061 - Final - Practice Problems

1 June 2011

1. Prove that $n! > n^2$ for all integers $n \ge 4$.

2. Let X be a finite set with n elements. Determine, with proof, how many binary equivalence relations there are on X.

3. How many rearrangements of MATHEMATICS are there where the Ms are not next to each other?

4. Let's play Canasta! The deck consists of 2 standard packs of 52 cards, 13 in each of 4 suits. So, there are 2 of every card, but we can't tell the two copies apart. For example, there are 2 Aces of Hearts. How many different 5-card hands are there that contain only Hearts?

5. Let $X = \{1, 2, 3, 4, 5\}$. How many strings of length 1000 on X are there such that there are no substrings from $\{1, 2\}$ of length more than 1.

6. Prove that in any set of 51 positive integers less than 100, there are two whose sum is 100.

7. Show that if G is a simple graph, then either G or \overline{G} is connected.

8. Show that if G is a simple graph with at least two vertices, then there are two vertices in G with the same degree.

9. Prove that every tree with at least two vertices is a bipartite graph.

10. Prove that the number of nonisomorphic binary trees with n vertices is the nth Catalan number.