
061 - Final - Practice Problems

1 June 2011

1. Prove that n! > n2 for all integers n ≥ 4.

Solution Proof by induction. Base case: when n = 4, n! = 24, while n2 = 16, so this
checks out. Now, suppose that n > 4 and that the statement is true for all k where 4 ≤ k < n.
Then,

n! = n((n− 1)!) > n((n− 1)2) = n3 − 2n2 + n = n2(n− 2) + n > n2,

as desired.

2. Let X be a finite set with n elements. Determine, with proof, how many binary equiva-
lence relations there are on X.

Solution A binary relation on X is just a subset of X ×X. The subsets of X ×X are the
elements of the power set P (X ×X). The set X ×X has n2 elements, so the set P (X ×X)
has 2(n2) elements. Therefore, there are 2(n2) binary relations on X.

3. How many rearrangements of MATHEMATICS are there where the Ms are not next to
each other?

Solution In general, there are a total of

11!

2!2!2!

rearrangements of MATHEMATICS. Let Φ =MM. Then, there are

10!

2!2!

rearrangements of ΦATHEATICS. These correspond to the rearrangements of MATHEMAT-
ICS in which the Ms are next to each other. So, there are

11!

2!2!2!
− 10!

2!2!

rearrangements of MATHEMATICS where the Ms are not next to each other.
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4. Let’s play Canasta! The deck consists of 2 standard packs of 52 cards, 13 in each of 4
suits. So, there are 2 of every card, but we can’t tell the two copies apart. For example,
there are 2 Aces of Hearts. How many different 5-card hands are there that contain only
Hearts?

Solution First, suppose that the hand contains no duplicates; e.g., there are not 2 Aces
of Hearts in the hand. Then, there are

(
13
5

)
such hands. Now, suppose that a single card

is duplicated. There are 13 choices for the duplicated card, and
(
12
4

)
choices for the other

cards. If 2 cards are duplicated, there are
(
13
2

)
choices for those cards and

(
11
1

)
choices for

the other card. Therefore, there are(
13

5

)
+

(
13

1

)(
12

4

)
+

(
13

2

)(
11

1

)
different flushes of Hearts.

5. Let X = {1, 2, 3, 4, 5}. How many strings of length 1000 on X are there such that there
are no substrings from {1, 2} of length more than 1.

Solution Let an be the number of string of length n on X such that there are no substring
from {1, 2} of length more than 1. Then, a0 = 1 and a1 = 5. We find a recursive formula
for the an. Given any string t of length n− 1 on X of the same type, the strings 3t, 4t, and
5t are all of the appropriate type. Similarly, given any string t of length n− 1 on X of this
type, the strings 13t, 14t, 15t, 23t, 24t, and 25t are of the correct type. Thus, we see that

an = 3an−1 + 6an−2.

To solve this, we consider the equation t2 − 3t − 6. Using the quadratic formula, this has
solutions r1 = 3+

√
33

2
and r2 = 3−

√
33

2
. Solving the system of equations

a + b = 1

ar1 + br2 = 5,

we find that a = 7√
33

and b = 1− 7√
33

. Therefore, there are

7√
33

(
3 +
√

33

2

)1000

+

(
1− 7√

33

)(
3−
√

33

2

)1000

such strings.

6. Prove that in any set of 51 positive integers less than 100, there are two whose sum is
100.
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Solution Let a1, . . . , a51 be 51 positive integers less than 100. Let bn = 100 − an, for
1 ≤ n ≤ 51. First, note that bn = an if and only if an = 50. If some an is equal to 50, then
discarding an and bn, the rest of the numbers form 100 integers between 1 and 99. Thus,
two of them are equal by the pigeonhole principle. So, ak = bj = 100 − aj for some k 6= j.
So, we’re done. If no an is equal to 50 then the same argument works.

7. Show that if G is a simple graph, then either G or G is connected.

Solution Assume that G is a simple disconnected graph. Let v1, . . . , vk, k ≥ 2, be a vertex
from each connected component of G. This means that every vertex of G can be connected
to exactly one of the vi, and no vi can be connected to any other. Let x and y be two vertices
in the vertex set of G. We show that they are connected by a path in G. First, if x and y
are in different components in G, then there is actually an edge between them in G, so they
are certainly connected by a path in this case. Now, assume that x and y are in the same
component of G, say the v1 component. Then, there is an edge e1 from x to v2 in G and an
edge e2 from y to v2 in G. Thus, the path (x, e1, v2, e2, y) in G. Therefore, in this case too
x and y are connected. Therefore, G is connected.

8. Show that if G is a simple graph with at least two vertices, then there are two vertices in
G with the same degree.

Solution Suppose that G has n vertices. Since G is simple, the degree of each vertex is
between 0 and n− 1. If the graph is connected, then the degree of each vertex is between 1
and n − 1. By the pigeonhole principle, two vertices have the same degree. If the graph is
not connected, there is no vertex of degree n− 1. Thus, the degree of each vertex is between
0 and n− 2. Again, by the pigeonhole principle, two vertices have the same degree.

9. Prove that every tree with at least two vertices is a bipartite graph.

Solution Choose a root for the tree T . Then, let X consist of the vertices of even level,
and let Y be the vertices of odd level. Then, T is bipartite on X and Y .

10. Prove that the number of nonisomorphic binary trees with n vertices is the nth Catalan
number.

Solution Denote by Cn this number. Then, C0 is 1. We can construct all isomorphism
classes of binary trees with n vertices by choosing the number of vertices k of the left branch
of the root together with a binary tree on k vertices together with a binary tree on n− k− 1
vertices. Therefore,

Cn =
n−1∑
k=0

CkCn−k−1.
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But, this is the same recurrence relation satisfied by the Catalan numbers with the same
initial condition.
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