Problem set 7 for 131 A/3 - Fall 2012

Benjamin Antieau

Due 30 November 2012

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational, } \\ \frac{1}{q} & \text { if } x=\frac{p}{q} \text { and } p \text { and } q \text { are relatively prime. }\end{cases}
$$

Prove that either f is or is not Darboux integrable.
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function

$$
f(x)= \begin{cases}n & \text { if } x=\frac{1}{n} \\ 0 & \text { otherwise }\end{cases}
$$

Prove that either f is or is not Darboux integrable.
3. Suppose that $\left(f_{n}\right)$ is a sequence of bounded functions on an interval $[a, b]$ that converges pointwise to a function f on $[a, b]$. Determine with proof whether not the Darboux integrability of each f_{n} implies that f is Darboux integrable.
4. [Ros80, Exercise 32.7].
5. [Ros80, Exercise 32.8].
6. Prove [Ros80, Theorems 33.1 and 33.2] in your own words (it can be the "same" proof though).
7. [Ros80, Exercise 33.7].
8. [Ros80, Exercise 34.11].
9. Define what it should mean for a function $f:[a, \infty) \rightarrow \mathbb{R}$ to be Darboux integrable.

References

[KF75] A. N. Kolmogorov and S. V. Fomīn, Introductory real analysis, Dover Publications Inc., New York, 1975. Translated from the second Russian edition and edited by Richard A. Silverman; Corrected reprinting.
[Nat55] I. P. Natanson, Theory of functions of a real variable, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron with the collaboration of Edwin Hewitt.
[Ros80] K. A. Ross, Elementary analysis: the theory of calculus, Springer-Verlag, New York, 1980. Undergraduate Texts in Mathematics.
[Rud87] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.

