point with smallest
index and eliminate all the intermediate points. In this case, the sup-
port is in the largest box. Another form of intervention is when we
have interventions between two boxes, Di and Dj. However, if we try
to push xn2j+1 towards xn2i , intervention with Dk occurs because of a
larger support is needed. This and similar cases can be all dealt in the
same way: find all possible interventions (at most N∗) and do the per-
turbation to push the point with largest index towards the point with
smallest index. This is possible because we have chosen the support
of each push extremely small. The number of iterates needed for the
perturbation is very large.

This finishes the proof of Theorem 1 in the case p is a fixed point
of φ. The case where p is a hyperbolic periodic point of period k,
k > 1, is very much similar. Instead of considering φ, we consider φk
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and apply the series of perturbations to φk. We obtain a diffeomor-
phism G ∈ diff1

ω(Mn), with ‖G−φk‖C1 < N∗ε and Support(G−φk) ⊂
Bδ(p), such that q is a homoclinic point for G. We may assume that
φi(Bδ(p))

⋂
Bδ(p) = ∅ for i = 1, 2, . . . , k − 1. Let g = Gφ−kφ, then

‖g − φ‖C1 < N∗ε and gk = G. We conclude that g is the required
perturbation of φ.

This proves Theorem 1. 2

6. Proof of Theorem 2 and Theorem 3

In this section, we first give a proof of Theorem 2.
Let k ≥ 1 be some positive integer. From Robinson’s theorems [9],

there is an open and dense set Bk ⊂ diff1
ω(Mn) such that for each

φ ∈ Bk, all the periodic points of φ with period less than or equal to k
are nondegenerate and thus there are only finitely many these periodic
points. Let pki , i = 1, 2, . . . ,mk be the hyperbolic periodic points with
respect to φ. In a connected component of Bk containing φ, pki varies
continuously with respect to φ ∈ Bk. For each pki , let W s

φ,loc(p
k
i ) and

W u
φ,loc(p

k
i ) be a local stable manifold and a local unstable manifold of

pki with respect to φ. Let

Es
φ(pki ) = Closure(φ−1(W s

φ,loc(p
k
i ))\W s

φ,loc(p
k
i ))

and
Eu
φ(pki ) = Closure(φ(W u

φ,loc(p
k
i ))\W u

φ,loc(p
k
i ))

Es
φ(pki )) and Es

φ(pki ) are called the fundamental domains of the stable
manifold and unstable manifold of pki .

For any positive integer j > 0, let {Ui} be a finite open cover of
Mn with diameter less than 1/j. Let Bk,1/j ⊂ Bk ⊂ diff1

ω(Mn) be a
subset with the following property: for each map φ ∈ Bk,1/j and each
hyperbolic periodic point pki with period less than or equal to k, with
respect to φ, if

Ui
⋂(

Es
φ(pki )

⋃
Eu
φ(pki )

)
6= ∅

for any i, then there exists a transversal homoclinic point in Ui
⋂(

Es
φ(pki )

⋃
Eu
φ(pki )

)
.

i.e., the transversal homoclinic points in fundamental domains of the
stable and unstable manifolds are at most separated by a distance of
1/j for maps in Bk,1/j . It is obvious that the set Bk,1/j is open. Theo-
rem 1 shows that Bk,1/j is also dense. Thus Bk,1/j is an open and dense
set in diff1

ω(Mn). Take

B =
∞⋂
k=1

∞⋂
j=1

Bk,1/j ⊂ diff1
ω(Mn)
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Then for any φ ∈ B, all periodic points of φ are nondegenerate and for
each hyperbolic periodic point of φ, the transversal homoclinic points
are dense in some fundamental domains of its stable and unstable man-
ifolds. Since B is a countable intersection of open and dense set, it is a
residual set.

This proves Theorem 2. 2

Since all lemmas except Lemma 2 work for general diffeomorphisms,
the proof of Theorem 3 follows from the proof of Theorem 1 with some
small modifications. Let

q ∈ closure
(
W s
φ(p)

)⋂
W u
φ (p)\{p}

there exists a point q′ ∈ W s
φ(p) such that for any δ > 0, there is an

point x and integer m > 0 such that d(x, q) < δ and d(fm(x), q′) < δ.
Now the Theorem follows with applying the connecting procedure at
both q and q′. 2

We end this paper by remarking that if the condition in Theorem 3
is replaced by

q ∈ closure
(
W s
φ(p)

)⋂
closure

(
W u
φ (p)

)
\{p},

then the Theorem is still true. However, we have to rely on these
properties on arbitrary sequences of linear isomorphisms obtained by
Pugh in his closing lemma.
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