115a/4 - Homework 1*

Due 27 September 2010

1. Compute the row reduced form of the matrix

$$
\left(\begin{array}{cccc}
1 & 3 & 1 & 2 \\
2 & 6 & 6 & 5 \\
1 & 3 & -3 & 1 \\
1 & 3 & 5 & 6
\end{array}\right)
$$

2. Is the matrix

$$
\left(\begin{array}{ccc}
4 & 0 & -1 \\
4 & 0 & -5 \\
4 & 4 & 2
\end{array}\right)
$$

invertible? Explain why.
3. Find a basis for the null space and the range of the matrix

$$
A=\left(\begin{array}{ccc}
4 & 2 & 4 \\
0 & 0 & 2 \\
6 & 3 & -4 .
\end{array}\right)
$$

What is the nullity of A ? What is the rank of A ? What is the orthogonal projection of the vector

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

onto the null space of A ?
4. Compute the inverse and transpose of

$$
A=\left(\begin{array}{ll}
1 & 6 \\
1 & 4
\end{array}\right) .
$$

[^0]5. Let
\[

A=\left($$
\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}
$$\right)
\]

Find the eigenvalues and eigenvectors of A. Find bases for the row and column spaces of A.

[^0]: *Numbers in parentheses like (1.2.11) refer to the 11 th problem in the second section of the first chapter of Friedberg et. al.

