Problem set 5 for 131 A/3 - Fall 2012

Benjamin Antieau

Due 9 November 2012

- 1. Let $f : [0,1] \rightarrow [0,1]$ be a continuous function. Prove that f(x) = x for at least one $x \in [0,1]$ [Rud87].
- 2. [Ros80, Exercise 18.5]. Let *f* and *g* be continuous functions on [*a*, *b*] such that $f(a) \ge g(a)$ and $f(b) \le g(b)$. Prove that $f(x_0) = g(x_0)$ for at least one $x_0 \in [a, b]$.
- 3. Show that if f is an odd-degree polynomial function, then f has at least one real root.
- 4. Prove that if f is a real uniformly continuous function on the bounded set E of \mathbb{R} , then f is bounded on E. Show that this is false if f is only continuous [Rud87].
- 5. [Ros80, Exercise 19.1].
- 6. [Ros80, Exercise 19.8]. Prove that $|\sin x \sin y| \le |x y|$ for all $x, y \in \mathbb{R}$. Show that $\sin x$ is uniformly continuous on \mathbb{R} .
- 7. [Ros80, Exercise 19.9]. Let $f(x) = x \sin(1/x)$ for $x \neq 0$ and f(0) = 0. Is f uniformly continuous on \mathbb{R} ?
- Prove that the composition of two uniformly continuous functions is uniformly continuous [Rud87].
- 9. Let f(x) be a function possessing the property that to every x_0 there corresponds a $\delta > 0$ such that $f(x) \ge f(x_0)$ whenever $|x x_0| < \delta$. Prove that the set of values of f(x) is finite or countable [Nat55].
- 10. [Ros80, Exercise 20.1].

References

- [KF75] A. N. Kolmogorov and S. V. Fomīn, *Introductory real analysis*, Dover Publications Inc., New York, 1975. Translated from the second Russian edition and edited by Richard A. Silverman; Corrected reprinting.
- [Nat55] I. P. Natanson, *Theory of functions of a real variable*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron with the collaboration of Edwin Hewitt.
- [Ros80] K. A. Ross, Elementary analysis: the theory of calculus, Springer-Verlag, New York, 1980. Undergraduate Texts in Mathematics.
- [Rud87] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.