374 Chap. 6 Inner Product Sp ec: 6.4 Normal and Self-Adjoint Operators 375

characteristic polynomial of T 4 splits into factors of the form t—A. Since'
A is real, the characteristic polynomial splits over R. But T4 has thes
characteristic polynomial as A, which has the same characteristic polyno
as T. Therefore the characteristic polynomial of T splits.

(f)  The identity and zero operators are self-adjoint.
(g) Every normal operator is diagonalizable.
(h) Every seli-adjoint operator is diagonalizable.

For each linear operator T on an inner product space V, determine
whether T is normal, self-adjoint, or neither. If possible, produce an
orthonormal basis of eigenvectors of T for V and list the corresponding
eigenvalues.

(a) V =R?and T is defined by T(a,b) = (22 — 20, —2a + 5b).

(b) V = R® and T is defined by T{a,b,c} = (~a +b,5b,da - 2b + 5¢).
(¢) V =C2and T is defined by T{a,b) = (2a + ib,a + 2b).

(d} V= P2(R) and T is defined by T(f) = f', where

We are now able to establish one of the major results of this chapter

Theorem 6.17. Let T be a linear operator on a ﬁnif;e—dimensironal
inner product, space V. Then T Is self-adjoint if and only if there exiat:
orthonormal bagis 3 for V cousisting of eigenvectors of T.

Proof. Suppose that T is seif-adjoint. By the lemma, we may apply Sch
theorem to obtain an orthonormal basis 3 for V such that the matrix A
is upper trisngular. But ’

A < T3 = [l = [T = 4. | o= [ s
(e) V = Mayo(R) and T is defined by T(A) = At

| : a b c d
(fy V= Mayo(R) and T is defined by T (c d) = (a b)'

So A and A* are both upper triangular, and therefore 4 is a diagonal ma
Thus # must congist of eigenvectors of T. :
The converse is left as an exercise.

(live an example of a linear operator T on R? and an ordered basis for
R2 that provides a counterexample to the statement in Exercise 1(c).

Theorem 6.17 is used extensively in many areas of mathematics and st
tics.” We restate this theorem in meatrix form in the next section.

Example 4 1 1et T and U be selé-adjoint operators on an inner product space V.

As we noted earlier, real symmetric matrices are self-adjoint, and Self—acl]i Prove that TU is self-adjoint if and only if TU = UT.

matrices are norl_nal. The following matrix A is complex apd symmetric; Prove (b) of Theorem 6.15.

! .. . .
% % * —% —%
A= (@ 1) and A* = (—i 1 ) .

But A ig not normal, because (AA*)1o = 141 and {4*A)5 = 1 —4. There
complex symmetric matrices need not be normal.

. Let V be a complex inner product space, and let T be a linear operator
on V. Define )

T, = }-(T—E—T*) and To = i(T—T*)
2 24
(a) Prove that Ty and T, are self-adjoint and that T =T, +iTa.
(b) Suppose also that T = Uz +:Uz, where Uy and Uz are self-adjoint.
Prove that Uy = Ty and Uy = Ta.
(c) Prove that T is normal if and only if T1 T2 = T2 Ty

EXERCISES

1. Label the following statements as true or false. Assume that the un
lying inner product spaces are [inite-dimensional. ‘ \ Let T be a linear operator on an inner product space V, and let W be

‘a T-invariant subspace of V. Prove the following results.

(a) Tf T is self-adjoint, then Tw is self-adjoint.

{b) W is T*-invariant.

(¢) If W is both T- and T*-invariant, then (Tw)* = (T")w. .
(d) If W is both T- and T*-invariant and T is normal, then Ty is

normal.

(a) Every self-adjoint operator is normal.

(b) Operators and their adjoints have the same eigenvectors.

{(¢) If T is an operator on an inner product space V, then T is nor
if and only if [T}z is normal, where g is any ordered basis for

(d) A real or complex matrix A is normal if and only if L4 is nor

(e) The eigenvalues of a self-adjoint operator must all be real.
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Let A and B be symmetric n x n matrices such that AB = BA. Use
Exercise 14 to prove that there exists an orthogonal matrix P such that
 P'AP and PtBP are both diagonal matrices.

\8 Let T ke a normal operator on a finite-dimensional complex i
product space V, and let W be a subspace of V. Prove that if 4
“T-invariant, then W is also T*-invariant. Hmt Use Exercise 24 of

tion 5.4. | Prove the Cayley-Hamilton theorem for a complex nxn matrix 4. That

is, if f(¢) is the characteristic polynomial of A, prove that f(4) = O.
" Hint: Use Schur’s theorem to show that A may be assumed to be upper

riangular, in which case

S Let T be a normal operator on a finite-dimensional inner product sp
V. Prove that N(T) = N(T*) and R(T) = R(T*). Hint: Use Tl
rem 6.15 and Exercise 12 of Section 6.3.

10. Let T be a self-adjoint operator on a finite-dimengional inner p10d
space V Prove that for all z ¢ V

f(t H(Am -

1T () = dxf]* = || T(@)||* + ||| Now if T = L4, we have (A;;l — T)(e;) € span({el,eg,.. . ,ej?}) :for
5> 2, where {e1,es,...,6n} is the standard ordered basis for C*. (The

Deduce that T — il is invertible and that [(T —il)~"]* = (T + i)t general case is proved in Section 5.4.)

) 11.! Agsume that T is a hnear operator on a complex {not necessarily ﬁn
dimensional) inner product space V with an adjoint T*. Prove.
following results.

(a) IfT is self-adjoint, then (T(z),z) is real for all z € V. - ‘

(b) If T satisfies (T(z),z) = O for all z € V, then T = T, i
Replace = by x + y and then by z + 1y, and expand the result
inner products.

{c) I {T(x},x)isteal for all z € V, then T = T*.

following definitions are used in Exercises 17 through 23.

Definitions. A Iuﬁear operator T on a finite- dimensional inner product
ce is called positive definite [positive semidefinite] if T is self-adjoint
e >0 [{(T(z),z) > 0] for all z # 0.

.k <n (n)x 73 matrix A v;nth entries from R or €' is called positive definite
sitive semidefinite] if L is positive definite [positive semidefinite].

@ Tet T and U be a self-adjoint linear operators on an n-dimensional inner
product space V, and let A = [T |3, where 3 is an orthonormal basis for
V. Prove the following results.

{a) T is positive definite 'semidefinite] if and only if all of its eigenval-

ues are positive [nonnegative]. .
(b) T is positive definite if and only if

12} Let T be a normal operator on a finite-dimensional real inner prod
space V whose characteristic polynomial splits. Prove that V has
orthonormal basis of eigenvectors of T. Hence prove that T is s
adjoint.

13. Ann xn real matrix A is said to be a.Gramian matrix if there exist
real (square) matrix B such that 4 = BB. Prove that A is 4 CGran
matrix'if and only if A is symmetric and all of its eigenvalues are n
negative. Hini: Apply Theorem 6.17 to T = L4 to obtain an orthon
mal basis {v1,vs, ..., v,} of eigenvectors with the associated eigenv
Aty Agy e, A Deﬁne the linear operator U by U(v;) = v/Au;.

ZAij(ljaqj ~ 0 for all nonzero n-tuples {a1,a2,.-- ,@n)-
(¥
(¢} T is positive semidefinite if and only if A = B*B for some square

matrix B. -
(d) If T and U are positive semidefinite operators such that T= = U=,

then T = U.
(e} IfT and U are positive definite operators such that TU = UT, then

TU is positive definite.
(£) T is positive definite isemidefinite] if and only if A is p051t1ve def-

inite [semidefinite].
Becanse of (I), results analogous to items (a) through {d) hold for ma-
trices as well as operators.

14.  Simultaneous Diagonalization. Let V be a finite-dimensional real iy
product space, and let U and T be seif-adjoint linear _operators
such that UT = TU. Prove that there exists an orthonormal bas
V consisting of vectors that are eigenvectors of both U and T. {1
complex version of this result appears as Exercise 10 of Section
Hint: Tor any eigenspace W = E, of T, we have that W is both T-
U-invariant. By Exercise 7, we have that W is both T- and U -invar
Apply Theorem 6.17 and Theorem 6.6 (p. 350).




