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Structure of Singular Sets of Stationary and
Mimizing Harmonic Maps

Joint work with Daniele Valtorta.

Discussing recent results on the singular sets of nonlinear
equations.

Will focus on harmonic maps between Riemannian
manifolds, however techniques are very general.

Main requirement for nonlinear equation is the existence
of a monotone quantity.

Similar results are proven for minimal surfaces, and future
papers will deal with the cases of lower Ricci curvature,
mean curvature flow, etc...
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Outline of Talk

Preliminaries on Harmonic Maps Between Riemannian
Manifolds

Structure of Singular Sets for Stationary Harmonic Maps

Regularity Theory for Minimizing Harmonic Maps

Outline of Proof

- 1. Quantitative Stratification

- 2. Energy Covering

- 3. New Reifenberg-type Theorems

- 4. L2-subspace approximation theorem

- Completion of Proof
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Background: Harmonic Maps between
Riemannian manifolds

Consider a mapping f : B2 ⊆ M → N between two
Riemannian manifolds.

Since ∇f : TxM → Tf(x)N is a linear map we can define
the energy E[f ] ≡ 1

2

∫
B2
|∇f |2dvg.

To say f is harmonic can mean one of three things:

(1) Weakly Harmonic: f solves the Euler Lagrange
∆M f = A(∇f ,∇f).

(2) Stationary: f is a critical point of E.

(3) Minimizing: f is a minimizer of E.

If N = R then these are all equivalent.

In general we only have that (3) =⇒ (2) =⇒ (1).
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Background: Regularity of Harmonic Maps

In general the regularity theory of a harmonic map
depends a great deal on which definition of harmonic map
you take.

Weakly harmonic maps may be everywhere
discontinuous (Riviere).

Stationary harmonic maps are smooth away from a set of
codimension two (Bethuel).

Minimizing harmonic maps are smooth away from a set of
codimension three (Schoen-Uhlenbeck).

Focus of this lecture is on the structure of the singular sets
of stationary and minimizing harmonic maps.
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Background: Tangent Maps

Question: What do singular sets look like?
To answer this let us first recall tangent maps.

Definition (Tangent Maps)

Consider a mapping f : B2 → N :
1 If x ∈ B1 and r < 1 define fx,r : Br−1 (0)→ N by

fx,r (y) = f(x + ry).
2 We call fx : Rn → N a tangent map at x ∈ B1 if there exists

rj → 0 such that fx,rj → fx in L2.

fx,r essentially zooms up the map f on Br (x).
fx represents infinitesimal behavior of f at x.
Remark: If f is stationary then for every ri → 0 a subsequence
of fxr i → fx converges to a tangent map.
For stationary maps it is better to define tangent maps to
include a defect measure, we will ignore this but all the results
of this paper are valid in this case.
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Background: Symmetries of Maps

In general a tangent map fx may not be a constant.

We will be interested in stratifying the singular set based
on how many symmetries tangent maps have.

Definition (Symmetries of Maps)

Consider a mapping f : Rn → N.
1 We say f is 0-symmetric if for each λ > 0 we have

f(λx) = f(x) (radial invariance).
2 We say f is k -symmetric if f is 0-symmetric and there

exists a k -plane Vk ⊆ Rn such that f(x + v) = f(x) for
each v ∈ Vk (translation invariance).

A k -symmetric function may be identified with a function
on the n − k − 1 sphere Sn−k−1.
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Background: Examples

Three most important examples:

Example 1: A function f1 : Rn → N is n-symmetric iff
f1 ≡ const .

Example 2: Consider f2 = x
|x | : R3 → S2 obtained by

projection to standard S2.
f2 is 0-symmetric, with an isolated singularity at 0.
f2
x = constant if x , 0 and f2

x = f if x = 0.
In fact, f2 is a minimizing harmonic map.

Example 3: Consider f3 : Rk+3 → S2 obtained by
projection to the last three variables.
f3 is k -symmetric with respect to Rk × {03}.
f3 is a minimizing harmonic map.
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Background: Stratification of Singular Set

For a stationary harmonic map we will decompose Sing(f)
based on symmetries of tangent cones.

Definition (Stratification)

For a stationary harmonic mapping f : B2 ⊆ M → N define
1 Sk (f) ≡ {x ∈ B1 : no tangent cone at x is k + 1-symmetric}.

Definition frustrating - want to define Sk as those points
which look k -dimensional. Instead, define Sk as those
points which do not look k + 1-dimensional.

Note S0(f) ⊆ S1(f) ⊆ · · · .

In Example 2 Sing(f2) = S0(f2) = {0} and
in Example 3 Sing(f3) = Sk (f3) = Rk × {03}.
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Background: Known Structural Results

Theorem (Schoen-Uhlenbeck 82’)

1 If f : B2 → N is a stationary harmonic map then dim Sk (f) ≤ k .
2 If f : B2 → N is a minimizing harmonic map then

Sing(f) = Sn−3(f) and hence dim Sing(f) ≤ n − 3.

What about structure of the singular set?

Theorem (Simon 95’)

If f : B2 → N is a minimizing harmonic map with N an analytic
manifold then Sing(f) = Sn−3(f) is n − 3 rectifiable.

k -rectifiable ’essentially’ means a k -manifold away from a set of
measure zero. See Federer for precise definition.
Question: What about general stationary case?
Question: What about general stratum?
Question: What about more analytic estimates?
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Structure of Stationary Harmonic Maps

Our first result:

Theorem (NV 15’)

If f : B2 ⊆ M → N is a stationary harmonic map then
1 Sk (f) is k -rectifiable for all k .
2 In fact, for k -a.e. x ∈ Sk (f) there exists a unique k-plane

Vk ⊆ Rn such that every tangent map at x is k -symmetric
with respect to Vk .

In comparison to previous results: f only needs to be
stationary, N needs only be C2, and the rectifiability holds
for every stratum Sk (f).
The second statement tells us that we can define Sk (f)
the more intuitive way (points with k -symmetry), and it
agrees with the usual definition a.e.
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Regularity of Minimizing Harmonic Maps I

For minimizing harmonic maps we can do better.

Assume |secM |, |secN |, diam(N),Vol−1(B2),Vol−1(N) ≤ K .
First result on Hausdorff measure of singular set:

Theorem (NV 15’)

Let f : B2 ⊆ M → N be a minimizing harmonic map with
∫

B2
|∇f |2 ≤ Λ.

Then there exists C(n,K ,Λ) > 0 such that

Vol(BrSing(f)) ≤ Cr3 . (1)

In particular, Hn−3(Sing(f)) ≤ C is uniformly bounded.

One can even prove that Sing(f) has effective packing
estimates. That is, if {Brj (xj)} is any Vitali covering of Sing(f)

then
∑

rn−3
j < C.

Covering estimates: Hausdorff < Minkowski < Packing
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Regularity of Minimizing Harmonic Maps II

We also have more effective analytic estimates:

Theorem (NV 15’)

Let f : B2 ⊆ M → N be a minimizing harmonic map with∫
B2
|∇f |2 ≤ Λ. Then there exists C(n,K ,Λ) > 0 such that

Vol({|∇f | > r−1}) ≤ Vol(Br {|∇f | > r−1}) ≤ Cr3 . (2)

In particular, |∇f | ∈ L3
weak has apriori estimates. Similarly, one

can also show |∇2f | ∈ L3/2
weak .

These estimates are sharp! Example 2 satisfies
|∇f |(x) ≈ |x |−1 and thus |∇f | ∈ L3

weak but |∇f | < L3.
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Proof of Main Results: Weak vs. Strong Methods

Before discussing details let us compare a little weak
versus strong methods.

Main tool of stationary harmonic map: Normalized
Dirichlet energy θr(x) ≡ r2−n

∫
Br (x)

|∇f |2 is monotone:

d
dr
θr(x) = 2r2−n

∫
Sr (x)

∣∣∣∣∂f
∂r

∣∣∣∣2 ≥ 0 . (3)

Note: θr(x) independent of r ⇐⇒ f is 0-symmetric.

Weak Methods: Only aspect of a harmonic map which is
exploited is above monotonicity.

Strong Methods: Anything else (i.e. Lojasiewich
inequalities, tangent cone uniqueness methods, etc...).
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Proof of Main Results: Four Points

Proof requires four relatively new ideas.
Two have been introduced in the last three years, two are
introduced in this paper.

Idea 1: Quantitative Stratification.
Introduced in [CN] to prove effective estimates on Einstein
manifolds.
The stratification is never directly estimated. One must break it
into more manageble pieces.

Idea 2: Energy Covering.
Introduced in [NV] to prove estimates similar to those in this
paper on critical sets of elliptic equations.
Crucial for effective estimates:
Note: even for minimizers Simon never proves hausdorff
measure estimates. Using the energy covering alone combined
with (suitable generalizations of) his techniques one could
accomplish this (for analytic targets).
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Proof of Main Results: Four Points

Idea 3: New Reifenberg-Type Theorems.
Classic Reifenberg gives criteria to determine when a set
S ⊆ Rn is C0,α-bihölder to a ball B1(0k ) ⊆ Rk .
Three new types of Reifenberg theorems introduced.
First uses L2 closeness criteria to determine when a set is
W1,p-equivalent to a ball in Rk . ( =⇒ gradient control)
Second weakens the closeness criteria in exchange for only
showing a set is rectifiable. (e.g. allows holes)
Third is a discrete version which proves volume control on
appriopriate discrete measures.

Idea 4: New L2-subspace approximation theorems.
New Reifenberg results only important if we can show the
stratum of the (quantitative) singular sets satisfy the criteria.
New approximation theorems give ’very’ general criteria under
which we can relate how close the quantitative stratifications
can be approximated in L2 by a k -dimensional subspace.
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Idea 1: Quantitative Stratification: Definition

Stratification separates points based on actual symmetries on
infinitesimal scales.
Quantitative Stratification separates points based on almost
symmetries on balls of definite sizes.

Definition (Almost Symmetries)

Given f : B2 → N we say Br (x) ⊆ B2 is (k , ε)-symmetric if there exists
an actual k -symmetric h : Rn → N such that

>
Br (x)
|f − h|2 < ε.

Definition (Quantitative Stratification)

1 Sk
ε,r (f) ≡ {x ∈ B1 : for no r < s ≤ 1 is Bs(x) (k + 1, ε)-symmetric}

2 Sk
ε (f) ≡ {x ∈ B1 : for no 0 < s ≤ 1 is Bs(x) (k + 1, ε)-symmetric}

Exercise: Show that Sk (f) =
⋃
ε Sk

ε (f).
Thus Sk

ε (f) are those points x for which no ball at x is ever close
to having k + 1-symmetries.
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Idea 1: Quantitative Stratification: Results

The real main result in the paper is the following:

Theorem (NV 15’)

Let f : B2 ⊆ M → N be a stationary harmonic map with∫
B2
|∇f |2 ≤ Λ. Then for each ε > 0 we have

Vol(BrSk
ε (f)) ≤ Cεrn−k . (4)

In particular, Hk (Sk
ε (f)) < Cε . Further, the set Sk

ε (f) is
k -rectifiable.

Note: Since Sk (f) =
⋃
ε Sk

ε (f) this proves the main result
on stationary maps.
Note: If f is minimizing then there exists ε(n,K ,Λ) such
that Sing(f) ⊆ Sn−3

ε (f). This proves the main results for
minimizing maps.
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Idea 2: Energy Covering

In fact, even the Quantitative Stratification needs to be
broken down into more manageable pieces.

Covering scheme introduced in [NV] to study critical sets
of elliptic equations.

Good aspect of the scheme is that it gives rise to very
effective estimates (packing estimates).

Bad aspect is that it requires comparing balls of arbitrarily
different sizes.

In critical set context this was handled by proving effective
tangent cone uniqueness statements. Allowed us to relate
balls of arbitrarily different sizes.

In this context we will need the new Reifenberg.
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Idea 2: Energy Covering:Packing

Rough Idea for Packing Estimate for Sk
ε :

Let {Brj (xj)} ⊆ B2 be a collection of balls such that
1 {Brj/5(xj)} disjoint (Vitali condition).
2 xj ∈ Sk

ε ∩ B1.
Then we want to conclude

∑
rk
j < C(n, ε,Λ,K).

First consider the weaker statement:

Lemma (Main Lemma)

Let {Brj (xj)} ⊆ B2 satisfy
1 {Brj/5(xj)} disjoint (Vitali condition).
2 xj ∈ Sk

ε ∩ B1.
3 |θ1(xj) − θrj (xj)| < η(n,K ,Λ, ε).

Then
∑

rk
j ≤ C(n).

We can prove the packing estimate by inductively applying the
Main Lemma Λη−1 times.
Our main goal is therefore to prove the Main Lemma.
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Idea 2: Energy Covering:Packing II

We can prove the packing estimate for {Brj (xj)} by inductively
applying the Main Lemma.
Indeed: Build a new Vitali cover Sk

ε ∩ B1 ⊆
⋃

Bsj (yj) with
E ≡ supB1

θ1(y) such that
1 For each ball we have supBsj (yj) θsj (y) > E − η.
2 If Brj (xj) satisfies supBrj (xj) θrj (y) > E − η, then

Brj(xj) ⊆ {Bsj (yj)} is a ball in our new cover.
3 For all other Bsj (yj) we have supBsj (yj) θsj (y) = E − η.

Applying the Main Lemma we have that
∑

sk
j ≤ C(n).

Now we can look at each ball Bsj (yj) which is not a ball in
{Brj (xj)} and repeat the above recovering process on Bsj (yj).

We need only repeat this process Λη−1 since the energy drops
by η each time, at this stage we must have our original covering.
This shows

∑
rk
j ≤ C(n)Λη−1

= C(n,K ,Λ), as claimed.
Thus our main goal is to prove the Main Lemma.
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Idea 2: Energy Covering:Rectifiable

One can modify the procedure to handle not just the effective
estimates but the rectifiable structure itself.

To do this build a cover Sk
ε ∩ B1 ⊆ U0 ∪ U+ = U0 ∪

⋃
Bsj (yj)

such that
1 U0 is k-rectifiable with λk (U0) < Cε . (proof done here)
2

∑
sk

j < Cε . (bad balls have k-content bound)
3 If E = supB1

θ1(y) then for each ball we have
supBsj (xj) θsj (y) < E − η. (definite energy drop on bad balls).

To build such a cover the inductive scheme is the same as
before, but to control U0 we will need a version of the Main
Lemma which includes U0.
In the proof of the Main Lemma this will come down to applying
the new rectifiable-Reifenberg, not just the new
discrete-Reifenberg. (See paper for details on this.)
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Idea 3: New Reifenberg Type Theorems

Strategy of proving Main Lemma is by proving and
applying some new type of Reifenberg results.
Recall standard Reifenberg:

Theorem (Reifenberg)

For each ε > 0 and α < 1 there exists δ(n, ε, α) > 0 such that if
S ⊆ B2 is a closed set such that for all Br(x) ⊆ B2 there exists a
k-plane Lk such that dH(S ∩ Br , L ∩ Br) < δr, then there exists
a 1 + ε bi-C0,α homeomorphism φ : B1(0k )→ S ∩ B1.

Issues: No gradient control, no volume control, no
rectifiable structure.
Various generalizations in the literature, but requires too
many assumptions to get the desired gradient control.
There are three generalizations of the Reifenberg we will
consider in the paper.
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Idea 3: New Reifenberg Type Theorems:
Displacement

To describe the results we begin with the following:

Definition
Let µ ⊆ B2 be a measure, define the k -displacement
Dk
µ (x, r) ≡ infLk r−2−k

∫
Br

d2(x, Lk )dµ if µ(Br(x)) ≥ εnrk and
Dk
µ (x, r) ≡ 0 if µ(Br(x)) < εnrk .

Definition

If S ⊆ B2 define Dk
S(x, r) ≡ Dk

µ (x, r) where µ ≡ λk |S is the
k -dimensional Hausdorff measure on S.

Thus Dk (x, r) measures how closely, in the L2-sense, µ is
contained in a k -dimensional plane.

If one replaces d2 with dp , then for p > 2 the results fail.
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Idea 3: New Reifenberg Type Theorems:
W1,p-Reifenberg

Our first new Reifenberg result is the following:

Theorem (W1,p-Reifenberg)

For each ε > 0 and p < ∞ there exists δ(n, ε, p) > 0 such that if
S ⊆ B2 is a closed set such that for all Br (x) ⊆ B2 we have

1 There exists a k-plane Lk such that dH(S ∩ Br , L ∩ Br ) < δr.
2 r−k

∫
Br

∫ r
0 Dk

S(y, s)dµ ds
s < δ.

then there exists a 1 + ε bi-W1,p homeomorphism
φ : B1(0k )→ S ∩ B1. In particular for p > n, we have the estimates:

1 S ∩ B1 is k -rectifiable.
2 A(n)−1 ≤ λk (S ∩ B1) ≤ A(n)

3 A(n)−1rk ≤ λk (S ∩ Br (x)) ≤ A(n)rk .

(3) above holds by constructing φ : Br (0k )→ S ∩ Br (x) and
applying (2).
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Idea 3: New Reifenberg Type Theorems:
rectifiable-Reifenberg

Next we drop the assumption that S is close to a k -plane.
In this case we cannot get a homeomorphic structure on S, e.g.
take S ⊆ Lk to be an arbitrary subset, then Dk (y, s) ≡ 0.
We therefore see that the most we can hope is that S is
rectifiable with upper volume estimates.
In fact this is true:

Theorem (rectifiable-Reifenberg)

There exists δ(n) > 0 such that if S ⊆ B2 is a closed set such that for
all Br (x) ⊆ B2 we have

r−k
∫

Br

∫ r

0
Dk

S(y, s)dµ
ds
s
< δ , (5)

then we have the estimates:
1 S ∩ B1 is k -rectifiable.
2 λk (S ∩ B1) ≤ A(n)

3 λk (S ∩ Br (x)) ≤ A(n)rk .
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Idea 3: New Reifenberg Type Theorems:
discrete-Reifenberg

Let us now even drop that S is a set and discuss the case of a
general discrete measure µ.
We cannot expect any rectifiable structure, the most we might
hope is that the upper volume estimates survive.
In fact this is true:

Theorem (discrete-Reifenberg)

Let {Brj (xj)} ⊆ B2 be a Vitali set with µ ≡
∑

rk
j δxj , then there exists

δ(n) > 0 such that if for all Br (x) ⊆ B2 we have

r−k
∫

Br

∫ r

0
Dk
µ (y, s)dµ

ds
s
< δ , (6)

then we have the estimate
∑

rk
j ≤ A(n).

This result is used to provide all of the effective estimates in the
paper, in particular the Main Lemma from before.
We can replace condition (6) with r−k

∫
Br

∑
rα≤r Dk

µ (y, s)dµ < δ,
where rα ≡ 2−α.
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Proving the new Reifenberg results I

Let us first recall the rough outline of the proof of the standard
Reifenberg:

One builds an inductive sequence of approximating
submanifolds Sβ → S by the following scheme:

1 Cover S with a Vitali collection {Bsβ(yβ,j)}, where sβ = 2−β.
2 On each ball pick a best approximating k -plane Lk

β,j .
3 Use a partition of unity to glue these together to form Sβ.

There is a natural projection φβ : Sβ → Sβ+1, and composing
gives φ : S1 → S by φ = · · · ◦ φ2 ◦ φ1, where S1 ≈ B1(0k ).
Carefully keeping track of the errors shows this is the desired
bi-Holder map.

The W1,p-Reifenberg is the most natural of the generalizations,
and one would like to prove it in precisely the same manner.
In fact, if we assumed apriori that λk

∣∣∣
S satisfied the Alhfors

regular condition (3), then this would work exactly.
By far the most challenging aspect of the proof is therefore to
remove this Alhfors assumption, and indeed seeing it is a
conclusion.
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Proving the new Reifenberg results II

Let out roughly outline this in a little more detail.
In our descriptions the natural and intuitive ordering was to first
explain the W1,p-Reifenberg, and then the
rectifiable-Reifenberg, and then finally the discrete Reifenberg.
In the proof we must go the other direction. We must proceed by
discrete Reifenberg =⇒ rect-Reifenberg =⇒ W1,p-Reifenberg.

As sketched the standard Reifenberg involves an argument
which starts at the top scale and inducts downward.
We will see that we need a form of double induction which
begins at the bottom scale going up, and then at each induction
stage requires a separate downward induction.
This double induction is what will allow us to regain the
Ahlfors-regularity which is otherwise lost.
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Proving the discrete Reifenberg I

We will first consider the discrete Reifenberg.

There is no loss in assuming rj = 2−nj is a power of two
and the collection {Brj (xj)} is a finite collection.

Now let us focus on proving the stronger result:

For every x` and r` ≤ s ≤ 2 we have µ(Bs(x`)) ≤ A(n)sk . (?)

We will prove (?) inductively on s = sβ = 2−β, i.e. this is
our upward induction.

In particular, for sβ ≈ min rj the result is clear by the
definition of µ.

Thus given that (?) holds for some sβ+1, we need to prove
it for sβ.
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Proving the discrete Reifenberg II

Note first that by a covering argument we can obtain the worse
estimate µ(Bsβ(x`)) ≤ B(n)sk

β , with B >> A .

Also wlog µ(Bsβ(x`)) > 10−1Ask
β , since otherwise we are done.

Now similar to the proof of the Reifenberg we build a sequence of
approximate submanifolds Sγ with γ ≥ β, i.e. our downward induction.

An important difference is that if for some Bsγ(y) we have either

(a) Bsγ(y) = Brj (xj) (a final ball)
(b) µ(Bsγ(y)) < εnsk

γ (a small volume ball)
then we let Sγ′ ∩ Bsγ(y) = Sγ−1 ∩ Bsγ(y) for all γ′ ≥ γ.

Note by (a) that for large γ we have that Sγ = Sγ+1 ≡ S∞ stabilizes.
Note that (b) gives an Alhfors regularity condition.
Therefore as previously suggested we can estimate φγ : Sγ → Sγ+1 by
(6) and show that φ : Sβ → S∞ has W1,p estimates for p > n.

Using (a) and (b) this shows µ(Bsβ(x`)) =
∑

xj∈Bs rk
j ≤ Ask

β , which
finishes the inductive step and hence proof.
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Proving the Rectifiable and W1,p-Reifenberg

To show the rect-Reifenberg we first show S must be sigma-finite, and
thus we can restrict to a subset S̃ to assume λk (S̃) < ∞.
Now find a cover {Brj (xj)} such that Brj (xj) are Hk -density balls, i.e.

λk
∣∣∣
S

(
Brj (xj)

)
≈ rk

j .

We can now apply the discrete Reifenberg to show
∑

rk
j ≤ Ark .

Since Br(x) was arbitrary this proves the upper volume estimates for S̃.
Since S̃ was arbitrary, this shows the upper volume estimate for S.

To see S is rectifiable now pick a ball Bsβ with λk
∣∣∣
S
(Bsβ) > (1 − εn)ωk sk

β .
Consider S ∩ Bsβ and return to the construction of Sγ and φγ as in the
discrete case, still under the condition (b).
As before we can limit to a W1,p map φ : Sβ → S∞ with p > n. Note
S = S∞ for each x ∈ S such that λk (S ∩ Br(x)) > εnrk for all r < sβ.
A small argument shows λk (Bsβ ∩ S ∩ S∞) > 1

2ωk sk
β .

In particular, the rectifiability of S is easy to conclude from this.

Finally, to prove the W1,p-Reifenberg one observes that the lower
volume estimate λk (S ∩ Br(x)) > εnrk automatically holds.
Thus S∞ ≡ S and we get our desired W1,p-equivalence.
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Idea 4: L2-subspace approximation theorem

Our goal is now to prove the Main Lemma by applying the
discrete-Reifenberg.
To accomplish this we need to understand how to
approximate an essentially arbitrary measure µ by a
k -plane, using only the properties of a stationary map.
In general this is crazy. Surprisingly, if your stationary
harmonic map is not (k + 1, ε)-symmetric, then it is true:

Theorem (L2-subspace approximation theorem)

Let f : B8 → N be a stationary harmonic map with
∫

B8
|∇f |2 ≤ Λ.

Let µ be an arbitrary measure supported on B1. Then there
exists ε(n,Λ,K),C(n,Λ,K) such that if B8 is not
(k + 1, ε)-symmetric, then we can estimate

Dk
µ (x, 1) ≡ inf

Lk

∫
B1

d2(x, Lk )dµ ≤ C
∫

B1

|θ8(y) − θ1(y)|dµ . (7)

We can replace condition (6) with
r−k

∫
Br

∑
rα≤r Dk

µ (y, s)dµ < δ, where rα ≡ 2−α.
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Idea 4: L2-subspace approximation: fake proof

The proof of the L2-approximation theorem is too involved to
discuss in detail here, but let us discuss an important special
case which helps build an intuition for why the theorem is true:

Indeed: let us assume we have a measure µ and that∫
B1
|θ8(y) − θ1(y)|dµ = 0.

Then the theorem should imply there exists a k -plane Lk such
that suppµ ⊆ Lk . Let us show this:

Thus note that if x ∈ suppµ then f is 0-symmetric at x, that is f is
radially invariant with respect to x as the center point.
Thus if there exists j + 1 linearly independent points
{x0, . . . , xj} ∈ suppµ then f is j-symmetric with respect to the
j-plane spanned by {x0, . . . , xj}.
Since f is not k + 1 symmetric we must then get that there
exists at most k + 1 linearly independent points in suppµ.
This is precisely the statement that suppµ is contained in some
k -plane Lk .
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Proving the Main Lemma

Let us now return to the Main Lemma.

Recall that we have reduced the proof of the main
theorems to the proof of the quantitative stratification
estimates.

We have further reduced the proof of the quantitative
stratification estimates to the proof of the main lemma.

Thus we must tackle this using the new Reifenberg results
and the L2-approximation theorems.

Recall the setup. We have a Vitali collection {Brj (xj)} ⊆ B2
such that

1 xj ∈ Sk
ε ∩ B1.

2 |θ1(xj) − θrj (xj)| < η.

From this we want to prove
∑

rk
j ≤ A(n).
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Proving the Main Lemma

Define µ ≡
∑

rk
j δxj . Thus we want to prove µ(B1) ≤ A(n).

Instead, let us prove the stronger result:

For every xj and rj ≤ s ≤ 2 we have that µ(Bs(xj)) ≤ Ask . (?)

We will prove (?) inductively on s = sβ = 2−β.

In particular, for sβ ≈ min rj the result is clear.

Thus imagine we have proved (?) for some sβ+1, and let
us prove it for sβ.
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Proving the Main Lemma

Point 1: By covering B10sβ(xj) by a controlled number of balls of
radius sβ+1, we can use the inductive hypothesis to get that
µ(B10sβ(xj)) ≤ B(n)sk

β where potentially B(n) >> A(n).

Point 2: Now since xj ∈ Sk
ε we have that Bs(x) is not

(k + 1, ε)-symmetric. By the L2-approximation theorem we have
for every s ≤ 10sβ that

Dk
µ (xj , s) ≤ Cs−k

∫
Bs

|θ8s − θs |dµ . (8)

This gives us for each s ≤ 10sβ that

s−k
β

∫
Bsβ

Dµ(y, s)dµ[y] ≤ Cs−k s−k
β

∫
Bsβ

∫
Bs

|θ8s − θs |dµ dµ

≤ Cs−k s−k
β

∫
Bsβ

µ(Bs(y))|θ8s − θs |dµ ≤ Cs−k
β

∫
Bsβ

|θ8s − θs |dµ
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Proving the Main Lemma

Summing over s = sγ ≤ sβ we get the estimate

s−k
β

∫
Bsβ

∑
sγ≤sβ

Dµ(y, sγ)dµ ≤ Cs−k
β

∫
Bsβ

∑
|θ8sγ − θsγ |dµ

≤ Cs−k
β

∫
Bsβ

|θ8sβ − θry |(y)dµ ≤ Cηs−k
β µ(Bsβ(xj))

≤ C(n,Λ,K)η < δ .

where we have used the estimate µ(Bsβ(xj)) < Bsk
β and

have chosen η << C−1(n,Λ,K)δ.

Thus we may apply the discrete Reifenberg we can
conclude that µ(Bsβ(xj)) ≤ A(n)sk

β , which completes the
induction stage of the proof, and hence the theorem.
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Integral Varifolds with Bounded Mean Curvature

Theorem (NV 15’)

If Im be an integral varifold in B2 ⊆ M with bounded mean curvature
and finite mass. Then

1 Sk (I) is k -rectifiable for all k .
2 In fact, for k -a.e. x ∈ Sk (I) there exists a unique k-plane

Vk ⊆ Rn such that every tangent map at x is k -symmetric with
respect to Vk .

Theorem (NV 15’)

If Im = In−1 be a minimizing integral varifold of codimension one with
mass bound |I|(B2) ≤ Λ. Then there exists C(n,K ,Λ) > 0 such that

|I|({|A | > r−1}) ≤ |I|(Br {|A | > r−1}) ≤ Cr7 ,

|I|(BrSing(I)) ≤ Cr7 . (9)

In particular, Sing(I) is m − 7 rectifiable with Hm−7(Sing(I)) ≤ Λ, and
|A | ∈ L7

weak has apriori estimates.


