115a/4 - Practice Midterm 2

5 November 2010

1. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear operator that takes a polynomial $f(x)$ to

$$
f^{\prime \prime}(x)(x+2)+f^{\prime}(x)+f(x) .
$$

Compute the characteristic polynomial of T. Show that T is not diagonalizable over \mathbb{R}.
2. Show that a linear operator on a finite-dimensional vector space is invertible if and only if it has zero nullity.
3. Say that a linear operator $T: V \rightarrow V$ is nilpotent if some n-fold composition T^{n} is the zero operator on V. That is, $T^{n}(v)=0$ for all $v \in V$. Show that $\frac{d}{d x}$ is a nilpotent operator on $P_{n}(\mathbb{R})$ for any non-negative integer n.
4. Let $\beta=\left\{1, x, x^{2}\right\}$ be the standard ordered basis for $P_{2}(\mathbb{R})$, and let

$$
\gamma=\left\{x^{2}+x+1, x, x^{2}+2\right\} .
$$

This is another ordered basis for $P_{2}(\mathbb{R})$. Compute the change of basis (change of coordinate) matrices from β to γ and from γ to β. In the notation of class, compute $[I d]_{\beta}^{\gamma}$ and $[I d]_{\gamma}^{\beta}$.
5. Does the matrix

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

have any eigenvalues viewed as a linear transformation $\mathbb{Q}^{2} \rightarrow \mathbb{Q}^{2}$? Prove your answer. Show that as a linear transformation $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}, A$ is diagonalizable.

