115a/4 - Homework 2*

Due 1 October 2010

1. (1.2.2) Write the zero vector of $M_{3 \times 4}(F)$.
2. (1.2.11) Let $V=\{0\}$ consist of a single vector 0 and define $0+0=0$ and $c 0=0$ for all scalars c in F. Prove that V is an F-vector space.
3. (1.2.12) A real-valued function f defined on the real line is called an even function if $f(-t)=f(t)$ for each real number t. Prove that the set of even functions defined on the real line with the operations of addition, given by $(f+g)(t)=f(t)+g(t)$, and multiplication, given by $(c f)(t)=c f(t)$, is a vector space.
4. Prove that if V is a vector space over the real numbers, then it is a vector space over the rational numbers.
5. (1.2.18) Let $V=\{(a, b): a, b \in F\}$. Define $(a, b)+(c, d)=(a+2 c, b+3 d)$, and $c(a, b)=(c a, c b)$. Is V an F-vector space? If not, why not?
6. (1.3.2) Compute the transposes of the following matrices. If the matrix is square, compute its trace.
(a) $\left(\begin{array}{cc}-4 & 2 \\ 5 & -1\end{array}\right)$
(e) $\left(\begin{array}{llll}1 & -1 & 3 & 5\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 3 & -6 \\ 2 & 4 & 7\end{array}\right)$
(f) $\left(\begin{array}{cccc}-2 & 5 & 1 & 4 \\ 7 & 0 & 1 & -6\end{array}\right)$
(c) $\left(\begin{array}{cc}-3 & 9 \\ 0 & -2 \\ 6 & 1\end{array}\right)$
(g) $\left(\begin{array}{l}5 \\ 6 \\ 7\end{array}\right)$
(d) $\left(\begin{array}{ccc}10 & 0 & -8 \\ 2 & -4 & 3 \\ -5 & 7 & 6\end{array}\right)$
(h) $\left(\begin{array}{ccc}-4 & 0 & 6 \\ 0 & 1 & -3 \\ 6 & -3 & 5\end{array}\right)$
7. (1.3.3) Prove that $(a A+b B)^{t}=a A^{t}+b B^{t}$ for any $A, B \in M_{m \times n}(F)$ and any $a, b \in F$.

[^0]8. (1.3.4) Prove that $\left(A^{t}\right)^{t}=A$ for each $A \in M_{m \times n}(F)$.
9. (1.3.12) An $m \times n$ matrix A is called upper triangular if $A_{i j}=0$ whenever $i>j$. Prove that the upper triangular matrices form a subspace of $M_{m \times n}(F)$.
10. (1.3.17) Prove that a subset W of a vector space V is a subspace of V if and only if W is not empty, and, whenever $a \in F$ and $x, y \in W$, then $a x \in W$ and $x+y \in W$.
11. Prove that if U is a subspace of W and W is a subspace of V, then U is a subspace of V.
12. (1.4.3) For each of the following lists of vectors in \mathbb{R}^{3}, determine whether the first vector can be expressed as a linear combination of the other two. If it can be, find one such expression.
(a) $(-2,0,3),(1,3,0),(2,4,-1)$.
(b) $(1,2,-3),(-3,2,1),(2,-1,-1)$.
(c) $(3,4,1),(1,-2,1),(-2,-1,1)$.
(d) $(2,-1,0),(1,2,-3),(1,-3,2)$.
(e) $(5,1,-5),(1,-2,-3),(-2,3,-4)$.
(f) $(-2,2,2),(1,2,-1),(-3,-3,3)$.
13. (1.4.4) For each list of polynomials in $P_{3}(\mathbb{R})$, determine whether the first polynomial can be expressed as a linear combination of the other two.
(a) $x^{3}-3 x+5, x^{3}+2 x^{2}-x+1, x^{3}+3 x^{2}-1$.
(b) $4 x^{3}+2 x^{2}-6, x^{3}-2 x^{2}+4 x+1,3 x^{3}-6 x^{2}+x+4$.
(c) $-2 x^{3}-11 x^{2}+3 x+2, x^{3}-2 x^{2}+3 x-1,2 x^{3}+x^{2}+3 x-2$.
14. (1.4.6) Show that the vectors $(1,1,0),(1,0,1)$, and $(0,1,1)$ generate F^{3}.
15. (1.4.12) Show that a subset W of a vector space V is a subspace of V if and only if $\operatorname{span}(W)=W$.
16. (1.4.17) Let W be a subspace of an \mathbb{R}-vector space V. Under what conditions are there only a finite number of distinct subsets S of W such that S generates W.

[^0]: *Numbers in parentheses like (1.2.11) refer to the 11 th problem in the second section of the first chapter of Friedberg et. al.

