115a/4 - Homework 6*

Due 5 November 2010

1 Direct sums

Definition 1.1. Suppose that V is a vector space and that W and Z are two subspaces of V. Then, V is the sum of W and Z if every vector v in V may be written $v=w+z$ for some vector w in W and z in Z. Write $V=W+Z$.

Definition 1.2. If a vector space V is the sum of two subspaces W and Z, say that the sum is direct if every element v of V may be written uniquely as $v=w+z$. In other words, if $v=w^{\prime}+z^{\prime}$, then $w^{\prime}=w$ and $z^{\prime}=z$. Say that V is the direct sum of W and Z, and write $V=W \oplus Z$.

1. Show that if $V=W+Z$, then $V=W \oplus Z$ if and only if

$$
W \cap Z=(0),
$$

where $W \cap Z$ is the intersection of the two subspaces W and Z.

For the next three problems, assume that V is finite dimensional, that $V=W \oplus Z$, that $T: V \rightarrow V$ is a linear operator, and that W and Z are both T-invariant.
2. Show that there is some basis β for V such that the matrix representation of T with respect to β can be written as a block-diagonal matrix

$$
[T]_{\beta}=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

3. Show that the linear operator T restricts to linear operators $\left.T\right|_{W}: W \rightarrow W$ and $\left.T\right|_{Z}$: $Z \rightarrow Z$.
4. Show that

$$
\operatorname{det}(T)=\operatorname{det}\left(\left.T\right|_{W}\right) \operatorname{det}\left(\left.T\right|_{Z}\right)
$$

[^0]
2 Characteristic

Definition 2.1. For any field F, any element a of F, and any positive integer n, the element $n a \in F$ is defined as

$$
n a=a+\cdots a
$$

the n-fold sum of a with itself.
Definition 2.2. The characteristic of the field F is defined to be the smallest positive integer n such that $n a=0$ for all $a \in F$. If no such integer exists, say that the characteristic is 0 .
5. Show that the characteristic of a field is either 0 or a prime number.

Definition 2.3. A field homomorphism is a function $i: F \rightarrow G$, where F and G are fields, such that $i(1)=1, i(a+b)=i(a)+i(b)$, and $i(a b)=i(a) i(b)$.
6. Show that the map $\mathbb{R} \rightarrow \mathbb{C}$ defined by sending a to $a+0 i$ is a field homomorphism.
7. Show that if F is a characteristic p field, where $p>0$, then the map that takes a to a^{p} is a field homomorphism from F to itself.
8. Suppose that F is a characteristic p field, where $p>0$. Compute the nullity and rank of the differentiation map

$$
\frac{d}{d x}: P_{p}(F) \rightarrow P_{p-1}(F)
$$

3 One-sided inverses

Definition 3.1. Let $T: V \rightarrow W$ be a linear transformation. A map $S: W \rightarrow V$ is a called a left inverse to T is $S \circ T=I d_{V}$. A map $S: W \rightarrow V$ is called a right inverse to T if $T \circ S=I d_{W}$.
9. Show that the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ sending (a, b) to $(a, b, 0)$ has a left inverse but not a right inverse.
10. Show that T has a left inverse if and only if T is one-to-one. Show that T has a right inverse if and only if T is onto.
11. Show that if T has a left and a right inverse then they are the same. Conclude that if this is the case, then T is invertible.

[^0]: *Numbers in parentheses like (1.2.11) refer to the 11th problem in the second section of the first chapter of Friedberg et. al.

