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Background: Curvatures

(Mn, g, x) n-dimensional pointed Riemannian Manifold.

Curvature: Rm(X ,Y)Z ≡ ∇2
X ,Y Z − ∇2

Y ,X Z

- Should be interpretted as Hessian of the metric

Ricci: Rc(X ,Y) ≡
∑
〈Rm(Ea ,X)Y ,Ea〉 = tr(Rm)

- Should be interpretted as Laplacian of the metric

Normalized Volume Measure: ν ≡ dvg

Vol(B1(x))
.
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Background: Limit Spaces

(Mn
i , gi , νi , xi)

mGH
−→ (X , d, ν, x), convergence in measured

Gromov-Hausdorff topology.

Theorem (Gromov 81’)

Let (Mn
i , gi , xi) be a sequence of Riemannian manifolds with

Rci ≥ −λg. Then there exists a metric space (X , d, x), such
that after passing to a subsequence we have that

(Mn
i , gi , xi)

GH
−→ (X , d, x) . (1)

Initiated study of Ricci limit spaces.
Generalized by Fukaya and others to say that

(Mn
i , gi , νi , xi)

mGH
−→ (X , d, ν, x).

Question: What is the structure of X?
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Structure of Limit Spaces, Lower Ricci Curvature
Background:

Theorem (Cheeger-Colding 96’)

Let (Mn
i , gi , νi , xi)

GH
−→ (X , d, ν, x) where Rci ≥ −λg. Then for

ν-a.e. x ∈ X the tangent cone at x is unique and isometric to
Rkx for some 0 ≤ kx ≤ n.

Conjecture (Cheeger-Colding 96’)

There exists 0 ≤ k ≤ n such that kx ≡ k is independent of
x ∈ X. In particular, X has a well defined dimension.

Conjecture (96’)

The isometry group of X is a Lie Group.
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Structure of Limit Spaces, Lower Ricci Curvature:
Geometry of Geodesics

Proof requires new understanding of the geometry of
geodesics:

Theorem (Colding-Naber 10’)

Let (Mn
i , gi , νi , xi)

GH
−→ (X , d, ν, x) where Rci ≥ −λg, and let

γ : [0, 1]→ X be a minimizing geodesic. Then there exists
C(n, δ, λ), α(n) > 0 such that for every s, t ∈ [δ, 1 − δ] and r ≤ 1
we have

dGH

(
Br(γ(s)),Br(γ(t))

)
≤

C
δ
|t − s|α r . (2)

In words, the geometry of balls along geodesics can
change at most at a Hölder rate.
Corollary: By taking r → 0 we see that tangent cones
change continuously along geodesics.
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Structure of Limit Spaces, Lower Ricci Curvature:
Applications

Theorem (Colding-Naber 10’)

Let (Mn
i , gi , νi , xi)

GH
−→ (X , d, ν, x) where Rci ≥ −λg. Then there

exists 0 ≤ k ≤ n and a full measure subset R(X) ⊆ X such that
the tangent cone at each point is unique and isometric to Rk .

Can define dim(X) ≡ k

Proof through the example of the trumpet space:

Pick a geodesic γ connecting the x-points.
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Structure of Limit Spaces, Lower Ricci Curvature:
Applications

Theorem (Colding-Naber 10’)

Let (Mn
i , gi , νi , xi)

GH
−→ (X , d, ν, x) where Rci ≥ −λg. Then there

exists 0 ≤ k ≤ n and a full measure subset R(X) ⊆ X such that
the tangent cone at each point is unique and isometric to Rk .

Can define dim(X) ≡ k
Proof through the example of the trumpet space:

Tangent cones along γ(t) discontinuous at o, hence the
trumpet space cannot arise as a Ricci limit space.
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Structure of Limit Spaces, Lower Ricci Curvature:
Applications

Hölder continuity of tangent cones allow for further
refinements about geometry of the regular set:

Theorem (Colding-Naber 10’)

The regular set R(X) is weakly convex. In particular, R(X) is
connected.

The convexity of R(X) is the key point in showing the
Isometry group conjecture:

Theorem (Colding-Naber 10’)

The isometry group of X is a Lie Group.

Proof by contradiction. Push small subgroups into a
regular tangent cone, namely Rk .
Produces small subgroups of the isometry group of Rk ,
contradiction.
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Structure of Limit Spaces, Lower Ricci Curvature
Open Questions:

Conjecture

dim(X) is equal to the Hausdorff dimension of X.

Open Question

Does the singular set S(X) ≡ X \ R(X) have
dim(X) − 1-Hausdorff dimension?

Open Question

Is there an open dense subset of X which is homeomorphic to
a manifold?

Open Question

Is there an open dense subset of X which is bilipschitz to a
manifold?
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Structure of Limit Spaces, Bounded Ricci
Background:

Theorem (Anderson,Bando,Kasue,Nakajima,Tian 89’)

Let (M4
i , gi)

GH
→ (X , d) satisfy diam(Mi) ≤ D, |Rci | ≤ 3,

Vol(M4) > v > 0 and |b2(Mi)| ≤ A, then X is a Riemannian
orbifold with isolated singularities.

Conjecture (Codimension Four Conjecture 89’)

Let (M4
i , gi , pi)

GH
→ (X , d, p) satisfy |Rci | ≤ n − 1 and

Vol(B1(pi)) > v > 0, then X is a Riemannian manifold away
from a set of codimension four.

Conjecture (Anderson 94’)

Let (M4, g) satisfy diam(Mi) ≤ D, |Rci | ≤ 3, Vol(M4) > v > 0,
then M4 is one of C(D, v)-diffeomorphism types.
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Structure of Limit Spaces
Bounded Ricci, codimension two singularities:

The key to solving the codimension four conjecture is to
rule out codimension two singularities.
That is, if an Einstein manifold M is close to Rn−2 × C(S1

r ):

Then M is actually smoothly close to Euclidean space Rn.
Key new idea is the slicing theorem:

Theorem (Cheeger-Naber 14’)

For each ε > 0 there exists δ > 0 such that if u : B2(x)→ Rn−2

is a harmonic δ-splitting, then there exists Gε ⊆ B1(0n−2) with
|B1 \ Gε | < ε such that: if s ∈ Gε and x ∈ u−1(s) ∩ B1(x) with
0 < r < 1, then ∃ Ar ∈ GL(n − 2) such that Au : Br(x)→ Rn−2

is an ε-splitting.
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Structure of Limit Spaces
Bounded Ricci, codimension two singularities:

Proof of the slicing theorem is by far the most involved
aspect of the proof.

The level sets u−1(s) are approximations of the cone
factors.

Slicing theorem allows one to pick good cone slices and
reblow up to arrive at a new Ricci limit space which is a
smooth cone:

From this picture it is easy to contradict the existence of
the upper Ricci bound, and thus the existence of
codimension two singularities.
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Structure of Limit Spaces
Bounded Ricci, ε − regularity:

An easier argument works for codim 3 singularities.
Combining yields:

Theorem (Cheeger-Naber 14’)

Let (Mn, g, p) satisfy Vol(B1(p)) > v > 0. Then there exists
ε(n, v) > 0 such that if |Rc| ≤ ε and if

dGH

(
B2(p),B2(y)

)
< ε ,

where y ∈ Rn−3 × C(Y), then the harmonic radius satisfies
rh(x) ≥ 1. If Mn is Einstein then we further have

supB1(p)|Rm| ≤ 1 . (3)
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Structure of Limit Spaces, Bounded Ricci:

By combining the previous ε-regularity theorem with the
stratification theory one obtains:

Corollary (Cheeger-Naber 14’)

Let (M4
i , gi , pi)

GH
→ (X , d, p) satisfy |Rci | ≤ n − 1 and

Vol(B1(pi)) > v > 0, then there exists S(X) ⊆ X with
dimS(X) ≤ n − 4 such that R(X) ≡ X \ S(X) is a Riemannian
manifold.
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Structure of Limit Spaces, Bounded Ricci:

More generally, by combining the previous ε-regularity
theorem with the quantitative stratification theory one
obtains the effective estimates:

Theorem (Cheeger-Naber 14’)

Let (Mn, g, p) satisfy |Rc | ≤ n − 1 and Vol(B1(p)) > v > 0. Then
for every ε > 0 there exists Cε(n, v , ε) such that?

B1(p)
|Rm|2−ε ≤ Cε . (4)

Furthermore, for every r ≤ 1 we have the harmonic radius
estimate

Vol(Br {x : rh(x) ≤ r} ∩ B1(p)) ≤ Cεr4−ε . (5)
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Structure of Limit Spaces, Bounded Ricci
Dimension Four:

These results may be pushed further in dimension four.

As a starting point consider the following:

Theorem (Cheeger-Naber 14’)

If (M4
i , gi , pi)

GH
−→ (X , d, p) where |Rci | ≤ 3 and

Vol(B1(pi)) > v > 0, then X is a Riemannian orbifold with
isolated singularities.

This in turn may be used to prove Anderson’s conjecture:

Theorem (Cheeger-Naber 14’)

If (M4, g) such that |Rc | ≤ 3, Vol(B1(p)) > v > 0, and
diam(M) ≤ D. Then there exists C(v ,D) such that M has at
most one of C-diffeomorphism types.
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Structure of Limit Spaces, Bounded Ricci
Dimension Four:

A local version of the finite diffeomorphism type theorem,
when combined with the Chern-Gauss-Bonnet, gives rise
to the following:

Theorem (Cheeger-Naber 14’)

Let (M4, g, p) satisfy |Rc | ≤ 3 and Vol(B1(p)) > v > 0. Then
there exists C(v) such that?

B1(p)
|Rm|2 ≤ C . (6)

This estimate is sharp
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Structure of Limit Spaces, Bounded Ricci Open
Questions:

Conjecture

Let (Mn, g, p) satisfy |Rc | ≤ n − 1 and Vol(B1(p)) > v > 0. Then
there exists C(n, v) such that

>
B1(p)

|Rm|2 ≤ C.

Corollary

Let (Mn
i , gi , pi)

GH
−→ (X , d, p) with |Rci | ≤ n − 1 and

Vol(B1(pi)) > v > 0, then the singular set S(X) is
n − 4-rectifiable with Hn−4(S(X) ∩ B1(p)) ≤ C(n, v).

Conjecture

Let (Mn
i , gi , pi)

GH
−→ (X , d, p) with |Rci | ≤ n − 1 and

Vol(B1(pi)) > v > 0, then X is bilipschitz to a real analytic
variety.
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Meaning of Ricci Curvature, Background:

Future directions in Ricci curvature will involve more than
a regularity theory.

Many ways to interpret the meaning of Ricci curvature
bounds.

Each new method leads to new understanding.

At this stage there are many methods for characterizing
lower Ricci curvature (see next slide).

Want to characterize and understand the meaning of
bounded Ricci curvature.
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Characterizing Ricci Curvature, Background:
Lower Ricci Curvature

Theorem (Bakry-Emery-Ledoux 85’)

Let (Mn, g) be a complete manifold, then the following are
equivalent:

1 Ric ≥ −κg.
2 |∇Htu|(x) ≤ e

κ
2 tHt |∇u|(x) ∀x.

3 λ1(−∆x,t ) ≥ κ
−1

(
eκt − 1

)
4

∫
M u2 ln u2ρt (x, dy) ≤ 2κ−1

(
eκt − 1

) ∫
M |∇u|2ρt (x, dy) if∫

M u2 ρt = 1.

Ht heat flow operator, ρt heat kernel,
∆x,t = ∆ + ∇lnρt · ∇ heat kernel laplacian.
Lower Bounds on Ricci⇔ Analysis on M
More recently: lower ricci⇔ convexity of the entropy
functional (Lott,Villani, Sturm, Ambrosio, Gigli, Saviere’).
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Characterizing Ricci Curvature:
Bounded Ricci Curvature

Characterizations of bounded Ricci curvature will require
estimates on the path space P(M) of the manifold.

There will be a 1-1 correspondence between the B-E-L
estimates and the new estimates on path space.

In fact, for each estimate on path space, we will see how
when it is applied to the simplest functions on path space
we recover the BEL estimates. Namely, F(γ) = u(γ(t)).

We will see that Bounded Ricci Curvature⇔ Analysis on
Path Space of M.
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Characterizing Bounded Ricci Curvature:
Path Space Basics

P(M) ≡ C0([0,∞),M)

Px(M) ≡ {γ ∈ P(M) : γ(0) = x}.

For a partition t ≡ {0 ≤ t1 < . . . < tk < ∞} denote by
et : P(M)→ Mk the evaluation mapping given by

et(γ) = (γ(t1), . . . , γ(tk )) .

For x ∈ M let Γx be the associated Wiener measure on
P(M). Defined by its pushforwards:

et,∗Γx = ρt1(x, dy1)ρt2−t2(y1, dy2) · · · ρtk−tk−1(yk−1, dyk ) .
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Characterizing Bounded Ricci Curvature:
Gradients on Path Space

If F : P(M)→ R we define the Parallel Gradient:

|∇0F |(γ) = sup{DV F : |V |(0) = 1 and |∇γ̇F | ≡ 0} .

If F : P(M)→ R we define the t-Parallel Gradient:

|∇tF |(γ) = sup{DV F :|V |(s) = 0 for s < t , |V |(t) = 1

and |∇γ̇F |(s) ≡ 0 for s > t} .
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Characterizing Bounded Ricci Curvature:
First Characterization, Gradient Bounds:

Given F : P(M)→ R let us construct a function on M by∫
P(M)

FdΓx : M → R .

If F ∈ C(P(M)) then
∫

FdΓx ∈ C(M).
What about gradient bounds? Do gradient bounds on F
give rise to gradient bounds on

∫
FdΓx? In fact:

|∇

∫
P(M)

FdΓx | ≤

∫
P(M)

|∇0F |dΓx

m

Rc ≡ 0
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Characterizing Bounded Ricci Curvature:
First Characterization, Example:

Let us apply this to the simplest functions on path space.

For t > 0 fixed and u : M → R let F(γ) = u(γ(t)).

Let us compute |∇
∫

P(M)
FdΓx | ≤

∫
P(M)

|∇0F |dΓx :

1
∫

P(M)
FdΓx ≡ Htu(x).

2 |∇0F |(γ) = |∇u|(γ(t)).
3 Thus

|∇

∫
P(M)

FdΓx | ≤

∫
P(M)

|∇0F |dΓx ∀F ∈ L2(P(M))

⇓

|∇Htu|(x) ≤ Ht |∇u|(x) ∀ u ∈ L2(M)

Recover Bakry-Emery, hence Ric ≥ 0.
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Characterizing Bounded Ricci Curvature:
Second Characterization:

Recall L2(P(M)) comes naturally equipped with a
one-parameter family of closed nested subspaces
L2

t ⊆ L2(P(M)).

F ∈ L2
t if F(γ) = F(σ) whenever γ|[0,t] = σ|[0,t].

Given F can construct a family of functions
Ft ∈ L2

t ⊆ L2(P(M)) by projection.

Ft is a martingale. As a curve in L2, Ft is precisely C1/2.



ICM 2014:
The Structure
and Meaning

of Ricci
Curvature

Aaron Naber

Characterizing Bounded Ricci Curvature:
Second Characterization:

To understand C1/2-derivative define Quadratic Variation

[Ft ] ≡ lim
t⊆[0,t]

∑ (Fta+1 − Fta )2

ta+1 − ta

Can we control the derivative of [F ]t? In fact:

d
dt

[Ft ](γ) ≤

∫
Pγ(t)(M)

|∇tF |

m

Rc ≡ 0 .

Similar statements for |Rc | ≤ k , metric measure spaces,
and dimensional versions.
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Characterizing Bounded Ricci Curvature:
Third Characterization:

Recall that the Ornstein-Uhlenbeck operator
Lx : L2(Px(M))→ L2(Px(M)) is a self adjoint operator on
based path space.

Arises from the Dirichlet Form
E[F ] ≡

∫
Px(M)

|∇H1F |2dΓx =
∫

Px(M)

∫ ∞
0 |∇sF |2dΓx , where

∇H1F is the Malliavin gradient.

Acts as an infinite dimensional laplacian. Spectral gap first
proved by Gross in Rn, and Aida and K. D. Elworthy for
general compact manifolds. Fang and Hsu first proved
estimates using Ricci curvature.
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Characterizing Bounded Ricci Curvature:
Third Characterization:

More generally one can define the time restricted Dirichlet
energies E t1

t0
[F ] ≡

∫
Px(M)

∫ t1
t0
|∇sF |2dΓx .

Thus E∞0 ≡ E, and in general E t1
t0

is the part of the Dirichlet
energy which only sees the gradient on the time range
[t0, t1].

From these energies one can define the induced
Ornstein-Uhlenbeck operators
L t1

t0
: L2(Px(M))→ L2(Px(M)) with L∞0 ≡ Lx .
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Characterizing Bounded Ricci Curvature:
Third Characterization:

Is the spectrum of the operators L t1
t0

controlled or
characterized by Ricci Curvature? In fact:∫

P(M)

∣∣∣Ft1 − Ft0

∣∣∣2 ≤ ∫
P(M)
〈F , L t1

t0
F〉

m

Rc ≡ 0 .

In particular, we have the spectral gap λ(Lx) ≥ 1 for the
standard Ornstein-Uhlenbeck operator.

More generally there are log-Sobolev versions of this
result, as well as similar statements for |Rc | ≤ k , metric
measure spaces, and dimensional versions.
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Characterizing Bounded Ricci Curvature:

Below is a partial list of the main results, see [N] for the
complete statement:

Theorem (Naber 13’)

Let (Mn, g) be a smooth Riemannian manifold, then the
following are equivalent:

1 −κg ≤ Ric ≤ κg.

2 |∇
∫

P(M)
F dΓx | ≤

∫
P(M)

(
|∇0F |+

∫ ∞
0

κ
2e

κ
2 t |∇tF |dt

)
dΓx .

3
∫

P(M)

∣∣∣Ft1 − Ft0

∣∣∣2 ≤ e
κ
2 (T−t0)

∫
P(M)
〈F , L t1

t0,κ
F〉, in particular

λ1(LT
x ) ≥ 2

eκT+1 for the standard Ornstein-Uhlenbeck
operator.

4 d
dt [Ft ](γ) ≤ eκ(T−t)

∫
Pγ(t)(M)

|∇tF |+
∫ T

t
κ
2e

κ
2 s |∇sF |2dΓγ(t)

where F is an FT -measurable function.


