33 AH - Practice Midterm 2

17 February 2012
1.a. (10 points) Let

$$
A=\left(\begin{array}{ccccc}
0 & -1 & 1 & -1 & 3 \\
4 & 0 & 3 & -1 & 1 \\
4 & 2 & 6 & 1 & 7 \\
2 & 1 & 2 & 1 & 6
\end{array}\right)
$$

Find bases for the 4 fundamental subspaces associated to A.
1.b (10 points) Describe the complete solution to $A \mathbf{x}=\mathbf{b}$ where

$$
\mathbf{b}=\left(\begin{array}{l}
5 \\
4 \\
3 \\
2
\end{array}\right)
$$

2.a. (10 points) Write down a matrix A that has nullspace spanned by the two column vectors $\mathbf{v}_{1}=(1,2,3,4)$ and $\mathbf{v}_{2}=(5,6,1,3)$.
2.b. (10 points) Note: your matrix A from part (a) doesn't have independent columns. But, write down a projection matrix P that projects onto the column space of A.
3.a (10 points) Find the projection matrix P that projects onto the column space of

$$
A=\left(\begin{array}{ccc}
0 & -1 & 2 \\
2 & 0 & 3 \\
4 & 1 & 6 \\
1 & 1 & 1
\end{array}\right)
$$

3.b (10 points) Give an example to show that two matrices with the same column spaces can have different projection matrices.
4. (20 points) Let $W \subseteq \mathbb{R}^{n}$ be a subspace and let \mathbf{x} be a vector in \mathbb{R}^{n}. Show that if $\mathbf{p} \in W$ is a vector such that $\mathbf{p}-\mathbf{x}$ is orthogonal to W, then for every $\mathbf{y} \in W$, we have $\|\mathbf{x}-\mathbf{p}\| \leq\|\mathbf{x}-\mathbf{y}\|$. Then, show the converse as well. We have used these facts implicitely in class, but we haven't proven them.

