Homework 7 - Math 132/3

Due 1 June 2012

1. Let $f_{1}=1$ and $f_{2}=1$, and define $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$. These are the Fibonnaci numbers. Determine the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{f_{n}} .
$$

Your answer should either be in terms of some well-known constants, or a decimal number computed to at least 4 significant places. You might consult the Wikipedia article entitled Fibonacci number for some potentially useful facts.
2. Can there be a non-constant function $f(z)$ analytic on the punctured unit disk $\{z|0<|z|<1\}$ such that $f(1 / n)=0$ for all integers $n>1$? If not, prove it. If so, give an example of such a function and discuss whether the function is unique.
3. Compute the first 3 non-zero terms in the power series expansion of

$$
f(z)=\frac{e^{z}}{(z-1)^{4}}
$$

at $z=2$.
4. Find all of the zeros of $f(z)=\sinh ^{2} z+\cosh ^{2} z$ and their orders. Compute the first 4 non-zero terms in the power series expansion of $f(z)$ at $z=0$.
5. Show that any linear fractional transformation $f(z)=\frac{a z+b}{c z+d}$ with $c \neq 0$ is analytic at ∞, and compute its power series expansion at ∞. There's a slick way to determine the interval of convergence: what is it?

