061 - Midterm 2

20 May 2011

1. (20 points). Solve the recurrence relation

$$
a_{n}=7 a_{n-1}-10 a_{n-2}
$$

subject to the initial conditions $a_{0}=1$ and $a_{1}=5$.
Solution First, solve the quadratic equation

$$
t^{2}-7 t+10=0
$$

The roots of this are 2 and 5 . Now, we need to solve the system of linear equations

$$
\begin{array}{r}
a+b=1 \\
2 a+5 b=5 .
\end{array}
$$

The unique solution to this equation is $b=1$ and $a=0$. So, the solution satisfying these initial conditions is $a_{n}=5^{n}$.
2. (20 points). Let K_{5} be the complete simple graph on 5 vertices v_{1}, \ldots, v_{5}. How many paths of length 3 are there from v_{1} to v_{2} ?

Solution The adjacency matrix A of K_{5} is

$$
A=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

We need to compute the $(1,2)$-entry of A^{3}. This is

$$
A^{3}=\left(\begin{array}{lllll}
12 & 13 & 13 & 13 & 13 \\
13 & 12 & 13 & 13 & 13 \\
13 & 13 & 12 & 13 & 13 \\
13 & 13 & 13 & 12 & 13 \\
13 & 13 & 13 & 13 & 12
\end{array}\right)
$$

So, there are 13 paths of length 3 from v_{1} to v_{2}.
3. (20 points). Consider the weighted graph G

Run Dijkstra's algorithm to find the length of the shortest path from a to z. Draw the state of the graph when the algorithm finishes together with all labels permanent or not on all vertices. Circle the vertices whose labels are permanent. This picture of the final state of the graph is the only part of the solution that counts towards the grade.

Solution

4. (20 points). Let l, m, n be positive integers, let $X=\left\{v_{1}, \ldots, v_{l}\right\}, Y=\left\{w_{1}, \ldots, w_{m}\right\}$, and $Z=\left\{x_{1}, \ldots, x_{n}\right\}$, and let the graph $K_{l, m, n}$ be the graph on the vertex set $X \cup Y \cup Z$ where there is a unique edge between two vertices a and b if a and b are in different sets X, Y, Z. Thus, the v_{i} are connected to the w_{i} and x_{i}, but there are no edges from v_{i} to v_{j}. Similarly, the w_{i} are connected to the v_{i} and the x_{i}, but not to themselves, and the x_{i} are connected to the v_{i} and the w_{i}, but not to themselves. For example, $K_{2,2,2}$ is the graph

Determine all pairs of positive integers l, m, n such that $K_{l, m, n}$ has an Euler cycle?

Solution A vertex v_{i} has degree $m+n$, a vertex w_{i} has degree $l+n$, and a vertex x_{i} has degree $l+m$. By the theorem proved in class, it is necessary and sufficient for $K_{l, m, n}$ to have an Euler cycle that $m+n, l+n$, and $l+m$ all be even. Thus either l, m, n are all even or all odd.
5. (20 points). Recall that the complement of a simple graph G is a graph \bar{G} on the same vertex set of G but where the edge (v, w) is in \bar{G} if and only if it is not in G. Draw a simple graph G on 7 vertices such that G and \bar{G} are both planar. Your answer needs to include both G and \bar{G} with labeled vertices drawn as planar graphs.

Solution An example graph G is

Its complement \bar{G} is

Since v_{4} is not connected to the rest, we can ignore it for the rest of the discussion. Let G^{\prime} be \bar{G} minus v_{4}. So, G^{\prime} is

This can be re-drawn as

And then,

Then,

Then,

So, the final picture of \bar{G} is

Planar!

