061 - Final - Practice Problems

1 June 2011

1. Prove that $n!>n^{2}$ for all integers $n \geq 4$.

Solution Proof by induction. Base case: when $n=4, n!=24$, while $n^{2}=16$, so this checks out. Now, suppose that $n>4$ and that the statement is true for all k where $4 \leq k<n$. Then,

$$
n!=n((n-1)!)>n\left((n-1)^{2}\right)=n^{3}-2 n^{2}+n=n^{2}(n-2)+n>n^{2}
$$

as desired.
2. Let X be a finite set with n elements. Determine, with proof, how many binary equivalence relations there are on X.

Solution A binary relation on X is just a subset of $X \times X$. The subsets of $X \times X$ are the elements of the power set $P(X \times X)$. The set $X \times X$ has n^{2} elements, so the set $P(X \times X)$ has $2^{\left(n^{2}\right)}$ elements. Therefore, there are $2^{\left(n^{2}\right)}$ binary relations on X.
3. How many rearrangements of MATHEMATICS are there where the Ms are not next to each other?

Solution In general, there are a total of

$$
\frac{11!}{2!2!2!}
$$

rearrangements of MATHEMATICS. Let $\Phi=\mathrm{MM}$. Then, there are

$$
\frac{10!}{2!2!}
$$

rearrangements of $\Phi A T H E A T I C S$. These correspond to the rearrangements of MATHEMATICS in which the Ms are next to each other. So, there are

$$
\frac{11!}{2!2!2!}-\frac{10!}{2!2!}
$$

rearrangements of MATHEMATICS where the Ms are not next to each other.
4. Let's play Canasta! The deck consists of 2 standard packs of 52 cards, 13 in each of 4 suits. So, there are 2 of every card, but we can't tell the two copies apart. For example, there are 2 Aces of Hearts. How many different 5 -card hands are there that contain only Hearts?

Solution First, suppose that the hand contains no duplicates; e.g., there are not 2 Aces of Hearts in the hand. Then, there are $\binom{13}{5}$ such hands. Now, suppose that a single card is duplicated. There are 13 choices for the duplicated card, and $\binom{12}{4}$ choices for the other cards. If 2 cards are duplicated, there are $\binom{13}{2}$ choices for those cards and $\binom{11}{1}$ choices for the other card. Therefore, there are

$$
\binom{13}{5}+\binom{13}{1}\binom{12}{4}+\binom{13}{2}\binom{11}{1}
$$

different flushes of Hearts.
5. Let $X=\{1,2,3,4,5\}$. How many strings of length 1000 on X are there such that there are no substrings from $\{1,2\}$ of length more than 1 .

Solution Let a_{n} be the number of string of length n on X such that there are no substring from $\{1,2\}$ of length more than 1 . Then, $a_{0}=1$ and $a_{1}=5$. We find a recursive formula for the a_{n}. Given any string t of length $n-1$ on X of the same type, the strings $3 t, 4 t$, and $5 t$ are all of the appropriate type. Similarly, given any string t of length $n-1$ on X of this type, the strings $13 t, 14 t, 15 t, 23 t, 24 t$, and $25 t$ are of the correct type. Thus, we see that

$$
a_{n}=3 a_{n-1}+6 a_{n-2} .
$$

To solve this, we consider the equation $t^{2}-3 t-6$. Using the quadratic formula, this has solutions $r_{1}=\frac{3+\sqrt{33}}{2}$ and $r_{2}=\frac{3-\sqrt{33}}{2}$. Solving the system of equations

$$
\begin{aligned}
a+b & =1 \\
a r_{1}+b r_{2} & =5,
\end{aligned}
$$

we find that $a=\frac{7}{\sqrt{33}}$ and $b=1-\frac{7}{\sqrt{33}}$. Therefore, there are

$$
\frac{7}{\sqrt{33}}\left(\frac{3+\sqrt{33}}{2}\right)^{1000}+\left(1-\frac{7}{\sqrt{33}}\right)\left(\frac{3-\sqrt{33}}{2}\right)^{1000}
$$

such strings.
6. Prove that in any set of 51 positive integers less than 100 , there are two whose sum is 100.

Solution Let a_{1}, \ldots, a_{51} be 51 positive integers less than 100. Let $b_{n}=100-a_{n}$, for $1 \leq n \leq 51$. First, note that $b_{n}=a_{n}$ if and only if $a_{n}=50$. If some a_{n} is equal to 50 , then discarding a_{n} and b_{n}, the rest of the numbers form 100 integers between 1 and 99. Thus, two of them are equal by the pigeonhole principle. So, $a_{k}=b_{j}=100-a_{j}$ for some $k \neq j$. So, we're done. If no a_{n} is equal to 50 then the same argument works.
7. Show that if G is a simple graph, then either G or \bar{G} is connected.

Solution Assume that G is a simple disconnected graph. Let $v_{1}, \ldots, v_{k}, k \geq 2$, be a vertex from each connected component of G. This means that every vertex of G can be connected to exactly one of the v_{i}, and no v_{i} can be connected to any other. Let x and y be two vertices in the vertex set of G. We show that they are connected by a path in \bar{G}. First, if x and y are in different components in G, then there is actually an edge between them in \bar{G}, so they are certainly connected by a path in this case. Now, assume that x and y are in the same component of G, say the v_{1} component. Then, there is an edge e_{1} from x to v_{2} in \bar{G} and an edge e_{2} from y to v_{2} in \bar{G}. Thus, the path $\left(x, e_{1}, v_{2}, e_{2}, y\right)$ in \bar{G}. Therefore, in this case too x and y are connected. Therefore, \bar{G} is connected.
8. Show that if G is a simple graph with at least two vertices, then there are two vertices in G with the same degree.

Solution Suppose that G has n vertices. Since G is simple, the degree of each vertex is between 0 and $n-1$. If the graph is connected, then the degree of each vertex is between 1 and $n-1$. By the pigeonhole principle, two vertices have the same degree. If the graph is not connected, there is no vertex of degree $n-1$. Thus, the degree of each vertex is between 0 and $n-2$. Again, by the pigeonhole principle, two vertices have the same degree.
9. Prove that every tree with at least two vertices is a bipartite graph.

Solution Choose a root for the tree T. Then, let X consist of the vertices of even level, and let Y be the vertices of odd level. Then, T is bipartite on X and Y.
10. Prove that the number of nonisomorphic binary trees with n vertices is the nth Catalan number.

Solution Denote by C_{n} this number. Then, C_{0} is 1 . We can construct all isomorphism classes of binary trees with n vertices by choosing the number of vertices k of the left branch of the root together with a binary tree on k vertices together with a binary tree on $n-k-1$ vertices. Therefore,

$$
C_{n}=\sum_{k=0}^{n-1} C_{k} C_{n-k-1}
$$

But, this is the same recurrence relation satisfied by the Catalan numbers with the same initial condition.

