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Abstract. We give a proof for a basic C1 perturbation theorem
we assumed in a proof of a C1 connecting lemma.

1. Introduction

We give a proof for a basic C1 perturbation theorem we assumed in a
proof of a C1 connecting lemma. Let M be a compact manifold without
boundary, and f : M →M be a diffeomorphism. Denote Diff1(M) the
set of diffeomorphisms of M , endowed with the C1 topology. The
problem of C1 connecting two orbits was raised by Pugh in [P2]. It
asks whether the positive orbit of a point p and the negative orbot
of another point q can get connected by a C1 perturbation if ω(p)
intersects α(q), that is, if they are nearly connected at the first place.
An affirmative answer to this would be called a C1 connecting lemma.
The C1 connecting problem is of a fundamental importance and many
authors have made important contributions to this problem. For a
more complete introduction to the C1 connecting problem the reader is
refered to [H] or [W–X]. A surprising breakthrough came recently with
Hayashi [H] who established a general C1 connecting lemma, which
has played a crucial role in proving the C1 stability conjecture of Palis
and Smale for flows (See [H] and [W2]). For a simpler proof of the C1

connecting lemma the reader is refered to [W–X].
In the proof of the C1 connecting lemma given in [W–X], we assumed

a basic C1 perturbation theorem, which can be extracted from the work
of Liao, Pugh and Robinson (see [L], [P1], and [P–R]) on the C1 closing
lemma. This is Theorem A below, which forms a cornerstone in [W–X]
for proving the C1 connecting lemma. The statement of Theorem A is
technical and needs some introductions, and hence is postponed to §2.
Due to its importance there is a need for a proof for Theorem A on its
own right. In this paper we give such a proof for Theorem A.

We came to the statement of Theorem A before we could prove it.
Shantao Liao and Clark Robinson then confirmed to us that Theorem
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A was stated right, which encouraged us very much. Charles Pugh
read through a preprint of the present paper and gave us many good
suggestions. Let us take this opportunity to thank them for all of their
help.

In §2 we introduce Theorem A. In §3 we introduce Theorem B, which
is an alternate formulation of Theorem A using ellipsoids, and is easier
to prove than Theorem A. In §4 we describe the main ideas of the proof
of Theorem B. In §5 we pvove Theorem B.

2. An introduction for Theorem A

We introduce Theorem A in this section. Its formulation uses a geo-
metrical notion called ε-kernel transition, which is due to Mai [M] and
is the basic pattern for the C1 perturbations constructed below. A de-
tailed introduction for ε-kernel transitions can be found in [W–X]. This
way of constructing perturbations actually appeared very early ([P1]).
It is just the notion of ε-kernel transition that appeared relatively late
([M], [W1]). For convenience we quote in this section some of the rele-
vant material from [W–X]. First we define ε-kernel lifts which serve as
the basic elements of our C1 perturbations.

Let B ⊂ R
m be a closed ball with radius r and let ε > 0. We denote

εB the ball of the same center and of radius εr. We call εB the ε-kernel
of B. Thus the number ε here tells a relative ratio but not an absolute
size. For any x and y in the interior of B, there is a (in fact many) C∞
diffeomorphism h : Rm → R

m that is identity outside B, while takes x
to y. If x and y are in εB, we call such an h an ε-kernel lift that lifts x
to y, supported on B. The following simple but foundamental lemma
tells how ε controls the first devivatives of h − id for certain ε-kernel
lifts h. The formal formulation of this fact with the proof on manifolds
can be found in [P-R, Theorem 6.1].
Lemma 2.1. For any β > 0, there is an ε > 0 such that for any closed
ball B in R

m , and any x and y in εB, there is an ε-kernel lift h that
lifts x to y, supported on B, such that all partial derivatives of h − id
have absolute values less than β.
Proof. The proof is easy and hence omitted. There is a proof for this
lemma in [W–X].

Roughly, the number ε controls the size of the first derivatives of
h− id. Note that the radius r of B is not mentioned in the statement
of lemma 2.1, which clearly controls the C0 size of h−id. Therefore the
ε-kernel lift h can be defined to be C1 close to the identity if both ε and
r are small, and the composition h◦f hence gives a C1 perturbation of
f . The C1 perturbations used in this paper will be a composition of f
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with a finitely many this kind of ε-kernel lifts with disjoint supports. By
virtue of Lemma 2.1, we will not mention the ε-kernel lift h explicitly,
but only mention the ball B and the two points x, y ∈ εB. Whenever
such B, x, and y are specified, we can put on a suitable ε-kernel lift
h at any time. In this way we define ε-kernel avoiding transitions
now, which are the basic patterns of C1 perturbations used below. Let
V0, V1, · · · , Vn, · · · , be a sequence of m-dimensional inner product
spaces, and Tn : Vn → Vn−1, n = 1, 2, · · · , be a sequence of linear
isomorphisms. Let ε > 0, x, y ∈ V0, L ∈ N , Q ⊂ V0, and G ⊂ V0
be given. By an ε-kernel avoiding transition of {Tn} from x to y of
length L, contained in Q, avoiding G we mean L + 1 points cn ∈ Vn,
0 ≤ n ≤ L, together with L balls Bn ⊂ Vn, 0 ≤ n ≤ L− 1, such that

(1) c0 = y, cL = F−1
L (x), where Fn = T1 ◦ T2 ◦ · · · ◦ Tn.

(2) cn ∈ εBn, Tn+1(cn+1) ∈ εBn, 0 ≤ n ≤ L− 1.
(3) Bn ⊂ F−1

n (Q), 0 ≤ n ≤ L− 1.
(4) Bn ∩ F−1

n (G) = ∅, 0 ≤ n ≤ L− 1.
Roughly, a transition of length L consists of L+ 1 points that form

a pseudo orbit with L jumps. The associated L balls make these L
jumps ε-kernel lifts. Of course every pseudo orbit like this would be an
ε-kernel transition with respect to certain balls. The containing set Q
and the avoidence set G then serve as constraints put on the transition.
Note that the terminologies defined here are abreviated ones. Such an
ε-kernel transition actually is from F−1

L (x) to y, and is contained in the
tube

⋃L
n=1 F

−1
n (Q), and is avoiding a set of orbital arcs

⋃L
n=1(G).

It would be interesting to see what these Vn and Tn have to do withM
and f . Applied to the manifold via some standard linearization along a
finite orbit of length L, these Vn, n = 0, 1, · · · , L−1, simply correspond
to disjoint neighborhoods of the iterates along a backward orbit of f ,
and these Tn simply correspond to f itself. Thus the transition transits
a point from one orbit of f to another via L lifts which form a pseudo
orbit. If Q is small (which bounds the C0 size of the perturbation),
and if ε is small too, then the transition gives a C1 small perturbation.
These details are not concerned with us in this paper however, because
Theorem A we are going to prove is in the framework of Vn and Tn. For
more illustrations about these details the reader is refered to [W–X].

Using the notion of ε-kernel transition we now formulate Theorem A.
Let V be anm-dimensional inner product space and e = (e1, e2, · · · , em)
be an orthonormal basis o V . An e-box Q of center x ∈ V and of certain
size (λ1, λ2, · · · , λm) is defined as

Q = {y ∈ V | |yi − xi| ≤ λi, 1 ≤ i ≤ m},



4 LAN WEN AND ZHIHONG XIA

where xi and yi are coordinates of x and y, respecting the basis e. For
α > 0, define

αQ = {y ∈ V | |yi − xi| ≤ αλi, 1 ≤ i ≤ m}.
We say that a box Q′ is of type Q, if

Q′ = z + αQ

for some z ∈ V and some α > 0.
Theorem A. For any sequence of isomorphisms Tn : Vn → Vn−1, n =
1, 2. · · · , there is an orthonormal basis e = (e1, e2, · · · , em) in V0 such
that for any ε > 0, and any 0 < α < 1, there is an e-box A and an inte-
ger L ∈ N such that for any e-box Q of type A and any two points x, y ∈
αQ, there is an ε-kernel transition c0, c1, · · · , cL;B0, B1, · · · , BL−1 of
{Tn} from x to y of length L, contained in Q. Moreover, the radius of
Bn is less than or equal to half of the distance between ∂(F−1

n (D)) and
∂(F−1

n (αD)).
This theorem constitutes a basis for the proof of the C1 connecting

lemma given in [W–X]. It asserts the existence of an ε-kernel transition
that satisfies certain requirments. In particular, Theorem A requires
that the support balls should be uniformly small in ratio as the last
sentence of Theorem A claims. More precisely, in addition to that the
ball Bn should be contained in F−1

n (Q), the last sentence of Theorem
A requires that the ball Bn should be also small enough relative to the
parallelepiped F−1

n (Q) that, via a parallel translation, it can be inserted
into the gap between the two parallelepipeds F−1

n (Q) and F−1
n (αQ).

This turs out to be crucial to the proof of the C1 connecting lemma
given in [W–X].

There is a beautiful proof for the C1 closing lemma by Mai [M],
which is then generalized to some non-invertible maps by Wen [W1].
The proof is fairly simple. It is not based on Theorem A, because the
radii of the balls used there do not have to satisfy the last requirement
of Theorem A.

3. An alternate formulation of Theorem A using

ellipsoids

We give an alternate formulation of Theorem A using ellipsoids in
this section. This is Theorem B below. Theorem A is easier to use,
but Theorem B is easier to prove. It is Theorem B that we prove in
this paper.

It is well know that every linear isomorphism T factors as PQ where
Q is orthogonal and P is positive definite symmetric. Hence the image
of a round ball under T is an ellipsoid. If E is an ellipsoid in V0, for a
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number α > 0, we denote αE the ellipsoid with the same center as E
and with a multiple α. More precisely, if x is the center of E, then αE
is defined as α(E − x) + x. If α < 1, we say that αE is the α-kernel of
E. We say that an ellipsoid E′ is of type E, if

E′ = z + αE

for some z ∈ V0 and some α > 0. For an ellipsoid E of center x and a
box D of center y we write E ≤ D if E − x ⊂ D − y.

The definition of ε-kernel avoiding transition for a sequence of iso-
morphisms {Tn} can be reformulated in terms of ellipsoids. That is, for
n ≥ 1, we map the round balls Bn in Vn by their corresponding linear
isomorphisms Fn to get ellipsoids Zn in V0, and also map the points cn
by Fn to get some points an in V0. The sequence of linear isomorphisms
{Tn}∞n=1 gives a sequence of m-dimensional ellipsoids {En}∞n=1 (up to
type) with the subscripts running from 1 to ∞. For n = 0, we do not
have the corresponding linear isomorphism T0 in the definition, and a
natural definition for the ellipsoid E0 would be simply B0 itself. This
would give a constraint that the ellipsoid E0 in this sequence should be
always a round ball. For a technical reason below we will not take this
constraint but allow the general case that E0 is an m-dimensional ellip-
soid in V0 of any type. This gives the following definition for ε-kernel
avoiding transition, in terms of ellipsoids. Let {En}∞n=0 be a sequence
of ellipsoids in V0, and let ε > 0, x, y ∈ V0, L ∈ N , Q ⊂ V0, G ⊂ V0
be given. By an ε-kernel transition of {En} from x to y of length L,
contained in Q, avoiding G we mean L+ 1 points an in V0, 0 ≤ n ≤ L,
together with L ellipsoids Zn of type En in V0, 0 ≤ n ≤ L − 1, such
that

(1) a0 = y, aL = x.
(2) an, an+1 ∈ εZn, 0 ≤ n ≤ L− 1.
(3) Zn ⊂ Q, 0 ≤ n ≤ L− 1.
(4) Zn ∩G = ∅, 0 ≤ n ≤ L− 1.

If, in addition, the following condition
(5) an is the center of Zn for all 0 ≤ n ≤ L− 1

is satisfied, then we call this transition centerwise.
At first glance the transition so defined via ellipsoids may sound

messy, because the ellipsoids Z0, Z1, ..., ZL−1 are not disjoint, and per-
haps overlap very much. But the point is that the way they overlap is
irrelevant to us. The balls Bn will be mutually disjoint on the man-
ifold anyway. What concerns us are just two things: every point an
should be in the ε-kernel of the ellipsoid of the same subscript (i.e.
an ∈ εZn), and should also be in the ε-kernel of the ellipsoid of the
previous subscript (i.e. an ∈ εZn−1). In the centerwise case which
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is the only case we consider in this paper (one needs to consider the
general non-centerwise case in the proof of the C1 connecting lemma)
the situation is even cleaner, and we just concentrate on one thing: the
center of every ellipsoid should be in the ε-kernel of the previous ellip-
soid. Thus when we look at Zn, we only need to locate an+1 from its
ε-kernel, and not to care about all the other ellipsoids. This beautiful
idea which has proved very effective is due to Mai [M].

Using this alternate definition of ε-kernel transition we can reformu-
late Theorem A into the following Theorem B.
Theorem B. For any sequence of m-ellipsoids {En}∞n=0 in V0, there
is an orthonormal basis e = (e1, e2, ..., em) of V0 such that for any
ε > 0, and any 0 < α < 1, there is an e-box A and an integer L
such that for any e-box Q of type A and any two points x, y ∈ αQ,
there is a centerwise ε-kernel transition Z0, Z1, · · · , ZL of {En} from
x to y of length L, contained in Q. Moreover, Zn ≤ (1 − α)Q for all
0 ≤ n ≤ L− 1.

Clearly, Theorem B implies Theorem A, and we will prove Theorem
B instead in §5.

4. The main ideas of the proof of Theorem B

Before proceeding to the proof of Theorem B, let us single out some
of the main ideas involved in the proof. They are geometrically simple,
but are the keys to the whole proof. First we make a remark on ter-
minologies. We are going to find a centerwise transition from x to y.
Note that x corresponds to the subscript L and y corresponds to the
subscript 0. We construct the transition backwards. That is, we start
with y = c0. First we find the ellipsoid Z0 centered at y, then we locate
the point c1 from its ε-kernel εZ0. (Sometimes we say informally that
this makes a “progress” from c0 to c1.) Then we find the ellipsoid Z1
centered at c1, and locate the point c2 from εZ1, etc. Thus we go from
the subscript 0 to the subscript L. In other words, the thansition is
from the subscript L to the subscript 0 according to the definition (this
definition is natural because it represents on the manifold a transition
that bring f−L(x) to y gradually), but we will search for these ellip-
soids Zn and these points cn from the subscript 0 to the subscript L.
This is what we mean “backwards”. To avoid confusion we call below
an ε-kernel transition from x to y an ε-kernel movement from y to x.
They are exactly the same collection of points and ellipsoids. The only
difference is the way of using the word “from” and “to”.

Now we describe some of the main ideas involved in the proof of
Theorem B.
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(A). Let C be an m-cube of center a and of half-size δ > 0. For any
m-ellipsoid E, the length of every greatest axis (An ellipsoid may have
infinitely many greatest axes) of the largest ellipsoid Y contained in
C that has type E and center a is no less than δ (This is because C
contains a round ball of radius δ). Hence, if b is an end point of such
a greatest axis of Y , then the point a′ = a + ε(b − a) is in εY . This
means, in the direction u of a greatest axis of Y , we can always get a
progress of ε times the half-size of the bounding cube, via an ε-kernel
lift. Of course, in other directions, say a direction that is orthogonal to
u, we may not get such a progress. This is clear through the following
2-dimensional figure, where the ellipsoid is thin (Here and below, we
use the word “thin” in the sense of type but not in an absolute sense.
That is, “thin” means that the ratio of the greatest axis over the least
axis is large), and we can not get in e⊥-direction such a progress.

By replacing the bounding square C with a rectangle A, we can still
get such a progress as long as the direction of the axes of the ellipsoid
is correct. More precisely, no matter how thin an ellipsoid Y is, as
long as the direction u of the greatest axis of Y is exactly parallel to the
longer side of a rectangle A, and as long as A is sufficiently thin (here
we use the word “thin” for rectangles in the same relative sense as for
ellipsoids), we can still get in the direction e⊥ a progress ε-proportional
to the half of the shorter side of A. This is illustrated in the following
figure, where we first draw two parallel lines tangent to Y at the two
end points of the shorter axis of Y , then close up the infinite strip to
form a rectangle A so that A contains Y .
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However, if the direction of the greatest axis u is not parallel to
the direction e of the longer side of A, the situation gets much more
delicate. In fact, no matter how approximately parallel u is to e (as long
as not exactly), there are some thin ellipsoids E such that no matter
how thin the rectangle A is (even if infinitely thin as two parallel lines),
we can not get such a proportional progress in e⊥ direction. This is
illustrated in the following figure, where the ellipsoid type E is so thin
that the enclosed ellipsoid Y looks like an interval that touches the
two parallel lines already, and hence stretching the longer sides of A
no longer helps. This is the most delicate point we have to handle
in the proof of Theorem A below in §5. This seems to be also the
main difficulty discussed analytically in [P–R] on arbitrary sequence
of isomorphisms. The next observation suggests a way to handle this
delicate point geometrically.

Here comes the crucial observation:
(C). For any orthogonal basis (e, e⊥) and any ellipsoid type E (no

matter how thin it is and whatever directions of its axes are in), by
adjusting the shape of the rectangle A, though we might not be able
to get a progress of ε times half of the shorter side of A towards the e⊥
direction as illustrated above, we can move to some direction so that,
projecting to e⊥, we do get such a progress. In the above figure, the
direction from a to the tangency τ is such a direction. (The rectangle
A should of course be thin enough so that the tangencies appear on
the longer sides, but not the shorter sides. We can guarantee this by
first drawing two parallel infinite lines in e-direction. Then the largest
ellipsoid Y of type E that is contained in the infinite strip must be
tangent to the two lines. Then we close up the rectangle to get the
desired shape of A.) Briefly, by adjusting the shape of A, though
we might not be able to get a desired progress in e⊥ direction, but
projectively, we can! This suggests that, to move from a point y to a
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point x, we can first try to move to the line em-axis+x as the following
figure shows, where em is a limit direction of the greatset axises of En.

The price paid will be that, when we get to a point z on that line, z
may become a lot farther from x than y is. But according to (A), em is
approximately the direction in which we have the strongest movability.
It is easy to see that we can get near x from z by following a collection
of moves of fashion (A).

(D). There is a final detail to be taken care of. That is, since the
greatest axes of the ellipsoids En are only approximately, but not ex-
actly, in the direction em, by the expected collection of moves of fashion
(A) we can get only near to the point x, but probably not exactly x.
And, after choosing subsequences, the type of the ellipsoids left may
all be extremely thin so that it would be unclear if we can use them
to move onto the (even nearby) point x. This difficulty is solved by
leaving the first ellipsoid E0 spared. That is, we leave aside E0 for the
most part of the proof, and using the sequence {En}∞n=1 to make all
the above expected moves to get from y to a point w near x. Then we
make a parallel translation by adding the vector x − w that takes the
whole movement into a new movement. This means all the L+1 points
and all the L associated balls in the movement are each shifted over by
the vector x − w. It is clear that a parallel translation of an ε-kernel
movement is still an ε-kernel movement, and this new movement will
be from the point u = y + (x − w) onto the point w + (x − w) which
is x. Since E0 has fixed ballicity and u can be arbitrarily near y, using
E0 we may get from y to u as a preliminary (or, the first) move.

5. The proof of Theorem B

In this section we prove Theorem B. First we state an elementrary
lemma related to observation (C) of §4. While observation (C) is for
the case of dimension 2, the following lemma treats the case of gen-
eral dimensions. The lemma is almost self-evident, but really exhibits
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the geometrical core of the proof for Theorem A. Let V be an m-
dimensional inner product space, and

V = W ⊕W⊥

an orthogonal splitting with W 1-dimensional. Denote

π : V →W⊥

the orthogonal projection. Let E be an m-dimensinal ellipsoid in V .
Then πE is an (m − 1)-dimensional ellipsoid in W⊥. Let Z ′ be any
(m−1)-ellipsoid in W⊥ of type πE, and A′ be any rectangular (m−1)-
box in W⊥ that has the same center as that of Z ′ and contains Z ′.
π−1(A′) is an infinite rectangular cylinder in V . If c′ is the center of
A′, then π−1(c′) is the central axis of this infinite cylinder.
Lemma 5.1. Let a be a point on π−1(c′) and P be the largest m-
ellipsoid contained in π−1(A′) that has type E and is centered at a.
Then Z ′ ⊂ π(P ).
Proof. Since Z ′ is of type πE, there must be an m-ellipsoid Z of type
E such that πZ = Z ′. Hence Z ⊂ π−1(Z ′) ⊂ π−1(A′). Via a parallel
translation along the line π−1(c′) if necessary, we may assume Z has
center a. Then Z ⊂ P because P is the largest m-ellipsoid with these
properties. Taking projections proves the lemma.

We remark that it is important here to have a full preimage of A′
under π, that is, to have an infinite cylinder. If we use, instead of the
infinite cylinder π−1A′, a finite cylinder Σ that has the same base A′,
but is not sufficiently long in W -direction, then the largest ellipsoid P
contained in Σ that has type Z and is centered at a may not at all have
the property Z ′ ⊂ π(P ). This is actually the observation we made in
(B) of §4. Anyway let us draw a figure again to illustrate this.

Now we prove Theorem B. The proof goes by induction. First we
prove Theorem B for the case m = 1. In this case ellipsoids and boxes
all reduce to intervals. Given a sequence of intervals {En}. Up to the
type (we use En only up to their types), it is only one interval. We take
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a unit vector e1 as the orthonormal basis. There are two unit vectors
in V0. We just take either one of them. Let ε > 0, 0 < α < 1 be
given. The ellipsoid A will be just an interval too. The number L can
be taken as

L = [4α/(ε(1− α)] + 1,

where [·] denotes the integer part.
We verify that A and L correspond to ε and α correctly. Let Q

be any interval, and x, y be any two points in αQ. Without loss of
generality we may assume that Q has length 2, and x, y are the two
points on Q which are 1− α from the ends of Q. We may also assume
that x is on the e1-direction from y. Let

a0 = y,

a1 = a0 + ε(1− α)e1,

. . . .

And let
Zn = [an − (1− α), an + (1− α)].

Then it is easy to verify that this gives a centerwise ε-kernel move-
ment from y to x, which is just a centerwise ε-kernel transition from x
to y, that satisfies all the requirements of Theorem B. We only remark
that the last move may deal with some tip, hence may not be exactly
as given by the formulas.

Now we assume that the theorem is proved for dimension m−1. We
prove it for dimension m.

Let {En}∞n=0 be a sequence of m-dimensional ellipsoids in V0. Let
u(En) be a unit vector along one of the greatest axes of En. Let em be
a limit point of {u(En)}. This is a unit vector. Write

V0 = [em]⊕ [em]⊥,

where [em] denotes the one dimensional subspace of V0 spanned by em,
and [em]⊥ denotes the orthogonal complement of [em]. Denote

π : V0 → [em]⊥

the orthogonal projection.
Note that {πEn}∞n=0 is a sequence of (m− 1)-dimensional ellipsoids

in [em]⊥. As discussed above, we first leave aside E0. For the sequence
{πEn}∞n=1, by induction hypothesis, there is an orthonormal basis e′ =
(e1, . . . , em−1) in [em]⊥ with the properties stated in Theorem B. We
remark that the first ellipsoid E1 in this sequence may not be a round
ball at all, and this is the reason why we have defined the ε-kernel
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transition of a sequence of ellipsoids in the way that the first ellipsoid
could not be a round ball. Let

e = (e1, . . . , em−1, em).

Then e is an orthonormal basis in V0. We prove that this is a desired
basis to us.

Let ε > 0 and 0 < α < 1 be given. We need to find an e-box A
in V0 and an integer L that satisfy the conditions stated in Theorem
B. By induction hypothesis, corresponding to the sequence of (m− 1)-
dimensional ellipsoids {πEn}∞n=1 and the obtained orthonormal basis e′
in [em]⊥, for the same two numbers ε > 0 and 0 < α < 1, there is an
e′-box A′ and an interger L′ such that for any e′-box Q′ of type A′, and
any two points x′, y′ ∈ αQ′, there is a centerwise ε-kernel transition
Z ′0, Z

′
1, · · · , Z ′L′ of {πEn}∞n=1 from x′ to y′ of length L′, contained in Q′.

Moreover, Z ′n ≤ (1−α)Q′ for 1 ≤ n ≤ L′. Since the (m−1)-box A′ will
be used only up to its type, we may assume that A′ is centered at the
origin. We might have also assumed that A′ has a kind of normalized
size, but this does not seem to simplify the notation much. So we just
denote the size of A′ as λ1, · · · , λm−1, and denote

µ = min{λ1, · · · , λm−1}.
Consider π−1A′. This is an infinite cylinder with base A′. For each

n = 1, 2, · · · , denote Yn the largest m-dimensional ellipsoid contained
in π−1A′ that has type En and is centered at origin (the same center as
A′). Choose dn > 0 so large that the m-dimensional e-box A′×[−dn, dn]
contains Yn. Let

λm = max{λ1, · · · , λm−1, µ+ ΣL′
n=1dn}.

Note that µ is still the minimum of {λ1, λ2, · · · , λm}. Also note that
λm ≥ dn for all n = 1, · · · , L′. Then let

A = [λ1, · · · , λm−1, λm].

This determines the desired e-box A. To get the desired integer L, we
write

δ = µ(1− α)/4,

and let
k = [λm/(εδ)] + 1.

For any finite subsequence n1, n2, · · · , nk, we will denote below

cn1 = εδun1,

cni = cni−1 + εδuni, i = 2, · · · , k.



A BASIC TO C1 CONNECTING 13

That is, we start with the origin, and move a distance of εδ in uni
directions succesively. Since em is a limit point of un = u(En), and
since k is fixed, we can choose a finite subsequence

n1, · · · , nk
after L′ + 1 such that uni is so close to em that cni is in the εδ/b0-
neighborhood of the point

c0
ni

= iεδem, i = 1, · · · , k,
where b0 denotes the bolicity of E0 (i.e. the ratio of the greatest axis
over the least axis for E0). Then let

L = nk.

Note that A and L are constructed out of {En}, ε, and α only.
Now we verify that A and L as chosen satisfy the requirements stated

in Theorem B for the given sequence {En}, and for the given two
numbers ε and α.

Let Q be any e-box of type A, and let x and y be any two points
in αQ. We need to verify that there is a centerwise ε-kernel transition
Z0, Z1, · · · , ZL−1 of {En}∞n=0 from x to y of length L, contained in Q.
Moreover, the ellipsoids Zn have to satisfy the inequality Zn ≤ (1−α)Q
for 0 ≤ n ≤ L− 1. It is easy to see that if Q has this property, then
any e-box of type Q has the same property too. Thus we may simply
assume that Q is just A itself. Moreover, we may assume that the two
points x and y are furthest apart in αA. In particular, we may assume
that y ∈ [em]⊥ × {−αλm} and x ∈ [em]⊥ × {αλm}. Let

π∗ : V0 → [em]⊥ × {−αλm}
denote the orthogonal projection (We might have used π to denote π∗
by an abuse of notation, but let us use π∗ any way), and let

x∗ = π∗(x), and A∗ = π∗(A).

Now y and x∗ are both in αA∗. But A∗ and A′ differ only by a
translation, and {π∗En} and {πEn} differ only by a translation too,
so A∗ has the same property stated in the above induction hypothesis
with respect to {π∗En} as A′ does with respect to {πEn}. That is,
there is a centerwise ε-kernel transition Z∗1 , · · · , Z∗L′ of {π∗En}∞n=1 from
x∗ to y of length L′, supported in A∗. Moreover, Z∗n ≤ (1−α)A∗ for all
n = 1, · · · , L′. It will be more convenient below to call it a movement,
because then we can say it is from y to x∗, rather than from x∗ to y.

Now we lift the (m− 1)-dimensional ε-kernel movement Z∗1 , · · · , Z∗L′
in the hyperplane [em]⊥ × {−αλm} from y to x∗ to an m-dimensional
ε-kernel movement P1, · · · , PL′ in V0 from y to a point z on the line
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(π∗)−1(x∗) = (π∗)−1(x). Here we use the letter P but not Z because,
as observed in (D) of §4, we will need to make a translation later
to get our desired transition. The letter Z is reserved for that. As
remarked before, we do it backwards. Let a∗1, · · · , a∗L′+1 be the centers
of Z∗1 , · · · , Z∗L′+1, respectively. Thus a∗1 = y, a∗L′+1 = x∗, and a∗n+1 ∈ εZ∗n
for all n = 1, · · · , L′.

We first lift Z∗1 . This is an (m − 1)-dimensional ellipsoid of type
π∗E1. Moreover, Z∗1 ≤ (1− α)A∗, which means Z∗1 ⊂ (1− α)A∗ + a∗1.
Then, as before, (π∗)−1((1−α)A∗+a∗1) is an infinite cylinder with base
(1−α)A∗+a∗1, and (1−α)Y1 +a∗1 is the largest m-dimensional ellipsoid
contained in (π∗)−1((1 − α)A∗ + a∗1) that has type E1 and is centered
at a∗1. Then we let

p1 = a∗1 = y, P1 = (1− α)Y1 + p1.

Here we use the letter p instead of the letter a also because we reserve
the letter a for the final transition. By Lemma 5.1,

Z∗1 ⊂ π∗(P1).

This is a crucial fact to what follows.
Note that the size of P1 is well controled. In fact, by the choice of

d1, we have

P1 ⊂ ((1− α)A′)× [−(1− α)d1, (1− α)d1] + a∗1.

Since λm ≥ d1, we have

P1 ⊂ (1− α)A+ a∗1,

that is,
P1 ≤ (1− α)A.

Having lifted Z∗1 to P1, we now lift the point a∗2 to a point p2, which
has to be in the ε-kernel of P1. This is easy now. Since a∗2 ∈ εZ∗1 , and
since Z∗1 ⊂ π∗(P1) (Which is the crucial fact observed above), there is
indeed a (actually an interval of) point p2 ∈ εP1 such that π∗(p2) = a∗2.

Then we proceed as before. That is, let

P2 = (1− α)Y2 + p2.

Then similar arguments yield that

Z∗2 ⊂ π∗(P2),

and
P2 ≤ (1− α)A.

Then since a∗3 ∈ εZ∗2 , there is a point p3 ∈ εP2 such that

π∗(p3) = a∗3.
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Then we let
P3 = (1− α)Y3 + p3,

and so on. In this way we get a lifted centerwise m-dimensional ε-kernel
movement from y to a point z ∈ V0 with

πx = πz.

As observed in (C) of §4, the price paid is that z may become rather
far away from x. But the distance is well controlled. In fact, by the
choice of λm,

‖z − x‖ ≤ 2λm,

and
d(z, ∂A) ≤ (1− α)µ.

Here in the first inequality the upper bound 2λm could be somewhat
reduced. But this is all right for our purpose. The second inequality
holds because λm was chosen so that the total moves Σ(1 − α)dn in
em-direction (even plus (1 − α)µ) is no more than the (1 − α)-gap of
A in em-direction. The room left in em-direction, which is (1 − α)µ,
seems to be narrow. But this is enough for the following steps.

In what follows, we construct a centerwise ε-kernel movement from z
to a point w near x, using the ellipsoids En1, · · · , Enk . This corresponds
to the collection of moves of fashion (A) discussed in §4. But this is
easy now. Let C be the e-cube of size δ and of center origin, let

pni = cni + z,

and let Pni be the largest ellipsoid of type Eni contained in the cube
C + pni . Since the broken line cn1 · · · cnk has been chosen so close
to em-axis, it is easy to check that this gives a desired centerwise ε-
kernel movement of length L−L′ − 1 from z to a point w in the εδ/b0
neighborhood of x. Here the ε-kernel lift for an integer n which is
strictly between ni and ni+1 is understood as the trivial ε-kernel lift,
i.e., no lift. Combined with the movement P1, · · · , PL′ obtained before,
this gives a movement from y to w.

As observed in (D) of §4, there is a final step to be taken care of. That
is, we need to translate the whole obtained movement p1, · · · , pL;P1, · · · , PL−1
from y to w into a movement from u = y + x− w to w + x− w which
is x. This is simply done by letting

an = pn + x− w, n = 1, 2, · · · , L,
and

Zn = Pn + x− w, n = 1, 2, · · · , L− 1.
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Now let a0 = y, and let Z0 be the largest ellipsoid of type E0 contained
in the δ-cube C + y. It is easy to see that

a0, a1, · · · , aL; Z0, Z1, · · · , ZL−1

finally gives a desired movement from y to x, or, what is the same, a
desired transition from x to y. This completes the induction process,
and proves Theorem B.
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