115a/4 - Homework 2*

Due 1 October 2010

1. (1.2.2) Write the zero vector of My, 4(F).

2. (1.2.11) Let V = {0} consist of a single vector 0 and define 0 +0 = 0 and 0 = 0 for
all scalars ¢ in F'. Prove that V is an F-vector space.

3. (1.2.12) A real-valued function f defined on the real line is called an even function if
f(=t) = f(t) for each real number ¢. Prove that the set of even functions defined on
the real line with the operations of addition, given by (f + ¢)(t) = f(t) + ¢(t), and
multiplication, given by (cf)(t) = cf(t), is a vector space.

4. Prove that if V is a vector space over the real numbers, then it is a vector space over
the rational numbers.

5. (1.2.18) Let V' = {(a,b) : a,b € F}. Define (a,b) + (¢,d) = (a + 2¢,b + 3d), and
c(a,b) = (ca,cb). Is V an F-vector space? If not, why not?

6. (1.3.2) Compute the transposes of the following matrices. If the matrix is square,
compute its trace.

(a) (—4 2) (e) (1 -1 3 5)

5 —1
925 1 4
03 —6 (f) ( )
1 _
(b) (2 1 7) 70 6
3 9 5
¢ [0 -2 () |6
6 1 7
10 0 -8 4 0 6
@ | 2 -4 3 @ o 1 -3
5 7 6 6 -3 5

7. (1.3.3) Prove that (a A+ bB)" = aA' + 0B for any A, B € M,,,x,,(F) and any a,b € F.

*Numbers in parentheses like (1.2.11) refer to the 11th problem in the second section of the first chapter
of Friedberg et. al.
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(1.3.4) Prove that (A")! = A for each A € M5, (F).

(1.3.12) An m x n matrix A is called upper triangular if A;; = 0 whenever ¢ > j. Prove
that the upper triangular matrices form a subspace of M,,«,(F).

(1.3.17) Prove that a subset W of a vector space V' is a subspace of V' if and only if W
is not empty, and, whenever a € F and x,y € W, then ax € W and x +y € W.

Prove that if U is a subspace of W and W is a subspace of V', then U is a subspace of
V.

(1.4.3) For each of the following lists of vectors in R®, determine whether the first
vector can be expressed as a linear combination of the other two. If it can be, find one
such expression.

(a) (=2,0,3), (1,3,0), (2,4, —1).
(b> ( )7 (_37271)7 (27_17_1)-
(c) (3 4, 1), (1,-2,1), (—=2,—1,1).
(d) (2,-1,0), (1,2,-3), (1,-3,2).
(e)(5,, 5), (1,-2,-3), (2,3, —4).
(f) (=2,2,2), (1,2, 1), (=3,-3,3).

Y

(1.4.4) For each list of polynomials in P3(R), determine whether the first polynomial
can be expressed as a linear combination of the other two.

(a) 23 =3z +5, 2® + 222 —x + 1, 23 + 322 — 1.
(b) 4a® +22% — 6, 2% — 222 + 4w + 1, 323 — 62? + = + 4.
(c) =223 —112? + 32 + 2, 23 — 222 + 32 — 1, 223 + 22 + 32 — 2.

(1.4.6) Show that the vectors (1,1,0), (1,0,1), and (0,1,1) generate F3.

(1.4.12) Show that a subset W of a vector space V is a subspace of V if and only if
span(W) =W.

(1.4.17) Let W be a subspace of an R-vector space V. Under what conditions are there
only a finite number of distinct subsets S of W such that S generates .



