115a/4 - Practice Midterm 1

8 October 2010

1. (a) Define a linear transformation.
(b) Show that the set of F-linear transformations from V to W, where V and W are F-vector spaces, is an F-vector space, where addition is defined via the formula

$$
\left(T_{0}+T_{1}\right)(v)=T_{0}(v)+T_{1}(v)
$$

and scalar multiplication is defined as

$$
(a T)(v)=a T(v)
$$

(c) Find a basis for the vector space of linear transformations $\mathbb{R}^{1} \rightarrow \mathbb{R}^{2}$. You need to prove that the set you find is a basis.
2. Let $M_{2 \times 2}(\mathbb{R})$ be the \mathbb{R}-vector space of 2×2 matrices with entries in \mathbb{R}.
(a) Show that taking transpose is a linear transformation:

$$
{ }^{t}: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R}) .
$$

Let $I d-^{t}$ denote the linear transformation sending a matrix A to $A-A^{t}$.
(b) Find bases for the null space $N\left(I d-^{t}\right)$ and range $R\left(I d-^{t}\right)$. Again, this requires proof.
(c) What are the nullity and rank of $I d-{ }^{t}$.
3. Let V be a vector space, and let W and Z be subspaces of V such that for every vector v of V there are vectors $w \in W$ and $z \in Z$ such that $v=w+z$.
(a) Show that if $\operatorname{span}(S)=W$ and $\operatorname{span}(T)=Z$ for some sets S and T of vectors in V, then $\operatorname{span}(S \cup T)=V$.
(b) Conclude that if W and Z are finite dimensional vector spaces with dimensions $\operatorname{dim}(W)=m$ and $\operatorname{dim}(Z)=n$, then V is finite dimensional, and $\operatorname{dim}(V) \leq m+n$.
(c) Prove or disprove (possibly by constructing a counterexample) that if S and T are bases for V and W, then $S \cup T$ is a basis for V.

