115a/4 - Practice Midterm 1

8 October 2010

- 1. (a) Define a linear transformation.
 - (b) Show that the set of F-linear transformations from V to W, where V and W are F-vector spaces, is an F-vector space, where addition is defined via the formula

$$(T_0 + T_1)(v) = T_0(v) + T_1(v)$$

and scalar multiplication is defined as

$$(aT)(v) = aT(v).$$

- (c) Find a basis for the vector space of linear transformations $\mathbb{R}^1 \to \mathbb{R}^2$. You need to prove that the set you find is a basis.
- 2. Let $M_{2\times 2}(\mathbb{R})$ be the \mathbb{R} -vector space of 2×2 matrices with entries in \mathbb{R} .
 - (a) Show that taking transpose is a linear transformation:

$$^t: M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R}).$$

Let Id^{-t} denote the linear transformation sending a matrix A to $A - A^t$.

- (b) Find bases for the null space $N(Id^{-t})$ and range $R(Id^{-t})$. Again, this requires proof.
- (c) What are the nullity and rank of Id^{-t} .
- 3. Let V be a vector space, and let W and Z be subspaces of V such that for every vector v of V there are vectors $w \in W$ and $z \in Z$ such that v = w + z.
 - (a) Show that if span(S) = W and span(T) = Z for some sets S and T of vectors in V, then $span(S \cup T) = V$.
 - (b) Conclude that if W and Z are finite dimensional vector spaces with dimensions dim(W) = m and dim(Z) = n, then V is finite dimensional, and $dim(V) \le m+n$.
 - (c) Prove or disprove (possibly by constructing a counterexample) that if S and T are bases for V and W, then $S \cup T$ is a basis for V.