Homework 8 - Math 132/3

Due 8 June 2012

1. Find a Laurent decomposition $f_{0}(z)+f_{1}(z)$ of the function

$$
f(z)=\frac{1}{(z-1)^{2}(z-4 i)}
$$

on the annulus $\{z|2<|z|<4\}$.
2. What is the radius of convergence for the Laurent series of $\frac{z}{\sin ^{3} z}$ at $z=\pi i$? Find the first 5 non-zero terms in the series.
3. Classify the singularities, including the determination of the orders of any pole and including what happens at ∞, of the functions

$$
\frac{\log z}{(z-1)^{4}} \quad e^{\frac{z}{z^{2}+1}} \quad \quad z^{3} \sin \left(\frac{1}{z^{2}-1}\right)
$$

4. Evaluate the following integrals using the residue theorem:

$$
\int_{|z|=4} \frac{z}{\sin z} \mathrm{~d} z \quad \int_{|z-1 / 2|=3 / 2} \frac{\tan z}{z^{2}} \mathrm{~d} z
$$

5. Show, using residue theory as in Gamelin section VII.2, that

$$
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+a^{2}\right)^{2}}=\frac{\pi}{2 a^{3}}
$$

