Problem set 5 for 131 A/3 - Fall 2012

Benjamin Antieau

Due 9 November 2012

1. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Prove that $f(x)=x$ for at least one $x \in[0,1]$ [Rud87].
2. [Ros80, Exercise 18.5]. Let f and g be continuous functions on [a, b] such that $f(a) \geq g(a)$ and $f(b) \leq g(b)$. Prove that $f\left(x_{0}\right)=g\left(x_{0}\right)$ for at least one $x_{0} \in[a, b]$.
3. Show that if f is an odd-degree polynomial function, then f has at least one real root.
4. Prove that if f is a real uniformly continuous function on the bounded set E of \mathbb{R}, then f is bounded on E. Show that this is false if f is only continuous [Rud87].
5. [Ros80, Exercise 19.1].
6. [Ros80, Exercise 19.8]. Prove that $|\sin x-\sin y| \leq|x-y|$ for all $x, y \in \mathbb{R}$. Show that $\sin x$ is uniformly continuous on \mathbb{R}.
7. [Ros80, Exercise 19.9]. Let $f(x)=x \sin (1 / x)$ for $x \neq 0$ and $f(0)=0$. Is f uniformly continuous on \mathbb{R} ?
8. Prove that the composition of two uniformly continuous functions is uniformly continuous [Rud87].
9. Let $f(x)$ be a function possessing the property that to every x_{0} there corresponds a $\delta>0$ such that $f(x) \geq f\left(x_{0}\right)$ whenever $\left|x-x_{0}\right|<\delta$. Prove that the set of values of $f(x)$ is finite or countable [Nat55].
10. [Ros80, Exercise 20.1].

References

[KF75] A. N. Kolmogorov and S. V. Fomīn, Introductory real analysis, Dover Publications Inc., New York, 1975. Translated from the second Russian edition and edited by Richard A. Silverman; Corrected reprinting.
[Nat55] I. P. Natanson, Theory of functions of a real variable, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron with the collaboration of Edwin Hewitt.
[Ros80] K. A. Ross, Elementary analysis: the theory of calculus, Springer-Verlag, New York, 1980. Undergraduate Texts in Mathematics.
[Rud87] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.

