115b/1 - Homework 1*

Due 10 January 2011

1. Let $P_{4}(\mathbb{R})$ be the vector space of degree 4 polynomials with real coefficients, and let $\beta=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ be the standard ordered basis of $P_{4}(\mathbb{R})$. Let

$$
T: P_{4}(\mathbb{R}) \rightarrow \mathbb{R}^{1}
$$

be the linear transformation defined by

$$
T(f(x))=\int_{0}^{10} f(x) d x
$$

Compute $[T]_{\beta}^{e}$, the matrix representation of T with respect to β and e, where e is the standard basis $\{1\}$ of \mathbb{R}^{1}.
2. For all $n>0$, construct an example of a nilpotent $n \times n$ matrix A such that $A^{n-1} \neq 0$, but $A^{n}=0$.
3. Let A be an $n \times n$ nilpotent complex matrix. Prove that $A^{n}=0$. (Hint: use Schur's theorem.)
4. Prove that if $T: V \rightarrow W$ is a linear transformation and V is finite dimensional, then

$$
\operatorname{dim}(V)=\operatorname{rank}(T)+\operatorname{nullity}(T)
$$

5. Prove that every $n \times n$ matrix A can be written

$$
A=Q L U,
$$

where Q is a permutation matrix (a matrix having exactly one 1 in each row and column and zeros elsewhere), L is a lower triangular matrix, and U is an upper triangular matrix. (Hint: consider Gaussian elimination. Also, induction is always nice.)
6. Do problem (2.6.7).
7. Do problem (2.6.8).

[^0]
[^0]: *Numbers in parentheses like (1.2.11) refer to the 11th problem in the second section of the first chapter of Friedberg et. al.

