ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline of Talk

ICM 2014: The Structure and Meaning of Ricci Curvature

- Aaron Naber
- Background of Ricci Curvature and Limit Spaces
- Structure of Spaces with Lower Ricci Curvature
- Regularity of Spaces with Bounded Ricci Curvature

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Characterizing Ricci Curvature

Background: Curvatures

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- (M^n, g, x) n-dimensional pointed Riemannian Manifold.
- Curvature: $Rm(X, Y)Z \equiv \nabla^2_{X,Y}Z \nabla^2_{Y,X}Z$
- - Should be interpretted as Hessian of the metric
- Ricci: $Rc(X, Y) \equiv \sum \langle Rm(E_a, X)Y, E_a \rangle = tr(Rm)$
- - Should be interpretted as Laplacian of the metric

ション 小田 マイビット ビックタン

• Normalized Volume Measure:
$$v \equiv \frac{dv_g}{Vol(B_1(x))}$$
.

Background: Limit Spaces

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

• $(M_i^n, g_i, v_i, x_i) \xrightarrow{mGH} (X, d, v, x)$, convergence in measured Gromov-Hausdorff topology.

Theorem (Gromov 81')

Let (M_i^n, g_i, x_i) be a sequence of Riemannian manifolds with $Rc_i \ge -\lambda g$. Then there exists a metric space (X, d, x), such that after passing to a subsequence we have that

$$(M_i^n, g_i, x_i) \xrightarrow{GH} (X, d, x).$$
(1)

- Initiated study of Ricci limit spaces.
- Generalized by Fukaya and others to say that $(M_i^n, g_i, \nu_i, x_i) \xrightarrow{mGH} (X, d, \nu, x).$
- Question: What is the structure of X?

Structure of Limit Spaces, Lower Ricci Curvature Background:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

Theorem (Cheeger-Colding 96')

Let $(M_i^n, g_i, v_i, x_i) \xrightarrow{GH} (X, d, v, x)$ where $Rc_i \ge -\lambda g$. Then for v-a.e. $x \in X$ the tangent cone at x is unique and isometric to \mathbb{R}^{k_x} for some $0 \le k_x \le n$.

Conjecture (Cheeger-Colding 96')

There exists $0 \le k \le n$ such that $k_x \equiv k$ is independent of $x \in X$. In particular, X has a well defined dimension.

Conjecture (96')

The isometry group of X is a Lie Group.

Structure of Limit Spaces, Lower Ricci Curvature: Geometry of Geodesics

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

Proof requires new understanding of the geometry of geodesics:

Theorem (Colding-Naber 10')

Let $(M_i^n, g_i, v_i, x_i) \xrightarrow{GH} (X, d, v, x)$ where $Rc_i \ge -\lambda g$, and let $\gamma : [0, 1] \to X$ be a minimizing geodesic. Then there exists $C(n, \delta, \lambda), \alpha(n) > 0$ such that for every $s, t \in [\delta, 1 - \delta]$ and $r \le 1$ we have

$$d_{GH}\Big(B_r(\gamma(s)), B_r(\gamma(t))\Big) \le \frac{C}{\delta} |t-s|^{\alpha} r.$$
(2)

- In words, the geometry of balls along geodesics can change at most at a Hölder rate.
- Corollary: By taking r → 0 we see that tangent cones change continuously along geodesics.

Structure of Limit Spaces, Lower Ricci Curvature: Applications

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

Theorem (Colding-Naber 10')

Let $(M_i^n, g_i, v_i, x_i) \xrightarrow{GH} (X, d, v, x)$ where $Rc_i \ge -\lambda g$. Then there exists $0 \le k \le n$ and a full measure subset $R(X) \subseteq X$ such that the tangent cone at each point is unique and isometric to \mathbb{R}^k .

- Can define $dim(X) \equiv k$
- Proof through the example of the trumpet space:

Pick a geodesic γ connecting the x-points.

Structure of Limit Spaces, Lower Ricci Curvature: Applications

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

Theorem (Colding-Naber 10')

Let $(M_i^n, g_i, v_i, x_i) \xrightarrow{GH} (X, d, v, x)$ where $Rc_i \ge -\lambda g$. Then there exists $0 \le k \le n$ and a full measure subset $R(X) \subseteq X$ such that the tangent cone at each point is unique and isometric to \mathbb{R}^k .

- Can define $dim(X) \equiv k$
- Proof through the example of the trumpet space:

 Tangent cones along γ(t) discontinuous at o, hence the trumpet space cannot arise as a Ricci limit space.

Structure of Limit Spaces, Lower Ricci Curvature: Applications

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

• Hölder continuity of tangent cones allow for further refinements about geometry of the regular set:

Theorem (Colding-Naber 10')

The regular set R(X) is weakly convex. In particular, R(X) is connected.

• The convexity of *R*(*X*) is the key point in showing the Isometry group conjecture:

Theorem (Colding-Naber 10')

The isometry group of X is a Lie Group.

- Proof by contradiction. Push *small subgroups* into a regular tangent cone, namely \mathbb{R}^k .
- Produces small subgroups of the isometry group of ℝ^k, contradiction.

Structure of Limit Spaces, Lower Ricci Curvature Open Questions:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

Conjecture

dim(X) is equal to the Hausdorff dimension of X.

Open Question

Does the singular set $S(X) \equiv X \setminus R(X)$ have dim(X) - 1-Hausdorff dimension?

Open Question

Is there an open dense subset of X which is homeomorphic to a manifold?

Open Question

Is there an open dense subset of X which is bilipschitz to a manifold?

Structure of Limit Spaces, Bounded Ricci Background:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

Theorem (Anderson, Bando, Kasue, Nakajima, Tian 89')

Let
$$(M_i^4, g_i) \xrightarrow{GH} (X, d)$$
 satisfy diam $(M_i) \le D$, $|Rc_i| \le 3$,
Vol $(M^4) > v > 0$ and $|b_2(M_i)| \le A$, then X is a Riemannian orbifold with isolated singularities.

Conjecture (Codimension Four Conjecture 89')

Let $(M_i^4, g_i, p_i) \xrightarrow{GH} (X, d, p)$ satisfy $|Rc_i| \le n - 1$ and $Vol(B_1(p_i)) > v > 0$, then X is a Riemannian manifold away from a set of codimension four.

Conjecture (Anderson 94')

Let (M^4, g) satisfy diam $(M_i) \le D$, $|Rc_i| \le 3$, $Vol(M^4) > v > 0$, then M^4 is one of C(D, v)-diffeomorphism types.

Structure of Limit Spaces Bounded Ricci, codimension two singularities:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- The key to solving the codimension four conjecture is to rule out codimension two singularities.
- That is, if an Einstein manifold *M* is close to $\mathbb{R}^{n-2} \times C(S_r^1)$:

- Then *M* is actually smoothly close to Euclidean space \mathbb{R}^n .
- Key new idea is the slicing theorem:

Theorem (Cheeger-Naber 14')

For each $\epsilon > 0$ there exists $\delta > 0$ such that if $u : B_2(x) \to \mathbb{R}^{n-2}$ is a harmonic δ -splitting, then there exists $G_{\epsilon} \subseteq B_1(0^{n-2})$ with $|B_1 \setminus G_{\epsilon}| < \epsilon$ such that: if $s \in G_{\epsilon}$ and $x \in u^{-1}(s) \cap B_1(x)$ with 0 < r < 1, then $\exists A_r \in GL(n-2)$ such that $Au : B_r(x) \to \mathbb{R}^{n-2}$ is an ϵ -splitting.

Structure of Limit Spaces Bounded Ricci, codimension two singularities:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- Proof of the slicing theorem is by far the most involved aspect of the proof.
- The level sets $u^{-1}(s)$ are approximations of the cone factors.
- Slicing theorem allows one to pick *good* cone slices and reblow up to arrive at a new Ricci limit space which is a smooth cone:

$$R^{n-2}x \bigvee$$

• From this picture it is easy to contradict the existence of the upper Ricci bound, and thus the existence of codimension two singularities.

Structure of Limit Spaces Bounded Ricci, ϵ – *regularity*:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

• An easier argument works for codim 3 singularities. Combining yields:

Theorem (Cheeger-Naber 14')

Let (M^n, g, p) satisfy $Vol(B_1(p)) > v > 0$. Then there exists $\epsilon(n, v) > 0$ such that if $|Rc| \le \epsilon$ and if

$$d_{GH}(B_2(p), B_2(y)) < \epsilon$$
,

where $y \in \mathbb{R}^{n-3} \times C(Y)$, then the harmonic radius satisfies $r_h(x) \ge 1$. If M^n is Einstein then we further have

$$\sup_{B_1(p)}|Rm|\leq 1$$
.

(3)

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Structure of Limit Spaces, Bounded Ricci:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

 By combining the previous *ϵ*-regularity theorem with the stratification theory one obtains:

Corollary (Cheeger-Naber 14')

Let $(M_i^4, g_i, p_i) \xrightarrow{GH} (X, d, p)$ satisfy $|Rc_i| \le n - 1$ and Vol $(B_1(p_i)) > v > 0$, then there exists $S(X) \subseteq X$ with dim $S(X) \le n - 4$ such that $R(X) \equiv X \setminus S(X)$ is a Riemannian manifold.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Structure of Limit Spaces, Bounded Ricci:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

 More generally, by combining the previous ε-regularity theorem with the quantitative stratification theory one obtains the effective estimates:

Theorem (Cheeger-Naber 14')

Let (M^n, g, p) satisfy $|Rc| \le n - 1$ and $Vol(B_1(p)) > v > 0$. Then for every $\epsilon > 0$ there exists $C_{\epsilon}(n, v, \epsilon)$ such that

$$\int_{B_1(\rho)} |Rm|^{2-\epsilon} \le C_{\epsilon} \,. \tag{4}$$

Furthermore, for every $r \leq 1$ we have the harmonic radius estimate

$$Vol(B_r\{x: r_h(x) \le r\} \cap B_1(p)) \le C_{\epsilon} r^{4-\epsilon}.$$

(5)

Structure of Limit Spaces, Bounded Ricci Dimension Four:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- These results may be pushed further in dimension four.
- As a starting point consider the following:

Theorem (Cheeger-Naber 14')

If $(M_i^4, g_i, p_i) \xrightarrow{GH} (X, d, p)$ where $|Rc_i| \le 3$ and $Vol(B_1(p_i)) > v > 0$, then X is a Riemannian orbifold with isolated singularities.

• This in turn may be used to prove Anderson's conjecture:

Theorem (Cheeger-Naber 14')

If (M^4, g) such that $|Rc| \le 3$, $Vol(B_1(p)) > v > 0$, and $diam(M) \le D$. Then there exists C(v, D) such that M has at most one of C-diffeomorphism types.

Structure of Limit Spaces, Bounded Ricci Dimension Four:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

• A local version of the finite diffeomorphism type theorem, when combined with the Chern-Gauss-Bonnet, gives rise to the following:

Theorem (Cheeger-Naber 14')

Let (M^4, g, p) satisfy $|Rc| \le 3$ and $Vol(B_1(p)) > v > 0$. Then there exists C(v) such that

$$\int_{B_1(p)} |Rm|^2 \le C.$$
(6)

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

This estimate is sharp

Structure of Limit Spaces, Bounded Ricci Open Questions:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

Conjecture

Let (M^n, g, p) satisfy $|Rc| \le n - 1$ and $Vol(B_1(p)) > v > 0$. Then there exists C(n, v) such that $\int_{B_1(p)} |Rm|^2 \le C$.

Corollary

Let
$$(M_i^n, g_i, p_i) \xrightarrow{GH} (X, d, p)$$
 with $|Rc_i| \le n - 1$ and
Vol $(B_1(p_i)) > v > 0$, then the singular set $S(X)$ is
 $n - 4$ -rectifiable with $H^{n-4}(S(X) \cap B_1(p)) \le C(n, v)$.

Conjecture

Let $(M_i^n, g_i, p_i) \xrightarrow{GH} (X, d, p)$ with $|Rc_i| \le n - 1$ and $Vol(B_1(p_i)) > v > 0$, then X is bilipschitz to a real analytic variety.

Meaning of Ricci Curvature, Background:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- Future directions in Ricci curvature will involve more than a regularity theory.
- Many ways to interpret the *meaning* of Ricci curvature bounds.
- Each new method leads to new understanding.
- At this stage there are many methods for characterizing lower Ricci curvature (see next slide).

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

• Want to characterize and understand the meaning of bounded Ricci curvature.

Characterizing Ricci Curvature, Background: Lower Ricci Curvature

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

Theorem (Bakry-Emery-Ledoux 85')

Let (M^n, g) be a complete manifold, then the following are equivalent:

- $I Ric \geq -\kappa g.$
- $|\nabla H_t u|(x) \le e^{\frac{\kappa}{2}t} H_t |\nabla u|(x) \ \forall x.$
- $\int_{M} u^2 \ln u^2 \rho_t(x, dy) \leq 2\kappa^{-1} \left(e^{\kappa t} 1 \right) \int_{M} |\nabla u|^2 \rho_t(x, dy) \text{ if } \int_{M} u^2 \rho_t = 1.$
 - H_t heat flow operator, ρ_t heat kernel,

 $\Delta_{x,t} = \Delta + \nabla ln \rho_t \cdot \nabla$ heat kernel laplacian.

Lower Bounds on Ricci ⇔ Analysis on M

 More recently: lower ricci ⇔ convexity of the entropy functional (Lott, Villani, Sturm, Ambrosio, Gigli, Saviere').

Characterizing Ricci Curvature: Bounded Ricci Curvature

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- Characterizations of bounded Ricci curvature will require estimates on the path space *P*(*M*) of the manifold.
- There will be a 1-1 correspondence between the B-E-L estimates and the new estimates on path space.
- In fact, for each estimate on path space, we will see how when it is applied to the *simplest* functions on path space we recover the BEL estimates. Namely, F(γ) = u(γ(t)).
- We will see that Bounded Ricci Curvature ⇔ Analysis on Path Space of *M*.

ション 小田 マイビット ビックタン

Characterizing Bounded Ricci Curvature: Path Space Basics

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

• $P(M) \equiv C^0([0,\infty), M)$

•
$$P_x(M) \equiv \{\gamma \in P(M) : \gamma(0) = x\}.$$

• For a partition $\mathbf{t} \equiv \{0 \le t_1 < \ldots < t_k < \infty\}$ denote by $e_{\mathbf{t}} : P(M) \to M^k$ the evaluation mapping given by

$$e_{\mathbf{t}}(\gamma) = (\gamma(t_1), \ldots, \gamma(t_k)).$$

For x ∈ M let Γ_x be the associated Wiener measure on P(M). Defined by its pushforwards:

$$\mathbf{e}_{\mathbf{t},*}\Gamma_{x} = \rho_{t_{1}}(x, dy_{1})\rho_{t_{2}-t_{2}}(y_{1}, dy_{2})\cdots\rho_{t_{k}-t_{k-1}}(y_{k-1}, dy_{k}).$$

Characterizing Bounded Ricci Curvature: Gradients on Path Space

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

• If $F : P(M) \to \mathbb{R}$ we define the Parallel Gradient:

 $|\nabla_0 F|(\gamma) = \sup\{D_V F : |V|(0) = 1 \text{ and } |\nabla_{\dot{\gamma}} F| \equiv 0\}.$

• If $F : P(M) \to \mathbb{R}$ we define the *t*-Parallel Gradient:

 $\begin{aligned} |\nabla_t F|(\gamma) &= \sup\{D_V F : |V|(s) = 0 \text{ for } s < t, \ |V|(t) = 1 \\ & \text{and } |\nabla_{\dot{\gamma}} F|(s) \equiv 0 \text{ for } s > t\}. \end{aligned}$

Characterizing Bounded Ricci Curvature: First Characterization, Gradient Bounds:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

• Given $F : P(M) \to \mathbb{R}$ let us construct a function on M by

$$\int_{P(M)} Fd\Gamma_x : M \to \mathbb{R}.$$

• If $F \in C(P(M))$ then $\int Fd\Gamma_x \in C(M)$.

•

 What about gradient bounds? Do gradient bounds on F give rise to gradient bounds on ∫ FdΓ_x? In fact:

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Characterizing Bounded Ricci Curvature: First Characterization, Example:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- Let us apply this to the simplest functions on path space.
- For t > 0 fixed and $u : M \to \mathbb{R}$ let $F(\gamma) = u(\gamma(t))$.
- Let us compute $|\nabla \int_{P(M)} F d\Gamma_x| \leq \int_{P(M)} |\nabla_0 F| d\Gamma_x$:

•
$$\int_{P(M)} F d\Gamma_x \equiv H_t u(x).$$

• $|\nabla_0 F|(\gamma) = |\nabla u|(\gamma(t)).$
• Thus

Recover Bakry-Emery, hence Ric ≥ 0.

Characterizing Bounded Ricci Curvature: Second Characterization:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- Recall L²(P(M)) comes naturally equipped with a one-parameter family of closed nested subspaces L²_t ⊆ L²(P(M)).
- $F \in L^2_t$ if $F(\gamma) = F(\sigma)$ whenever $\gamma|_{[0,t]} = \sigma|_{[0,t]}$.
- Given *F* can construct a family of functions $F_t \in L_t^2 \subseteq L^2(P(M))$ by projection.
- F_t is a martingale. As a curve in L^2 , F_t is precisely $C^{1/2}$.

ション キョン キョン キョン しょう

Characterizing Bounded Ricci Curvature: Second Characterization:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

• To understand C^{1/2}-derivative define Quadratic Variation

$$[F_t] \equiv \lim_{\mathbf{t} \subseteq [0,t]} \sum \frac{(F_{t_{a+1}} - F_{t_a})^2}{t_{a+1} - t_a}$$

• Can we control the derivative of $[F]_t$? In fact:

$$\frac{d}{dt}[F_t](\gamma) \le \int_{P_{\gamma(t)}(M)} |\nabla_t F|$$
$$\stackrel{\textcircled{}}{\Rightarrow} Rc \equiv 0.$$

 Similar statements for |*Rc*| ≤ *k*, metric measure spaces, and dimensional versions.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Characterizing Bounded Ricci Curvature: Third Characterization:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- Recall that the Ornstein-Uhlenbeck operator $L_x : L^2(P_x(M)) \to L^2(P_x(M))$ is a self adjoint operator on based path space.
- Arises from the Dirichlet Form $E[F] \equiv \int_{P_x(M)} |\nabla_{H^1}F|^2 d\Gamma_x = \int_{P_x(M)} \int_0^\infty |\nabla_s F|^2 d\Gamma_x$, where $\nabla_{H^1}F$ is the Malliavin gradient.
- Acts as an infinite dimensional laplacian. Spectral gap first proved by Gross in Rⁿ, and Aida and K. D. Elworthy for general compact manifolds. Fang and Hsu first proved estimates using Ricci curvature.

Characterizing Bounded Ricci Curvature: Third Characterization:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

- More generally one can define the time restricted Dirichlet energies $E_{t_0}^{t_1}[F] \equiv \int_{P_x(M)} \int_{t_0}^{t_1} |\nabla_s F|^2 d\Gamma_x$.
- Thus E₀[∞] ≡ E, and in general E_{t₀}^{t₁} is the part of the Dirichlet energy which only sees the gradient on the time range [t₀, t₁].

ション キョン キョン キョン しょう

• From these energies one can define the induced Ornstein-Uhlenbeck operators $L_{t_0}^{t_1}: L^2(P_x(M)) \rightarrow L^2(P_x(M))$ with $L_0^{\infty} \equiv L_x$.

Characterizing Bounded Ricci Curvature: Third Characterization:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

 Is the spectrum of the operators L^{t1}_{t0} controlled or characterized by Ricci Curvature? In fact:

$$\int_{P(M)} |F_{t_1} - F_{t_0}|^2 \leq \int_{P(M)} \langle F, L_{t_0}^{t_1} F \rangle$$

$$\stackrel{\textcircled{}}{\Rightarrow} Rc \equiv 0.$$

In particular, we have the spectral gap $\lambda(L_x) \ge 1$ for the standard Ornstein-Uhlenbeck operator.

 More generally there are log-Sobolev versions of this result, as well as similar statements for |*Rc*| ≤ *k*, metric measure spaces, and dimensional versions.

Characterizing Bounded Ricci Curvature:

ICM 2014: The Structure and Meaning of Ricci Curvature

Aaron Naber

 Below is a partial list of the main results, see [N] for the complete statement:

Theorem (Naber 13')

Let (M^n, g) be a smooth Riemannian manifold, then the following are equivalent:

$$I - \kappa g \le Ric \le \kappa g$$

$$3 |\nabla \int_{P(M)} F \, d\Gamma_x| \leq \int_{P(M)} \left(|\nabla_0 F| + \int_0^\infty \frac{\kappa}{2} e^{\frac{\kappa}{2}t} |\nabla_t F| dt \right) d\Gamma_x.$$

■ $\int_{P(M)} |F_{t_1} - F_{t_0}|^2 \le e^{\frac{\kappa}{2}(T-t_0)} \int_{P(M)} \langle F, L_{t_0,\kappa}^{t_1} F \rangle$, in particular $\lambda^1(L_x^T) \ge \frac{2}{e^{\kappa T}+1}$ for the standard Ornstein-Uhlenbeck operator.

• $\frac{d}{dt}[F_t](\gamma) \le e^{\kappa(T-t)} \int_{P_{\gamma(t)}(M)} |\nabla_t F| + \int_t^T \frac{\kappa}{2} e^{\frac{\kappa}{2}s} |\nabla_s F|^2 d\Gamma_{\gamma(t)}$ where F is an \mathcal{F}^T -measurable function.