115b/1 - Practice Midterm

31 January 2010

1. Let $T: V \rightarrow V$ be a linear operator on a vector space V, and let $W \subseteq V$ be a T invariant subspace. Suppose that $\lambda_{1}, \ldots, \lambda_{k}$ are distinct eigenvalues of T and that v_{1}, \ldots, v_{k} are vectors such that $T\left(v_{i}\right)=\lambda_{i} v_{i}$ for $i=1, \ldots, k$. Prove that if $v_{1}+\cdots v_{k}$ is in W, then v_{i} is in W for $i=1, \ldots, k$.
2. Let $T: V \rightarrow V$ be a linear operator on a finite dimensional vector space V, and let $W \subseteq V$ be a T-invariant subspace. Prove, using the result of problem 1, that if T is diagonalizable, then so is the restriction of T to $W:\left.T\right|_{W}: W \rightarrow W$.
3. Let V be a finite dimensional real or complex inner product space. Show that if $T: V \rightarrow V$ is a normal linear operator, and if W is a T-invariant subspace of V, then W^{\perp} is T^{*}-invariant.
4. Suppose that $T: V \rightarrow V$ is a linear operator on an n dimensional vector space such that V is a T-cyclic subspace of itself. Show that the minimal polynomial $p(t)$ of T has the same degree as the characteristic polynomial $f(t)$ of T.
5. Let $T: V \rightarrow V$ be a diagonalizable linear operator on a finite dimensional vector space V. Let $T^{t}: V^{*} \rightarrow V^{*}$ be the transpose of V. Show that T^{t} is diagonalizable.
