# Problem set 8 for 131 A/3 - Fall 2012 

Benjamin Antieau

Due 7 December 2012

1. An algebraic number in $\mathbb{R}$ is any number that is the solution to an equation of the form

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

where the $a_{i}$ are rational numbers. Show that the set of algebraic numbers in $\mathbb{R}$ is countable.
2. Prove that there exist non-algebraic real numbers.
3. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that for each point $x \in \mathbb{R}$ there exists a $\delta>0$ such that if $|y-x|<\delta$, then $f(y) \geq f(x)$. Show that $f$ takes on only countably many values.
4. Is the set of all irrational numbers countable? Give a proof of your answer.
5. Show that a countable union of countable sets is countable.
6. If $S$ is a set, its power set $P(S)$ is the set of all subsets of $S$. For example, $P(\emptyset)=\{\emptyset\}$. Show that $S$ and $P(S)$ never have the same cardinality.

## References

[KF75] A. N. Kolmogorov and S. V. Fomīn, Introductory real analysis, Dover Publications Inc., New York, 1975. Translated from the second Russian edition and edited by Richard A. Silverman; Corrected reprinting.
[Nat55] I. P. Natanson, Theory of functions of a real variable, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron with the collaboration of Edwin Hewitt.
[Ros80] K. A. Ross, Elementary analysis: the theory of calculus, Springer-Verlag, New York, 1980. Undergraduate Texts in Mathematics.
[Rud87] W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.

